1
|
Wang JX, Chen MQ, Zhang Y, Han B, Mou ZD, Feng X, Zhang X, Niu D. A Modified Arbuzov-Michalis Reaction for Selective Alkylation of Nucleophiles. Angew Chem Int Ed Engl 2024; 63:e202409931. [PMID: 38957113 DOI: 10.1002/anie.202409931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The alkylation of nucleophiles is among the most fundamental and well-developed transformations in chemistry. However, to achieve selective alkylation of complex substrates remains a nontrivial task. We report herein a general and selective alkylation method without using strong acids, bases, or metals. In this method, the readily available phosphinites/phosphites, in combination with ethyl acrylate, function as effective alkylating agents. Various nucleophilic groups, including alcohols, phenols, carboxylic acids, imides, and thiols can be alkylated. This method can be applied in the late-stage alkylation of natural products and pharmaceutical agents, achieving chemo- and site-selective modification of complex substrates. Experimental studies indicate the relative reactivity of a nucleophile depends on its acidity and its steric environment. Mechanistic studies suggest the reaction pathway resembles that of the Arbuzov-Michalis reaction.
Collapse
Affiliation(s)
- Jia-Xi Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Mu-Qiu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xitong Feng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
2
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Upadhyaya K, Dubbu S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr Res 2024; 542:109175. [PMID: 38865797 DOI: 10.1016/j.carres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Mahanti M, Bhaskar Pal K, Wallentin CJ, Galan MC. Hypervalent Iodine Compounds in Carbohydrate Chemistry: Glycosylation, Functionalization and Oxidation. Chemistry 2024; 30:e202400087. [PMID: 38349955 DOI: 10.1002/chem.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/15/2024]
Abstract
This mini review article provides an overview on the use of hypervalent iodine compounds (HICs) in carbohydrate synthesis, focusing on their chemistry and recent applications. HICs are similar to transition metals in their reactivity but have the added benefit of being environmentally benign, and are therefore commonly used as selective oxidants and eco-friendly reagents in organic synthesis. Herein, we summarize various synthetic uses of hypervalent iodine reagents in reactions such as glycosylation, oxidations, functionalization, and C-C bond-forming reactions. The goal of this review is to illustrate the advantages and versatility of using HICs as an environmentally sustainable alternative to heavy metals in carbohydrate chemistry.
Collapse
Affiliation(s)
- Mukul Mahanti
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| | - Kumar Bhaskar Pal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - Carl Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| |
Collapse
|
6
|
Wang B, Zhang Y, He X. A useful strategy for synthesis of the disaccharide of OSW-1. RSC Adv 2023; 13:30985-30989. [PMID: 37876654 PMCID: PMC10591292 DOI: 10.1039/d3ra05748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
A flexible, efficient, and practical synthesis route was developed to synthesize an OSW-1 disaccharide. The synthesis took 13 steps from l-arabinose and d-xylose derivatives, and the overall yield was 7.2%. The region preferentially protects various d-xylose hydroxides because the TBS group selectively reacts with this hydroxide at low concentrations due to greater activity at the C-4 hydroxyl of d-xylose. Then, high efficiency selectively protects C-2 hydroxyl and C-3 hydroxyl of d-xylose, respectively. The first high yield of glycosylation on an OSW-1 synthesis disaccharide was achieved by taking sulfide donor 4 with β-PMP anomeric l-arabinose acceptor 12. The cytotoxicity reveals that the analogy has a high IC50 for a variety of cell types. This approach should provide a versatile way to modify OSW-1's disaccharide.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| | - Yan Zhang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| | - Xiangyan He
- Scientific Research and Education Centre, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang Uygur Autonomous Region China
| |
Collapse
|
7
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Jdanova S, Taylor MS. Mechanistic Study of the Copper(II)-Mediated Site-Selective O-Arylation of Glycosides with Arylboronic Acids. J Org Chem 2023; 88:3487-3498. [PMID: 36888595 DOI: 10.1021/acs.joc.2c02693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Glycosides having multiple free OH groups have been shown to undergo site-selective O-arylations in the presence of arylboronic acids and copper(II) acetate. Herein, a mechanistic analysis of these Chan-Evans-Lam-type couplings is presented based on reaction kinetics, mass spectrometric analysis of reaction mixtures, and substituent effect studies. The results establish that the formation of a substrate-derived boronic ester accelerates the rate-determining transmetalation step. Intramolecular transfer of the aryl group from the boronic ester is ruled out in favor of a pathway in which the key pre-transmetalation assembly is generated from a boronic ester, a copper complex, and a second equivalent of arylboronic acid.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 Canada
| |
Collapse
|
9
|
Rao VUB, Wang C, Demarque DP, Grassin C, Otte F, Merten C, Strohmann C, Loh CCJ. A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol. Nat Chem 2023; 15:424-435. [PMID: 36585443 PMCID: PMC9986112 DOI: 10.1038/s41557-022-01110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Collapse
Affiliation(s)
- V U Bhaskara Rao
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Caiming Wang
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | | | | | - Felix Otte
- Department of Inorganic Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | | | - Carsten Strohmann
- Department of Inorganic Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
10
|
Sun T, Jin R, Yang Y, Jia Y, Hu S, Jin Y, Wang Q, Li Z, Zhang Y, Wu J, Jiang Y, Lv X, Liu S. Direct α-C-H Alkylation of Structurally Diverse Alcohols via Combined Tavaborole and Photoredox Catalysis. Org Lett 2022; 24:7637-7642. [PMID: 36218287 DOI: 10.1021/acs.orglett.2c03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a method that uses antifungal tavaborole as a co-catalyst for direct α-C-H alkylation of structurally diverse alcohols through photoredox catalysis. The protocol features mild conditions, remarkable scope, and wide functional group tolerance, which allows for the construction of a wide array of highly functionalized alcohols, including homoserine derivatives and C-glycosyl amino acids. We also demonstrate the synthetic applications of this methodology to the late-stage functionalization of pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ruyi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yan Yang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuqi Jia
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shuxu Hu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yanqi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Qin Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yifan Zhang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Jiming Wu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| |
Collapse
|
11
|
Fallek R, Ashush N, Fallek A, Fleischer O, Portnoy M. Controlling the Site Selectivity in Acylations of Amphiphilic Diols: Directing the Reaction toward the Apolar Domain in a Model Diol and the Midecamycin A 1 Macrolide Antibiotic. J Org Chem 2022; 87:9688-9698. [PMID: 35801540 PMCID: PMC9361358 DOI: 10.1021/acs.joc.2c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking to improve the site selectivity of acylation of amphiphilic diols, which is induced by imidazole-based nucleophilic catalysts and directs the reaction toward apolar sites, as we recently reported, we examined a new improved catalytic design and an alteration of the acylating agent. The new catalysts performed slightly better selectivity-wise in the model reaction, compared to the previous set, but notably could be prepared in a much more synthetically economic way. The change of the acylating agent from anhydride to acyl chloride, particularly in combination with the new catalysts, accelerated the reaction and increased the selectivity in favor of the apolar site. The new selectivity-inducing techniques were applied to midecamycin, a natural amphiphilic antibiotic possessing a secondary alcohol moiety in each of its two domains, polar as well as apolar. In the case of the anhydride, a basic dimethylamino group, decorating this substrate, overrides the catalyst's selectivity preference and forces selective acylation of the alcohol in the polar domain with a more than 91:1 ratio of the monoacylated products. To counteract the internal base influence, an acid additive was used or the acylating agent was changed to acyl chloride. The latter adjustment leads, in combination with our best catalyst, to the reversal of the ratio between the products to 1:11.
Collapse
Affiliation(s)
- Reut Fallek
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Natali Ashush
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Amit Fallek
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Or Fleischer
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Moshe Portnoy
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Jiang J, Song S, Guo J, Zhou J, Li J. Mechanically induced transition metal free C(sp)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang W, Wang Y. Copper-Catalyzed Chemo-, Regio-, and Stereoselective Multicomponent 1,2,3-Trifunctionalization of Internal Alkynes. Org Lett 2022; 24:1871-1875. [PMID: 35238207 DOI: 10.1021/acs.orglett.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the first diaryliodonium salts promoted multicomponent 1,2,3-trifunctionalization of alkynes, where both the acetylenic bond and the adjacent nonactivated propargylic C(sp3)-H bond were functionalized synergistically to generate α-arylated enones with high chemo-, regio-, and stereoselectivity. A broad spectrum of diaryliodonium salts and internal alkynes could be utilized in this protocol, and a diverse collection of highly substituted and stereochemically defined linear and cyclic complex structures could be elaborated from the enone products.
Collapse
Affiliation(s)
- Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
14
|
Yoon H, Galls A, Rozema SD, Miller SJ. Atroposelective Desymmetrization of Resorcinol-Bearing Quinazolinones via Cu-Catalyzed C-O Bond Formation. Org Lett 2022; 24:762-766. [PMID: 35007090 PMCID: PMC8968294 DOI: 10.1021/acs.orglett.1c04266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enantioselective Cu-catalyzed C-O cross coupling reactions yielding atropisomeric resorcinol-bearing quinazolinones have been developed. Utilizing a new guanidinylated dimeric peptidic ligand, a set of products were generated in good yields with excellent stereocontrol. The transformation was readily scalable, and a range of product derivatizations were performed.
Collapse
Affiliation(s)
- Hyung Yoon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alexandra Galls
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Soren D Rozema
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
15
|
Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
17
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
18
|
Wang S, Zhelavskyi O, Lee J, Argüelles AJ, Khomutnyk YY, Mensah E, Guo H, Hourani R, Zimmerman PM, Nagorny P. Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides. J Am Chem Soc 2021; 143:18592-18604. [PMID: 34705439 PMCID: PMC8585716 DOI: 10.1021/jacs.1c08448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes studies on the regioselective acetal protection of monosaccharide-based diols using chiral phosphoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS, as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various d-glucose-, d-galactose-, d-mannose-, and l-fucose-derived 1,2-diols and could be carried out in a regiodivergent fashion depending on the choice of chiral catalyst. The polymeric catalysts were conveniently recycled and reused multiple times for gram-scale functionalizations with catalytic loadings as low as 0.1 mol %, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 32 regioisomerically pure differentially protected mono- and disaccharide derivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected d-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated substrates revealed that low-temperature acetalizations happen via a syn-addition mechanism and that the reaction regioselectivity exhibits strong dependence on the temperature. The computational studies indicate a complex temperature-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and another via concerted asynchronous formation of an acetal, that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2 selectivities and are consistent with experimentally observed selectivity trends.
Collapse
Affiliation(s)
- Sibin Wang
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Oleksii Zhelavskyi
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeonghyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Alonso J. Argüelles
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, 307 E. Merrill St. Indianapolis, IN 46225
| | | | - Enoch Mensah
- Chemistry Department, Indiana University Southeast, 4201 Grant Line Rd. New Albany, IN 47150
| | - Hao Guo
- Deparment of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015
| | - Rami Hourani
- Chemistry Department, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080
| | - Paul M. Zimmerman
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| |
Collapse
|
19
|
Wan LQ, Zhang X, Zou Y, Shi R, Cao JG, Xu SY, Deng LF, Zhou L, Gong Y, Shu X, Lee GY, Ren H, Dai L, Qi S, Houk KN, Niu D. Nonenzymatic Stereoselective S-Glycosylation of Polypeptides and Proteins. J Am Chem Soc 2021; 143:11919-11926. [PMID: 34323481 DOI: 10.1021/jacs.1c05156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report a nonenzymatic glycosylation reaction that builds axial S-glycosidic bonds under biorelevant conditions. This strategy is enabled by the design and use of allyl glycosyl sulfones as precursors to glycosyl radicals and exploits the exceptional functional group tolerance of radical processes. Our method introduces a variety of unprotected glycosyl units to the cysteine residues of peptides in a highly selective fashion. Through developing the second-generation protocol, we applied our method in the direct glycosylation of complex polypeptides and proteins. Computational studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Li-Qiang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Jin-Ge Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Shi-Yang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoling Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Haiyan Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| |
Collapse
|
20
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
21
|
Kuriyama M, Onomura O, Mochizuki Y, Miyagi T, Yamamoto K, Demizu Y. Transition Metal-Free O-Arylation of Quinoxalin-2-ones with Diaryliodonium Salts. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Dong M, Jia Y, Zhou W, Gao J, Lv X, Luo F, Zhang Y, Liu S. A photoredox/nickel dual-catalytic strategy for benzylic C–H alkoxylation. Org Chem Front 2021. [DOI: 10.1039/d1qo01421h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reported herein is a photoredox/nickel dual-catalyzed benzylic C–H alkoxylation and the protocol features broad substrate scope and excellent functional group compatibility.
Collapse
Affiliation(s)
- Min Dong
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Yuqi Jia
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Wei Zhou
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Jinlai Gao
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Fan Luo
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| |
Collapse
|
23
|
Tang H, Tian YB, Cui H, Li RZ, Zhang X, Niu D. Site-switchable mono-O-allylation of polyols. Nat Commun 2020; 11:5681. [PMID: 33173032 PMCID: PMC7655818 DOI: 10.1038/s41467-020-19348-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023] Open
Abstract
Site-selective modification of complex molecules allows for rapid accesses to their analogues and derivatives, and, therefore, offers highly valuable opportunities to probe their functions. However, to selectively manipulate one out of many repeatedly occurring functional groups within a substrate represents a grand challenge in chemistry. Yet more demanding is to develop methods in which alterations to the reaction conditions lead to switching of the specific site of reaction. We report herein the development of a Pd/Lewis acid co-catalytic system that achieves not only site-selective, but site-switchable mono-O-allylation of polyols with readily available reagents and catalysts. Through exchanging the Lewis acid additives that recognize specific hydroxyls in a polyol substrate, our system managed to install a versatile allyl group to the target in a site-switchable manner. Our design demonstrates remarkable scope, and is amenable to the direct derivatization of various complex, bioactive natural products. Selective manipulation of one functional group, out of many repeatedly occurring in a substrate, represents a grand challenge in chemistry. Here, the authors report a Pd/Lewis acid cocatalytic system that achieves not only site-selective, but also site-switchable mono-O-allylation of polyols.
Collapse
Affiliation(s)
- Hua Tang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Yu-Biao Tian
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Hongyan Cui
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Ren-Zhe Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, 610041, Chengdu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
24
|
Shang W, Su SN, Shi R, Mou ZD, Yu GQ, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of C-linked Glycoconjugates. Angew Chem Int Ed Engl 2020; 60:385-390. [PMID: 32935426 DOI: 10.1002/anie.202009828] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 02/05/2023]
Abstract
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C-linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate-DNA conjugates.
Collapse
Affiliation(s)
- Weidong Shang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Sheng-Nan Su
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Rong Shi
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Guo-Qiang Yu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
25
|
Shang W, Su S, Shi R, Mou Z, Yu G, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of
C
‐linked Glycoconjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weidong Shang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Sheng‐Nan Su
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Rong Shi
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Guo‐Qiang Yu
- Discovery Chemistry Unit HitGen Inc. Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610200 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
26
|
Otsuka Y. Synthesis of Arylated Carbohydrates and Their Application. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1961.4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Otsuka Y. Synthesis of Arylated Carbohydrates and Their Application. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1961.4j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Li M, Qiu YF, Wang CT, Li XS, Wei WX, Wang YZ, Bao QF, Ding YN, Shi WY, Liang YM. Visible-Light-Induced Pd-Catalyzed Radical Strategy for Constructing C-Vinyl Glycosides. Org Lett 2020; 22:6288-6293. [PMID: 32806189 DOI: 10.1021/acs.orglett.0c02053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel visible-light-induced palladium-catalyzed Heck reaction for bromine sugars and aryl olefins with high regio- and stereochemistry selectivity for the preparation of C-glycosyl styrene is described. This reaction takes place in one step at room temperature by using a simple and readily available starting material. This protocol can be scaled up to a wide range of glycosyl bromide donors and aryl olefin substrates. Mechanistic studies indicate that a radical addition pathway is involved.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Marinus N, Tahiri N, Duca M, Mouthaan LMCM, Bianca S, van den Noort M, Poolman B, Witte MD, Minnaard AJ. Stereoselective Protection-Free Modification of 3-Keto-saccharides. Org Lett 2020; 22:5622-5626. [PMID: 32635733 PMCID: PMC7372562 DOI: 10.1021/acs.orglett.0c01986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 01/15/2023]
Abstract
Unprotected 3-keto-saccharides have become readily accessible via site-selective oxidation, but their protection-free functionalization is relatively unexplored. Here we show that protecting groups are obsolete in a variety of stereoselective modifications of our model substrate methyl α-glucopyranoside. This allows the preparation of rare sugars and the installation of click handles and reactive groups. To showcase the applicability of the methodology, maltoheptaose has been converted into a chemical probe, and the rare sugar evalose has been synthesized.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Nabil Tahiri
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Margherita Duca
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - L. M. C. Marc Mouthaan
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Simona Bianca
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marco van den Noort
- Department
of Biochemistry, Groningen Biochemistry & Biotechnology Institute, University of Groningen, Groningen 9747 AB, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biochemistry & Biotechnology Institute, University of Groningen, Groningen 9747 AB, The Netherlands
| | - Martin D. Witte
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh
Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
30
|
Ding W, Wang C, Tan JR, Ho CC, León F, García F, Yoshikai N. Site-selective aromatic C-H λ 3-iodanation with a cyclic iodine(iii) electrophile in solution and solid phases. Chem Sci 2020; 11:7356-7361. [PMID: 34123017 PMCID: PMC8159425 DOI: 10.1039/d0sc02737e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An efficient and site-selective aromatic C-H λ3-iodanation reaction is achieved using benziodoxole triflate (BXT) as an electrophile under room temperature conditions. The reaction tolerates a variety of electron-rich arenes and heteroarenes to afford the corresponding arylbenziodoxoles in moderate to good yields. The reaction can also be performed mechanochemically by grinding a mixture of solid arenes and BXT under solvent-free conditions. The arylbenziodoxoles can be used for various C-C and C-heteroatom bond formations, and are also amenable to further modification by electrophilic halogenation. DFT calculations suggested that the present reaction proceeds via a concerted λ3-iodanation-deprotonation transition state, where the triflate anion acts as an internal base.
Collapse
Affiliation(s)
- Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Chen Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore .,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University Shaoxing 312000 China
| | - Jie Ren Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Chang Chin Ho
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Felix León
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Felipe García
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
31
|
Bhardwaj M, Hussain N, Zargar IA, Dash AK, Mukherjee D. Synthesis of aryl ethers of carbohydrates via reaction with arynes: selective O-arylation of trans-vicinal dihydroxyl groups in carbohydrates. Org Biomol Chem 2020; 18:4174-4177. [PMID: 32441290 DOI: 10.1039/d0ob00540a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new method for the O-arylation of carbohydrates under metal-free conditions using arynes as an aryl source has been developed. This approach works well with mono, di and trihydroxy compounds. Preferential O-arylation takes place at primary over secondary and equatorial over axial. Site-selective O-arylation was achieved with the substrate having trans vicinal diequatorial hydroxyls.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu-180001, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Nazar Hussain
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu-180001, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Irshad Ahmad Zargar
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu-180001, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Ashutosh K Dash
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu-180001, India. and Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Jammu-180001, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
32
|
Pal KB, Lee J, Das M, Liu XW. Palladium(ii)-catalyzed stereoselective synthesis of C-glycosides from glycals with diaryliodonium salts. Org Biomol Chem 2020; 18:2242-2251. [PMID: 32159571 DOI: 10.1039/d0ob00247j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient palladium(ii) mediated C-glycosylation of glycals with diaryliodonium salts is described, providing a new strategy for the synthesis of 2,3-dideoxy C-aryl glycosides with excellent stereoselectivity. The C-glycosylation of a diverse range of glycals, including d-glucal, d-galactal, d-allal, l-rhamnal, l-fucal, l-arabinal, d-maltal, and d-lactal, occurred effectively and the corresponding C-glycosides were obtained in moderate to good yields. This protocol is commended as a significant addition to the field of carbohydrate chemistry due to the rich functional group compatibility, broad range of substrate scope and exceptional α-stereoselectivity.
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Jiande Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371. and Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
33
|
Lv J, Zhu JJ, Liu Y, Dong H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl 3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J Org Chem 2020; 85:3307-3319. [PMID: 31984732 DOI: 10.1021/acs.joc.9b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A catalytic amount of FeCl3 combined with benzoyl trifluoroacetone (Hbtfa) (FeCl3/Hbtfa = 1/2) was used to catalyze sulfonylation/acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K2CO3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that FeCl3 initially formed [Fe(btfa)3] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature. Then, Fe(btfa)3 and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jia-Jia Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
34
|
Otsuka Y, Yamamoto T, Fukase K. β‐Selective Glycosylation by Using
O
‐Aryl‐Protected Glycosyl Donors. Chem Asian J 2019; 14:2719-2723. [DOI: 10.1002/asia.201900700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yuji Otsuka
- Department of ChemistryGraduate School of ScienceOsaka University Machikaneyama 1-1 Toyonaka Osaka Prefecture 560-0043 Japan
- Peptide Institute, Inc. Saito-Asagi 7-2-9 Ibaraki Osaka Prefecture 567-0085 Japan
| | - Toshihiro Yamamoto
- Department of ChemistryGraduate School of ScienceOsaka University Machikaneyama 1-1 Toyonaka Osaka Prefecture 560-0043 Japan
- Peptide Institute, Inc. Saito-Asagi 7-2-9 Ibaraki Osaka Prefecture 567-0085 Japan
| | - Koichi Fukase
- Department of ChemistryGraduate School of ScienceOsaka University Machikaneyama 1-1 Toyonaka Osaka Prefecture 560-0043 Japan
| |
Collapse
|
35
|
Yang H, Zheng WH. Parallel Kinetic Resolution of Unsymmetrical Acyclic Aliphatic syn-1,3-Diols. Org Lett 2019; 21:5197-5200. [PMID: 31247762 DOI: 10.1021/acs.orglett.9b01801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Disclosed is a mild, reliable, and enantioselective catalytic parallel kinetic resolution of unsymmetrical acyclic aliphatic syn-1,3-diol derived acetals mediated by chiral phosphoric acid. This method provides stereoselective access to a variety of syn-1,3-diols as valuable building blocks with high enantioselectivity. Moreover, this mild system allows for site-selective protection of optically pure syn-1,3-diols in excellent regioselectivity.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , Nanjing 210023 , Jiangsu , China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , Nanjing 210023 , Jiangsu , China
| |
Collapse
|
36
|
Dohi T, Hayashi T, Ueda S, Shoji T, Komiyama K, Takeuchi H, Kita Y. Recyclable synthesis of mesityl iodonium(III) salts. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
38
|
Gong L, Sun HB, Deng LF, Zhang X, Liu J, Yang S, Niu D. Ni-Catalyzed Suzuki–Miyaura Cross-Coupling of α-Oxo-vinylsulfones To Prepare C-Aryl Glycals and Acyclic Vinyl Ethers. J Am Chem Soc 2019; 141:7680-7686. [PMID: 31025860 DOI: 10.1021/jacs.9b02312] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liang Gong
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Hong-Bao Sun
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Li-Fan Deng
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Jie Liu
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of
Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. Oxalic Diamides and tert-Butoxide: Two Types of Ligands Enabling Practical Access to Alkyl Aryl Ethers via Cu-Catalyzed Coupling Reaction. J Am Chem Soc 2019; 141:3541-3549. [PMID: 30688450 DOI: 10.1021/jacs.8b12142] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A robust and practical protocol for preparing alkyl aryl ethers has been developed, which relies on using two types of ligands to promote Cu-catalyzed alkoxylation of (hetero)aryl halides. The reaction scope is very general for a variety of coupling partners, particularly for challenging secondary alcohols and (hetero)aryl chlorides. In case of coupling with aryl chlorides and bromides, two oxalic diamides serve as the powerful ligands. The tert-butoxide is first demonstrated as a ligand for Cu-catalyzed coupling reaction, leading to alkoxylation of aryl iodides complete at room temperature. Additionally, a number of carbohydrate derivatives are applicable for this coupling reaction, affording the corresponding carbohydrate-aryl ethers in 29-98% yields.
Collapse
|
40
|
Ligand-controlled, transition-metal catalyzed site-selective modification of glycosides. Carbohydr Res 2019; 474:16-33. [DOI: 10.1016/j.carres.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
|
41
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
42
|
Zeng Q, Zhang L, Zhou Y. Advances in Selective Carbon-Heteroatom Coupling Reactions. CHEM REC 2018; 18:1278-1291. [DOI: 10.1002/tcr.201800028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology); Chengdu University of Technology; College of Materials; Chemistry & Chemical Engineering; 1#, Dongsanlu, Erxianqiao Chengdu 610059 China
| | - Li Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology); Chengdu University of Technology; College of Materials; Chemistry & Chemical Engineering; 1#, Dongsanlu, Erxianqiao Chengdu 610059 China
| | - Yue Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology); Chengdu University of Technology; College of Materials; Chemistry & Chemical Engineering; 1#, Dongsanlu, Erxianqiao Chengdu 610059 China
| |
Collapse
|
43
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
44
|
Yi D, Zhu F, Walczak MA. Glycosyl Cross-Coupling with Diaryliodonium Salts: Access to Aryl C-Glycosides of Biomedical Relevance. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Duk Yi
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|