1
|
Mohiuddin O, de Maissin H, Pravdivtsev AN, Brahms A, Herzog M, Schröder L, Chekmenev EY, Herges R, Hövener JB, Zaitsev M, von Elverfeldt D, Schmidt AB. Rapid in situ carbon-13 hyperpolarization and imaging of acetate and pyruvate esters without external polarizer. Commun Chem 2024; 7:240. [PMID: 39443619 PMCID: PMC11499913 DOI: 10.1038/s42004-024-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized 13C MRI visualizes real-time metabolic processes in vivo. In this study, we achieved high 13C polarization in situ in the bore of an MRI system for precursor molecules of most widely employed hyperpolarized agents: [1-13C]acetate and [1-13C]pyruvate ethyl esters in their perdeuterated forms, enhancing hyperpolarization lifetimes, hyperpolarized to P13C ≈ 28% at 80 mM concentration and P13C ≈ 19% at 10 mM concentration, respectively. Using vinyl esters as unsaturated Parahydrogen-Induced Polarization via Side-Arm Hydrogenation (PHIP-SAH) precursors and our novel polarization setup, we achieved these hyperpolarization levels by fast side-arm hydrogenation in acetone-d6 at elevated temperatures (up to 90°C) and hydrogenation pressures (up to 32 bar). We optimized the hyperpolarization process, reducing it to under 10 s, and employed advanced pulse sequences to enhance the polarization transfer efficiency. The hyperpolarization system has a small footprint, allowing it to be positioned in the same magnet, where 13C MRI is performed. We exemplified the utility of the design with sub-second in situ 13C MRI of ethyl [1-13C]pyruvate-d6. However, challenges remain in side-arm cleavage and purification in the MRI system to extract highly polarized aqueous agent solutions. Our results showcase efficient and rapid 13C hyperpolarization of these metabolite precursors in an MRI system with minimal additional hardware, promising to enhance future throughput and access to hyperpolarized 13C MRI.
Collapse
Affiliation(s)
- Obaid Mohiuddin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Marvin Herzog
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eduard Y Chekmenev
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Santi MD, Hune TLK, Rodriguez GG, Fries LM, Mei R, Sternkopf S, Elsaßer J, Glöggler S. Parahydrogen-enhanced pH measurements using [1- 13C]bicarbonate derived from non-enzymatic decarboxylation of [1- 13C]pyruvate-d 3. Analyst 2024; 149:5022-5033. [PMID: 39230365 PMCID: PMC11373534 DOI: 10.1039/d4an00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Alterations in pH are a hallmark in several pathologies including cancer, ischemia, and inflammation. Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. The hyperpolarization with parahydrogen-induced polarization (PHIP) enhances inherently low signals in magnetic resonance experiments by several orders of magnitude and offers a suitable platform to obtain biocompatible markers in less than one minute. Here, we present an optimized preparation of an hyperpolarized H13CO3-/13CO2 pH sensor via non-enzymatic decarboxylation with H2O2 of [1-13C]pyruvate-d3 obtained by PHIP at 7 T. An improved 13C polarization of purified [1-13C]pyruvate-d3 in water with 36.65 ± 0.06% polarization was obtained starting from 50 mM precursor. Subsequent decarboxylation, H13CO3-/13CO2 exhibited 12.46 ± 0.01% of polarization at physiological pH, 45 seconds after the reaction start. Considering the dilution factor that [1-13C]pyruvate-d3 exhibits in vivo, we optimized our methodology to test the accuracy of the pH sensor at single digit millimolar concentration. In vitro pH estimations on phantoms and cell culture media demonstrated accurate pH calculations with uncertainties of less than 0.08 units. These promising results highlight the efficiency of a pH sensor generated via PHIP in less than one minute, with remarkable polarization, and biocompatibility suitable for future in vivo studies.
Collapse
Affiliation(s)
- Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Theresa Luca Katrin Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Josef Elsaßer
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| |
Collapse
|
3
|
Tickner BJ, Singh K, Zhivonitko VV, Telkki VV. Ultrafast Nuclear Magnetic Resonance as a Tool to Detect Rapid Chemical Change in Solution. ACS PHYSICAL CHEMISTRY AU 2024; 4:453-463. [PMID: 39346603 PMCID: PMC11428446 DOI: 10.1021/acsphyschemau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast nuclear magnetic resonance (NMR) uses spatial encoding to record an entire two-dimensional data set in just a single scan. The approach can be applied to either Fourier-transform or Laplace-transform NMR. In both cases, acquisition times are significantly shorter than traditional 2D/Laplace NMR experiments, which allows them to be used to monitor rapid chemical transformations. This Perspective outlines the principles of ultrafast NMR and focuses on examples of its use to detect fast molecular conversions in situ with high temporal resolution. We discuss how this valuable tool can be applied in the future to study a much wider variety of novel reactivity.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Department
of Chemistry, University of York, Heslington, York YO10
5NY, United Kingdom
| | - Kawarpal Singh
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EZ, United Kingdom
| | | | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, Oulu 90570, Finland
| |
Collapse
|
4
|
Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt AB, Lehmkuhl S, Rosen MS, Appelt S, Theis T, Qian C, Chekmenev EY. Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing. Angew Chem Int Ed Engl 2024; 63:e202406551. [PMID: 38822492 PMCID: PMC11463167 DOI: 10.1002/anie.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in a preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of the MR detector (up to 1 million) were also demonstrated.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Simon Fleischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Soeren Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
5
|
Gierse M, Dagys L, Keim M, Lucas S, Josten F, Plenio MB, Schwartz I, Knecht S, Eills J. Hyperpolarizing Small Molecules using Parahydrogen and Solid-State Spin Diffusion. Angew Chem Int Ed Engl 2024; 63:e202319341. [PMID: 38805673 DOI: 10.1002/anie.202319341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H2. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high 13C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto 13C spins of the target, which can then be dissolved for solution-state applications. We name this method PHIP-SSD (PHIP with solid-state spin diffusion) and demonstrate it using PHIP-polarized [1-13C]-fumarate as the source molecule, to polarize different 13C-labelled target molecules. 13C polarizations of between 0.01 and 3 % were measured on [1-13C]-benzoic acid, depending on the molar ratio of fumarate:benzoate in the solid state. We also show that PHIP-SSD does not require specific co-crystallization conditions by grinding dry powders of target molecules together with solid fumarate crystals, and obtain 13C signal enhancements of between 100 and 200 on [13C,15N2]-urea, [1-13C]-pyruvate, and [1-13C]-benzoic acid. This approach appears to be a promising new strategy for facile hyperpolarization based on PHIP.
Collapse
Affiliation(s)
- Martin Gierse
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - Felix Josten
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - James Eills
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
6
|
Mei R, Fries LM, Hune TLK, Santi MD, Rodriguez GG, Sternkopf S, Glöggler S. Hyperpolarization of 15N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo Studies. Angew Chem Int Ed Engl 2024; 63:e202403144. [PMID: 38773847 DOI: 10.1002/anie.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on 13C nuclei, a milestone advance in this area is the emergence of 15N hyperpolarized contrast agents. Currently, the reported 15N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced 15N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor 15N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with para-hydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H2O2 level usually represents a hallmark of pathophysiological conditions. This H2O2 probe exhibited rapid responsiveness toward H2O2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo 15N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.
Collapse
Affiliation(s)
- Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| |
Collapse
|
7
|
Them K, Kuhn J, Pravdivtsev AN, Hövener JB. Nuclear spin polarization of lactic acid via exchange of parahydrogen-polarized protons. Commun Chem 2024; 7:172. [PMID: 39112677 PMCID: PMC11306230 DOI: 10.1038/s42004-024-01254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Hyperpolarization has become a powerful tool to enhance the sensitivity of magnetic resonance. A universal tool to hyperpolarize small molecules in solution, however, has not yet emerged. Transferring hyperpolarized, labile protons between molecules is a promising approach towards this end. Therefore, hydrogenative parahydrogen-induced polarization (PHIP) was recently proposed as a source to polarize exchanging protons (PHIP-X). Here, we identified four key components that govern PHIP-X: adding the spin order, polarizing the labile proton, proton exchange, and polarization of the target nucleus. We investigated the last two steps experimentally and using simulations. We found optimal exchange rates and field cycling methods to polarize the target molecules. We also investigated the influence of spin relaxation of exchanging protons on the target polarization. It was found experimentally that transferring the polarization from protons directly bound to the target X-nucleus (here 13C) of lactate and methanol using a pulse sequence was more efficient than applying a corresponding sequence to the labile proton. Furthermore, varying the concentrations of the transfer and target molecules yielded a distinct maximum 13C polarization. We believe this work will further help to understand and optimize PHIP-X towards a broadly applicable hyperpolarization method.
Collapse
Affiliation(s)
- Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
8
|
Salnikov OG, Assaf CD, Yi AP, Duckett SB, Chekmenev EY, Hövener JB, Koptyug IV, Pravdivtsev AN. Modeling Ligand Exchange Kinetics in Iridium Complexes Catalyzing SABRE Nuclear Spin Hyperpolarization. Anal Chem 2024; 96:11790-11799. [PMID: 38976810 PMCID: PMC11270526 DOI: 10.1021/acs.analchem.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Large signal enhancements can be obtained for NMR analytes using the process of nuclear spin hyperpolarization. Organometallic complexes that bind parahydrogen can themselves become hyperpolarized. Moreover, if parahydrogen and a to-be-hyperpolarized analyte undergo chemical exchange with the organometallic complex it is possible to catalytically sensitize the detection of the analyte via hyperpolarization transfer through spin-spin coupling in this organometallic complex. This process is called Signal Amplification By Reversible Exchange (SABRE). Signal intensity gains of several orders of magnitude can thus be created for various compounds in seconds. The chemical exchange processes play a defining role in controlling the efficiency of SABRE because the lifetime of the complex must match the spin-spin couplings. Here, we show how analyte dissociation rates in the key model substrates pyridine (the simplest six-membered heterocycle), 4-aminopyridine (a drug), and nicotinamide (an essential vitamin biomolecule) can be examined. This is achieved for the most widely employed SABRE motif that is based on IrIMes-derived catalysts by 1H 1D and 2D exchange NMR spectroscopy techniques. Several kinetic models are evaluated for their accuracy and simplicity. By incorporating variable temperature analysis, the data yields key enthalpies and entropies of activation that are critical for understanding the underlying SABRE catalyst properties and subsequently optimizing behavior through rational chemical design. While several studies of chemical exchange in SABRE have been reported, this work also aims to establish a toolkit on how to quantify chemical exchange in SABRE and ensure that data can be compared reliably.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Charbel D. Assaf
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Anna P. Yi
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk
State University, 2 Pirogova
St., 630090 Novosibirsk, Russia
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington YO10 5NY, U.K.
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
9
|
Barker S, Dagys L, Levitt MH, Utz M. Efficient Parahydrogen-Induced 13C Hyperpolarization on a Microfluidic Device. J Am Chem Soc 2024; 146:18379-18386. [PMID: 38916928 PMCID: PMC11240250 DOI: 10.1021/jacs.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
We show the direct production and detection of 13C-hyperpolarized fumarate by parahydrogen-induced polarization (PHIP) in a microfluidic lab-on-a-chip (LoC) device and achieve 8.5% 13C polarization. This is the first demonstration of 13C-hyperpolarization of a metabolite by PHIP in a microfluidic device. LoC technology allows the culture of mammalian cells in a highly controlled environment, providing an important tool for the life sciences. In-situ preparation of hyperpolarized metabolites greatly enhances the ability to quantify metabolic processes in such systems by microfluidic NMR. PHIP of 1H nuclei has been successfully implemented in microfluidic systems, with mass sensitivities in the range of pmol/s. However, metabolic NMR requires high-yield production of hyperpolarized metabolites with longer spin life times than is possible with 1H. This can be achieved by transfer of the polarization onto 13C nuclei, which exhibit much longer T1 relaxation times. We report an improved microfluidic PHIP device, optimized using a finite element model, that enables the direct and efficient production of 13C-hyperpolarized fumarate.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Chemical Physics, Vilnius University, Vilnius 01513, Lithuania
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
10
|
Bøgh N, Bertelsen LB, Rasmussen CW, Bech SK, Keller AK, Madsen MG, Harving F, Thorsen TH, Mieritz IK, Hansen ES, Wanders A, Laustsen C. Metabolic MRI With Hyperpolarized 13 C-Pyruvate for Early Detection of Fibrogenic Kidney Metabolism. Invest Radiol 2024:00004424-990000000-00225. [PMID: 38913443 DOI: 10.1097/rli.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Fibrosis is the final common pathway for chronic kidney disease and the best predictor for disease progression. Besides invasive biopsies, biomarkers for its detection are lacking. To address this, we used hyperpolarized 13 C-pyruvate MRI to detect the metabolic changes associated with fibrogenic activity of myofibroblasts. MATERIALS AND METHODS Hyperpolarized 13 C-pyruvate MRI was performed in 2 pig models of kidney fibrosis (unilateral ureteral obstruction and ischemia-reperfusion injury). The imaging data were correlated with histology, biochemical, and genetic measures of metabolism and fibrosis. The porcine experiments were supplemented with cell-line experiments to inform the origins of metabolic changes in fibrogenesis. Lastly, healthy and fibrotic human kidneys were analyzed for the metabolic alterations accessible with hyperpolarized 13 C-pyruvate MRI. RESULTS In the 2 large animal models of kidney fibrosis, metabolic imaging revealed alterations in amino acid metabolism and glycolysis. Conversion from hyperpolarized 13 C-pyruvate to 13 C-alanine decreased, whereas conversion to 13 C-lactate increased. These changes were shown to reflect profibrotic activity in cultured epithelial cells, macrophages, and fibroblasts, which are important precursors of myofibroblasts. Importantly, metabolic MRI using hyperpolarized 13 C-pyruvate was able to detect these changes earlier than fibrosis-sensitive structural imaging. Lastly, we found that the same metabolic profile is present in fibrotic tissue from human kidneys. This affirms the translational potential of metabolic MRI as an early indicator of fibrogenesis associated metabolism. CONCLUSIONS Our findings demonstrate the promise of hyperpolarized 13 C-pyruvate MRI for noninvasive detection of fibrosis development, which could enable earlier diagnosis and intervention for patients at risk of kidney fibrosis.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- From the MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (N.B., L.B.B., C.W.R., S.K.B., T.H.T., I.K.M., E.S.S.H., C.L.); Department of Urology, Aarhus University Hospital, Aarhus, Denmark (A.K.K., M.G.M.); and Department of Pathology, Aalborg University Hospital, Aalborg, Denmark (F.H., A.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Salnikov OG, Trofimov IA, Bender ZT, Trepakova AI, Xu J, Wibbels GL, Shchepin RV, Koptyug IV, Barskiy DA. Parahydrogen-Induced Polarization of 14N Nuclei. Angew Chem Int Ed Engl 2024; 63:e202402877. [PMID: 38523072 DOI: 10.1002/anie.202402877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Hyperpolarization techniques provide a dramatic increase in sensitivity of nuclear magnetic resonance spectroscopy and imaging. In spite of the outstanding progress in solution-state hyperpolarization of spin-1/2 nuclei, hyperpolarization of quadrupolar nuclei remains challenging. Here, hyperpolarization of quadrupolar 14N nuclei with natural isotopic abundance of >99 % is demonstrated. This is achieved via pairwise addition of parahydrogen to tetraalkylammonium salts with vinyl or allyl unsaturated moieties followed by a subsequent polarization transfer from 1H to 14N nuclei at high magnetic field using PH-INEPT or PH-INEPT+ radiofrequency pulse sequence. Catalyst screening identified water-soluble rhodium complex [Rh(P(m-C6H4SO3Na)3)3Cl] as the most efficient catalyst for hyperpolarization of the substrates under study, providing up to 1.3 % and up to 6.6 % 1H polarization in the cases of vinyl and allyl precursors, respectively. The performance of PH-INEPT and PH-INEPT+ pulse sequences was optimized with respect to interpulse delays, and the resultant experimental dependences were in good agreement with simulations. As a result, 14N NMR signal enhancement of up to 760-fold at 7.05 T (corresponding to 0.15 % 14N polarization) was obtained.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
- Current affiliation, Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Zachary T Bender
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Alexandra I Trepakova
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Jingyan Xu
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| | - Garrett L Wibbels
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Roman V Shchepin
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Danila A Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| |
Collapse
|
12
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Tayler MCD, Bodenstedt S. NMRduino: A modular, open-source, low-field magnetic resonance platform. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107665. [PMID: 38598992 DOI: 10.1016/j.jmr.2024.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The NMRduino is a compact, cost-effective, sub-MHz NMR spectrometer that utilizes readily available open-source hardware and software components. One of its aims is to simplify the processes of instrument setup and data acquisition control to make experimental NMR spectroscopy accessible to a broader audience. In this introductory paper, the key features and potential applications of NMRduino are described to highlight its versatility both for research and education.
Collapse
Affiliation(s)
- Michael C D Tayler
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | - Sven Bodenstedt
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
14
|
Theiss F, Lins J, Kergassner J, Wienands L, Döller S, Buntkowsky G. Two fields are better than one - A multifunctional (semi)automated setup for quantitative measurements of parahydrogen-induced signal enhancement at low and high fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107673. [PMID: 38598990 DOI: 10.1016/j.jmr.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The rapid advancement of parahydrogen-induced hyperpolarization (PHIP) and its diverse array of applications highlights the critical need for enhanced signals in both 1H NMR and heteronuclear NMR spectroscopy. Simultaneously, there is an increasing interest in utilizing benchtop NMR analysis across various laboratory settings. However, due to their lower magnetic fields, benchtop NMR spectrometers inherently produce weaker signal intensities. Here, PHIP is a well-established solution to this challenge. Consequently, we are expanding our cost-effective PHIP setup from a high-field NMR spectrometer (11.7 T) to include an additional benchtop NMR spectrometer (1.4 T), thereby enabling concurrent execution of PHIP experiments and measurements. Through the implementation of automated experimental protocols, we aim to minimize experiment time while increasing reproducibility. In this work, a non-isotope labelled propargyl alcohol sample is used at low concentrations to demonstrate our setup's capabilities. It could be shown that single-scan PASADENA experiments can be run with comparable signal enhancements at the benchtop as well as the high-field spectrometer. At 1.4 T, fully automated PHIP pseudo-2D measurements will also be demonstrated. Additionally, two different field profiles for the spin-order transfer of p-H2 to 13C at zero- to ultralow fields are elaborated upon. The setup facilitates the measurement of carbon signal enhancement of more than 2000 on the benchtop NMR spectrometer, employing a straightforward one-pulse, one-scan experiment.
Collapse
Affiliation(s)
- Franziska Theiss
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jan Kergassner
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Sonja Döller
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany.
| |
Collapse
|
15
|
Peng Y, Zhang Z, He L, Li C, Liu M. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges. Anal Bioanal Chem 2024; 416:2319-2334. [PMID: 38240793 PMCID: PMC10950998 DOI: 10.1007/s00216-024-05137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zeting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China.
| |
Collapse
|
16
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
18
|
Sviyazov SV, Babenko SV, Skovpin IV, Kovtunova LM, Chukanov NV, Stakheev AY, Burueva DB, Koptyug IV. Manipulating stereoselectivity of parahydrogen addition to acetylene to unravel interconversion of ethylene nuclear spin isomers. Phys Chem Chem Phys 2024; 26:7821-7829. [PMID: 38375632 DOI: 10.1039/d3cp04983c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Symmetric molecules exist as distinct nuclear spin isomers (NSIMs). A deeper understanding of their properties, including interconversion of different NSIMs, requires efficient techniques for NSIM enrichment. In this work, selective hydrogenation of acetylene with parahydrogen (p-H2) was used to achieve the enrichment of ethylene NSIMs and to study their equilibration processes. The effect of the stereoselectivity of H2 addition to acetylene on the imbalance of ethylene NSIMs was experimentally demonstrated by using three different heterogeneous catalysts (an immobilized Ir complex and two supported Pd catalysts). The interconversion of NSIMs with time during ethylene storage was studied using NMR spectroscopy by reacting ethylene with bromine water, which rendered the p-H2-derived protons in the produced 2-bromoethan(2H)ol (BrEtOD) magnetically inequivalent, thereby revealing the non-equilibrium nuclear spin order of ethylene. A thorough analysis of the shape and transformation of the 1H NMR spectra of hyperpolarized BrEtOD allowed us to reveal the initial distribution of produced ethylene NSIMs and their equilibration processes. Comparison of the results obtained with three different catalysts was key to properly attributing the derived characteristic time constants to different ethylene NSIM interconversion processes: ∼3-6 s for interconversion between NSIMs with the same inversion symmetry (i.e., within g or u manifolds) and ∼1700-2200 s between NSIMs with different inversion symmetries (i.e., between g and u manifolds).
Collapse
Affiliation(s)
- Sergey V Sviyazov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Simon V Babenko
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Novosibirsk 630090, Russia
| | - Ivan V Skovpin
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| | - Larisa M Kovtunova
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis, SB RAS, Novosibirsk 630090, Russia
| | - Nikita V Chukanov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
19
|
Nantogma S, de Maissin H, Adelabu I, Abdurraheem A, Nelson C, Chukanov NV, Salnikov OG, Koptyug IV, Lehmkuhl S, Schmidt AB, Appelt S, Theis T, Chekmenev EY. Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1- 13C]Pyruvate. ACS Sens 2024; 9:770-780. [PMID: 38198709 PMCID: PMC10922715 DOI: 10.1021/acssensors.3c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52056, Germany
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Thomas Theis
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
20
|
Kempf N, Körber R, Plaumann M, Pravdivtsev AN, Engelmann J, Boldt J, Scheffler K, Theis T, Buckenmaier K. 13C MRI of hyperpolarized pyruvate at 120 µT. Sci Rep 2024; 14:4468. [PMID: 38396023 PMCID: PMC10891046 DOI: 10.1038/s41598-024-54770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nuclear spin hyperpolarization increases the sensitivity of magnetic resonance dramatically, enabling many new applications, including real-time metabolic imaging. Parahydrogen-based signal amplification by reversible exchange (SABRE) was employed to hyperpolarize [1-13C]pyruvate and demonstrate 13C imaging in situ at 120 µT, about twice Earth's magnetic field, with two different signal amplification by reversible exchange variants: SABRE in shield enables alignment transfer to heteronuclei (SABRE-SHEATH), where hyperpolarization is transferred from parahydrogen to [1-13C]pyruvate at a magnetic field below 1 µT, and low-irradiation generates high tesla (LIGHT-SABRE), where hyperpolarization was prepared at 120 µT, avoiding magnetic field cycling. The 3-dimensional images of a phantom were obtained using a superconducting quantum interference device (SQUID) based magnetic field detector with submillimeter resolution. These 13C images demonstrate the feasibility of low-field 13C metabolic magnetic resonance imaging (MRI) of 50 mM [1-13C]pyruvate hyperpolarized by parahydrogen in reversible exchange imaged at about twice Earth's magnetic field. Using thermal 13C polarization available at 120 µT, the same experiment would have taken about 300 billion years.
Collapse
Affiliation(s)
- Nicolas Kempf
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Rainer Körber
- Physikalisch-Technische Bundesanstalt, 10587, Berlin, Germany
| | - Markus Plaumann
- Institute for Molecular Biology and Medicinal Chemistry, Medical Faculty, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Kiel University, 24118, Kiel, Germany
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Johannes Boldt
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
- Departement of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076, Tübingen, Germany
| | - Thomas Theis
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
- Departement of Chemistry and Physics, NC State University, Raleigh, 27695, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.
| |
Collapse
|
21
|
Tickner BJ, Dennington M, Collins BG, Gater CA, Tanner TFN, Whitwood AC, Rayner PJ, Watts DP, Duckett SB. Metal-Mediated Catalytic Polarization Transfer from para Hydrogen to 3,5-Dihalogenated Pyridines. ACS Catal 2024; 14:994-1004. [PMID: 38269038 PMCID: PMC10804365 DOI: 10.1021/acscatal.3c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
The neutral catalysts [IrCl(H)2(NHC)(substrate)2] or [IrCl(H)2(NHC)(substrate)(sulfoxide)] are used to transfer polarization from para hydrogen (pH2) to 3,5-dichloropyridine and 3,5-dibromopyridine substrates. This is achieved in a rapid, reversible, and low-cost process that relies on ligand exchange within the active catalyst. Notably, the sulfoxide-containing catalyst systems produced NMR signal enhancements between 1 and 2 orders of magnitude larger than its unmodified counterpart. Consequently, this signal amplification by reversible exchange hyperpolarization method can boost the 1H, 13C, and 15N nuclear magnetic resonance (NMR) signal intensities by factors up to 4350, 1550, and 46,600, respectively (14.0, 1.3, and 15.4% polarization). In this paper, NMR and X-ray crystallography are used to map the evolution of catalytically important species and provide mechanistic rational for catalytic efficiency. Furthermore, applications in spontaneous radiofrequency amplification by stimulated emission and NMR reaction monitoring are also shown.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Marcus Dennington
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Benjamin G. Collins
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, U.K.
| | - Callum A. Gater
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Theo F. N. Tanner
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | | | - Peter J. Rayner
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Daniel P. Watts
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, U.K.
| | - Simon B. Duckett
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| |
Collapse
|
22
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
23
|
Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker SJ, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler MCD, Aime S, Reineri F, Budker D, Blanchard JW. Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance. Anal Chem 2023; 95:17997-18005. [PMID: 38047582 PMCID: PMC10720634 DOI: 10.1021/acs.analchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 12/05/2023]
Abstract
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
Collapse
Affiliation(s)
- James Eills
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Román Picazo-Frutos
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Oksana Bondar
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Eleonora Cavallari
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Carla Carrera
- Institute
of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Sylwia J. Barker
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Marcel Utz
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Alba Herrero-Gómez
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Irene Marco-Rius
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Michael C. D. Tayler
- The
Barcelona Institute of Science and Technology, ICFO—Institut de Ciéncies Fotóniques, Castelldefels, Barcelona 08860, Spain
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Francesca Reineri
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Dmitry Budker
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - John W. Blanchard
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Quantum
Technology Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
MacCulloch K, Browning A, Bedoya DOG, McBride SJ, Abdulmojeed MB, Dedesma C, Goodson BM, Rosen MS, Chekmenev EY, Yen YF, TomHon P, Theis T. Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1- 13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100129. [PMID: 38090022 PMCID: PMC10715622 DOI: 10.1016/j.jmro.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - David O. Guarin Bedoya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen J. McBride
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | | | - Carlos Dedesma
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Matthew S. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick TomHon
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
25
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Zheng Z, Liu M, Wang X, Jiang W, Peng Q, Sun H, Chen Z. The experimental approach for the interleaved joint modulation of PHIP and NMR. J Chem Phys 2023; 159:184201. [PMID: 37937935 DOI: 10.1063/5.0173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Nuclear spin hyperpolarization derived from parahydrogen is a technique for enhancing nuclear magnetic resonance (NMR) sensitivity. The key to hyperpolarization experiments is to achieve rapid transfer and detection to minimize relaxation losses, while also avoiding bubbles or turbulence to guarantee high spectral resolution. In this article, we describe an experimental approach for the interleaved joint modulation of parahydrogen-induced polarization and NMR. We provide schematic diagrams of parahydrogen-based polarizer with in situ high-pressure detection capability and low-field polarization transfer. This approach can help to control the experimental process and acquire experimental information, one example of which is the attainment of the highest hyperpolarization signal intensity at 3.6 s after closing the valve. The polarizer demonstrates in situ detection capability, allowing sample to be restabilized within 0.3 ± 0.1 s and high-resolution NMR sampling under a pressure of 3 bars. Moreover, it can transfer polarized samples from the polarization transfer field to the detection region of NMR within 1 ± 0.3 s for completing signal amplification by reversible exchange experiments.
Collapse
Affiliation(s)
- Zeyu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Min Liu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| | - Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
27
|
Huynh MT, Buchanan E, Chirayil S, Adebesin AM, Kovacs Z. StereoPHIP: Stereoselective Parahydrogen-Induced Polarization. Angew Chem Int Ed Engl 2023; 62:e202311669. [PMID: 37714818 PMCID: PMC10842948 DOI: 10.1002/anie.202311669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Parahydrogen-induced polarization (PHIP) followed by polarization transfer to 13 C is a rapidly developing technique for the generation of 13 C-hyperpolarized substrates. Chirality plays an essential role in living systems and differential metabolism of enantiomeric pairs of metabolic substrates is well documented. Inspired by asymmetric hydrogenation, here we report stereoPHIP, which involves the addition of parahydrogen to a prochiral substrate with a chiral catalyst followed by polarization transfer to 13 C spins. We demonstrate that parahydrogen could be rapidly added to the prochiral precursor to both enantiomers of lactic acid (D and L), with both the (R,R) and (S,S) enantiomers of a chiral rhodium(I) catalyst to afford highly 13 C-hyperpolarized (over 20 %) L- and D-lactate ester derivatives, respectively, with excellent stereoselectivity. We also show that the hyperpolarized 1 H signal decays obtained with the (R,R) and (S,S) catalysts were markedly different. StereoPHIP expands the scope of conventional PHIP to the production of 13 C hyperpolarized chiral substrates with high stereoselectivity.
Collapse
Affiliation(s)
- Mai T Huynh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Emily Buchanan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Adeniyi M Adebesin
- Department Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
28
|
Brahms A, Pravdivtsev AN, Thorns L, Sönnichsen FD, Hövener JB, Herges R. Exceptionally Mild and High-Yielding Synthesis of Vinyl Esters of Alpha-Ketocarboxylic Acids, Including Vinyl Pyruvate, for Parahydrogen-Enhanced Metabolic Spectroscopy and Imaging. J Org Chem 2023; 88:15018-15028. [PMID: 37824795 DOI: 10.1021/acs.joc.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metabolic changes often occur long before pathologies manifest and treatment becomes challenging. As key elements of energy metabolism, α-ketocarboxylic acids (α-KCA) are particularly interesting, e.g., as the upregulation of pyruvate to lactate conversion is a hallmark of cancer (Warburg effect). Magnetic resonance imaging with hyperpolarized metabolites has enabled imaging of this effect non-invasively and in vivo, allowing the early detection of cancerous tissue and its treatment. Hyperpolarization by means of dynamic nuclear polarization, however, is complex, slow, and expensive, while available precursors often limit parahydrogen-based alternatives. Here, we report the synthesis for novel 13C, deuterated ketocarboxylic acids, and a much-improved synthesis of 1-13C-vinyl pruvate-d6, arguably the most promising tracer for hyperpolarizing pyruvate using parahydrogen-induced hyperpolarization by side arm hydrogenation. The new synthesis is scalable and provides a high yield of 52%. We elucidated the mechanism of our Pd-catalyzed trans-vinylation reaction. Hydrogenation with parahydrogen allowed us to monitor the addition, which was found to depend on the electron demand of the vinyl ester. Electron-poor α-keto vinyl esters react slower than "normal" alkyl vinyl esters. This synthesis of 13C, deuterated α-ketocarboxylic acids opens up an entirely new class of biomolecules for fast and cost-efficient hyperpolarization with parahydrogen and their use for metabolic imaging.
Collapse
Affiliation(s)
- Arne Brahms
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Lynn Thorns
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Rainer Herges
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| |
Collapse
|
29
|
Ariyasingha NM, Samoilenko A, Birchall JR, Chowdhury MRH, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Zhu DC, Qian C, Bradley M, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing. ACS Sens 2023; 8:3845-3854. [PMID: 37772716 PMCID: PMC10902876 DOI: 10.1021/acssensors.3c01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Bradley
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202, United States
| | - Juri G Gelovani
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Siriraj Hospital Mahidol University, 10700, Bangkok, Thailand
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
30
|
Reimets N, Ausmees K, Vija S, Trummal A, Uudsemaa M, Reile I. Parahydrogen hyperpolarized NMR detection of underivatized short oligopeptides. Analyst 2023; 148:5407-5415. [PMID: 37791463 DOI: 10.1039/d3an01345f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Parahydrogen hyperpolarization has evolved into a versatile tool in NMR, allowing substantial sensitivity enhancements in analysis of biological samples. Herein we show how its application scope can be extended from small metabolites to underivatized oligopeptides in solution. Based on a homologous series of alanine oligomers, we report on an experimental and DFT study on the structure of the oligopeptide and hyperpolarization catalyst complexes formed in the process. We demonstrate that alanine oligomers coordinate to the iridium carbene-based catalyst in three different ways, each giving rise to distinctive hydride signals. Moreover, the exact structures of the transient oligopeptide-catalyst complexes are oligomer-specific. This work gives a first insight into how the organometallic iridium-N-heterocyclic carbene-based parahydrogen hyperpolarization catalyst interacts with biopolymers that have multiple catalyst binding sites. A preliminary application example is demonstrated for oligopeptide detection in urine, a complex biological mixture.
Collapse
Affiliation(s)
- Nele Reimets
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
- School of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Kerti Ausmees
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Sirje Vija
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Merle Uudsemaa
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| | - Indrek Reile
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia.
| |
Collapse
|
31
|
Min S, Baek J, Kim J, Jeong HJ, Chung J, Jeong K. Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification. JACS AU 2023; 3:2912-2917. [PMID: 37885596 PMCID: PMC10598823 DOI: 10.1021/jacsau.3c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.
Collapse
Affiliation(s)
- Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
32
|
Nagel L, Gierse M, Gottwald W, Ahmadova Z, Grashei M, Wolff P, Josten F, Karaali S, Müller CA, Lucas S, Scheuer J, Müller C, Blanchard J, Topping GJ, Wendlinger A, Setzer N, Sühnel S, Handwerker J, Vassiliou C, van Heijster FH, Knecht S, Keim M, Schilling F, Schwartz I. Parahydrogen-Polarized [1- 13 C]Pyruvate for Reliable and Fast Preclinical Metabolic Magnetic Resonance Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303441. [PMID: 37587776 PMCID: PMC10602543 DOI: 10.1002/advs.202303441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Hyperpolarization techniques increase nuclear spin polarization by more than four orders of magnitude, enabling metabolic MRI. Even though hyperpolarization has shown clear value in clinical studies, the complexity, cost and slowness of current equipment limits its widespread use. Here, a polarization procedure of [1-13 C]pyruvate based on parahydrogen-induced polarization by side-arm hydrogenation (PHIP-SAH) in an automated polarizer is demonstrated. It is benchmarked in a study with 48 animals against a commercial dissolution dynamic nuclear polarization (d-DNP) device. Purified, concentrated (≈70-160 mM) and highly hyperpolarized (≈18%) solutions of pyruvate are obtained at physiological pH for volumes up to 2 mL within 85 s in an automated process. The safety profile, image quality, as well as the quantitative perfusion and lactate-to-pyruvate ratios, are equivalent for PHIP and d-DNP, rendering PHIP a viable alternative to established hyperpolarization techniques.
Collapse
Affiliation(s)
- Luca Nagel
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | | | - Wolfgang Gottwald
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | | | - Martin Grashei
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | - Pascal Wolff
- NVision Imaging Technologies GmbH89081UlmGermany
| | - Felix Josten
- NVision Imaging Technologies GmbH89081UlmGermany
| | | | | | | | | | | | | | - Geoffrey J. Topping
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | - Andre Wendlinger
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | - Nadine Setzer
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | - Sandra Sühnel
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | | | | | - Frits H.A. van Heijster
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH89081UlmGermany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of MedicineKlinikum rechts der Isar of Technical University of Munich81675MunichGermany
- Munich Institute of Biomedical EngineeringTechnical University of Munich85748GarchingGermany
- German Cancer Consortium (DKTK)Partner Site Munich and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | | |
Collapse
|
33
|
Alshehri A, Tickner BJ, Iali W, Duckett SB. Enhancing the NMR signals of plant oil components using hyperpolarisation relayed via proton exchange. Chem Sci 2023; 14:9843-9853. [PMID: 37736655 PMCID: PMC10510812 DOI: 10.1039/d3sc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
In this work, the limited sensitivity of magnetic resonance is addressed by using the hyperpolarisation method relayed signal amplification by reversible exchange (SABRE-Relay) to transfer latent magnetism from para-hydrogen, a readily isolated spin isomer of hydrogen gas, to components of key plant oils such as citronellol, geraniol, and nerol. This is achieved via relayed polarisation transfer in which an [Ir(H)2(IMes)(NH2R)3]Cl type complex produces hyperpolarised NH2R free in solution, before labile proton exchange between the hyperpolarisation carrier (NH2R) and the OH-containing plant oil component generates enhanced NMR signals for the latter. Consequently, up to ca. 200-fold 1H (0.65% 1H polarisation) and 800-fold 13C NMR signal enhancements (0.65% 13C polarisation) are recorded for these essential oils in seconds. Remarkably, the resulting NMR signals are not only diagnostic, but prove to propagate over large spin systems via a suitable coupling network. A route to optimise the enhancement process by varying the identity of the carrier NH2R, and its concentration is demonstrated. In order to prove utility, these pilot measurements are extended to study a much wider range of plant-derived molecules including rhodinol, verbenol, (1R)-endo-(+)-fenchyl alcohol, (-)-carveol, and linalool. Further measurements are then described which demonstrate citronellol and geraniol can be detected in an off-the-shelf healthcare product rose geranium oil at concentrations of just a few tens of μM in single scan 1H NMR measurements, which are not visible in comparable thermally polarised NMR experiments. This work therefore presents a significant expansion of the types of molecules amenable to hyperpolarisation using para-hydrogen and illustrates a real-world application in the diagnostic detection of low concentration analytes in mixtures.
Collapse
Affiliation(s)
- Adel Alshehri
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Ben J Tickner
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Wissam Iali
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| | - Simon B Duckett
- Department of Chemistry, Centre for Hyperpolarisation in Magnetic Resonance, University of York Heslington YO10 5NY UK
| |
Collapse
|
34
|
Peters JP, Brahms A, Janicaud V, Anikeeva M, Peschke E, Ellermann F, Ferrari A, Hellmold D, Held-Feindt J, Kim NM, Meiser J, Aden K, Herges R, Hövener JB, Pravdivtsev AN. Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions. SCIENCE ADVANCES 2023; 9:eadd3643. [PMID: 37611105 PMCID: PMC10446501 DOI: 10.1126/sciadv.add3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.
Collapse
Affiliation(s)
- Josh P. Peters
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Vivian Janicaud
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Maria Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Na-mi Kim
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
- Department of Internal Medicine I, University Medical Center Kiel, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
35
|
Ellermann F, Sirbu A, Brahms A, Assaf C, Herges R, Hövener JB, Pravdivtsev AN. Spying on parahydrogen-induced polarization transfer using a half-tesla benchtop MRI and hyperpolarized imaging enabled by automation. Nat Commun 2023; 14:4774. [PMID: 37553405 PMCID: PMC10409769 DOI: 10.1038/s41467-023-40539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Aidan Sirbu
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Charbel Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
36
|
Vaneeckhaute E, Tyburn J, Kempf JG, Martens JA, Breynaert E. Reversible Parahydrogen Induced Hyperpolarization of 15 N in Unmodified Amino Acids Unraveled at High Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207112. [PMID: 37211713 PMCID: PMC10427394 DOI: 10.1002/advs.202207112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Amino acids (AAs) and ammonia are metabolic markers essential for nitrogen metabolism and cell regulation in both plants and humans. NMR provides interesting opportunities to investigate these metabolic pathways, yet lacks sensitivity, especially in case of 15 N. In this study, spin order embedded in p-H2 is used to produce on-demand reversible hyperpolarization in 15 N of pristine alanine and ammonia under ambient protic conditions directly in the NMR spectrometer. This is made possible by designing a mixed-ligand Ir-catalyst, selectively ligating the amino group of AA by exploiting ammonia as a strongly competitive co-ligand and preventing deactivation of Ir by bidentate ligation of AA. The stereoisomerism of the catalyst complexes is determined by hydride fingerprinting using 1 H/D scrambling of the associated N-functional groups on the catalyst (i.e., isotopological fingerprinting), and unravelled by 2D-ZQ-NMR. Monitoring the transfer of spin order from p-H2 to 15 N nuclei of ligated and free alanine and ammonia targets using SABRE-INEPT with variable exchange delays pinpoints the monodentate elucidated catalyst complexes to be most SABRE active. Also RF-spin locking (SABRE-SLIC) enables transfer of hyperpolarization to 15 N. The presented high-field approach can be a valuable alternative to SABRE-SHEATH techniques since the obtained catalytic insights (stereochemistry and kinetics) will remain valid at ultra-low magnetic fields.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Univ LyonCNRS, ENS LyonUCBLUniversité de LyonCRMN UMR 5280Villeurbanne69100France
| | - Jean‐Max Tyburn
- Bruker Biospin34 Rue de l'Industrie BP 10002Wissembourg Cedex67166France
| | | | - Johan A. Martens
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Deutsches Elektronen‐Synchrotron DESY – Centre for Molecular Water Science (CMWS)Notkestraße 8522607HamburgGermany
| | - Eric Breynaert
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
| |
Collapse
|
37
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
38
|
Eills J, Picazo-Frutos R, Burueva DB, Kovtunova LM, Azagra M, Marco-Rius I, Budker D, Koptyug IV. Combined homogeneous and heterogeneous hydrogenation to yield catalyst-free solutions of parahydrogen-hyperpolarized [1- 13C]succinate. Chem Commun (Camb) 2023. [PMID: 37450281 DOI: 10.1039/d3cc01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We show that catalyst-free aqueous solutions of hyperpolarized [1-13C]succinate can be produced using parahydrogen-induced polarization (PHIP) and a combination of homogeneous and heterogeneous catalytic hydrogenation reactions. We generate hyperpolarized [1-13C]fumarate via PHIP using para-enriched hydrogen gas with a homogeneous ruthenium catalyst, and subsequently remove the toxic catalyst and reaction side products via a purification procedure. Following this, we perform a second hydrogenation reaction using normal hydrogen gas to convert the fumarate into succinate using a solid Pd/Al2O3 catalyst. This inexpensive polarization protocol has a turnover time of a few minutes, and represents a major advance for in vivo applications of [1-13C]succinate as a hyperpolarized contrast agent.
Collapse
Affiliation(s)
- James Eills
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Institute for Physics, Johannes Gutenberg-Universität Mainz, Mainz 55099, Germany
| | - Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Institute for Physics, Johannes Gutenberg-Universität Mainz, Mainz 55099, Germany
| | - Dudari B Burueva
- International Tomography Center SB RAS, Novosibirsk 630090, Russia.
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
| | - Marc Azagra
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| | - Irene Marco-Rius
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Institute for Physics, Johannes Gutenberg-Universität Mainz, Mainz 55099, Germany
- Department of Physics, University of California, Berkeley, CA 94720-7300, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
39
|
Browning A, Macculloch K, TomHon P, Mandzhieva I, Chekmenev EY, Goodson BM, Lehmkuhl S, Theis T. Spin dynamics of [1,2- 13C 2]pyruvate hyperpolarization by parahydrogen in reversible exchange at micro Tesla fields. Phys Chem Chem Phys 2023; 25:16446-16458. [PMID: 37306121 PMCID: PMC10642564 DOI: 10.1039/d3cp00843f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperpolarization of 13C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2-13C2]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride-13C2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride-13C2-CH3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2-13C2]pyruvate-SABRE system.
Collapse
Affiliation(s)
- Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Keilian Macculloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA.
| |
Collapse
|
40
|
Schmidt AB, Eills J, Dagys L, Gierse M, Keim M, Lucas S, Bock M, Schwartz I, Zaitsev M, Chekmenev EY, Knecht S. Over 20% Carbon-13 Polarization of Perdeuterated Pyruvate Using Reversible Exchange with Parahydrogen and Spin-Lock Induced Crossing at 50 μT. J Phys Chem Lett 2023:5305-5309. [PMID: 37267594 DOI: 10.1021/acs.jpclett.3c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting 13C polarization (T1 = 3.7 ± 0.25 and 1.7 ± 0.1 min) is demonstrated for the C1 and C2 nuclear sites, respectively. The remarkable polarization levels become possible as a result of favorable relaxation dynamics at the microtesla fields. The ultralong polarization lifetimes will be conducive to yielding high polarization after purification, quality assurance, and injection of the hyperpolarized molecular imaging probes. These results pave the way to future in vivo translation of carbon-13 hyperpolarized molecular imaging probes prepared by this approach.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstraße 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - James Eills
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | | | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Michael Bock
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstraße 5a, Freiburg 79106, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstraße 5a, Freiburg 79106, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
41
|
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem 2023; 15:755-763. [PMID: 37264100 DOI: 10.1038/s41557-023-01211-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.
Collapse
Affiliation(s)
- Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, York, UK
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
42
|
Lins J, Miloslavina YA, Carrara SC, Rösler L, Hofmann S, Herr K, Theiß F, Wienands L, Avrutina O, Kolmar H, Buntkowsky G. Parahydrogen-induced polarization allows 2000-fold signal enhancement in biologically active derivatives of the peptide-based drug octreotide. Sci Rep 2023; 13:6388. [PMID: 37076553 PMCID: PMC10115808 DOI: 10.1038/s41598-023-33577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Octreotide, a somatostatin analogue, has shown its efficacy for the diagnostics and treatment of various types of cancer, i.e., in octreotide scan, as radio-marker after labelling with a radiopharmaceutical. To avoid toxicity of radio-labeling, octreotide-based assays can be implemented into magnetic resonance techniques, such as MRI and NMR. Here we used a Parahydrogen-Induced Polarization (PHIP) approach as a cheap, fast and straightforward method. Introduction of L-propargyl tyrosine as a PHIP marker at different positions of octreotide by manual Solid-Phase Peptide Synthesis (SPPS) led to up to 2000-fold proton signal enhancement (SE). Cell binding studies confirmed that all octreotide variants retained strong binding affinity to the surface of human-derived cancer cells expressing somatostatin receptor 2. The hydrogenation reactions were successfully performed in methanol and under physiologically compatible mixtures of water with methanol or ethanol. The presented results open up new application areas of biochemical and pharmacological studies with octreotide.
Collapse
Affiliation(s)
- Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Stefania C Carrara
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lorenz Rösler
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Sarah Hofmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Franziska Theiß
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
43
|
Jeong HJ, Min S, Baek J, Kim J, Chung J, Jeong K. Real-Time Reaction Monitoring of Azide-Alkyne Cycloadditions Using Benchtop NMR-Based Signal Amplification by Reversible Exchange (SABRE). ACS MEASUREMENT SCIENCE AU 2023; 3:134-142. [PMID: 37090259 PMCID: PMC10120034 DOI: 10.1021/acsmeasuresciau.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Rufinamide, possessing a triazole ring, is a new antiepileptic drug (AED) relatively well-absorbed in the lower dose range (10 mg/kg per day) and is currently being used in antiepileptic medications. Triazole derivatives can interact with various enzymes and receptors in biological systems via diverse non-covalent interactions, thus inducing versatile biological effects. Strain-promoted azide-alkyne cycloaddition (SPAAC) is a significant method for obtaining triazoles, even under physiological conditions, in the absence of a copper catalyst. To confirm the progress of chemical reactions under biological conditions, research on reaction monitoring at low concentrations is essential. This promising strategy is gaining acceptance for applications in fields such as drug development and nanoscience. We investigated the optimum Ir catalyst and magnetic field for achieving maximum proton hyperpolarization transfer in triazole derivatives. These reactions were analyzed using signal amplification by reversible exchange (SABRE) to overcome the limitations of low sensitivity in nuclear magnetic resonance spectroscopy, when monitoring copper-free click reactions in real time. Finally, a more versatile copper-catalyzed click reaction was monitored in real time, using a 60 MHz benchtop NMR system, in order to analyze the reaction mechanism.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Physics and Chemistry, Korea Military
Academy, Seoul 01805, South Korea
| |
Collapse
|
44
|
Pravdivtsev A, Buckenmaier K, Kempf N, Stevanato G, Scheffler K, Engelmann J, Plaumann M, Koerber R, Hövener JB, Theis T. LIGHT-SABRE Hyperpolarizes 1- 13C-Pyruvate Continuously without Magnetic Field Cycling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6744-6753. [PMID: 37081994 PMCID: PMC10108362 DOI: 10.1021/acs.jpcc.3c01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Nuclear spin hyperpolarization enables real-time observation of metabolism and intermolecular interactions in vivo. 1-13C-pyruvate is the leading hyperpolarized tracer currently under evaluation in several clinical trials as a promising molecular imaging agent. Still, the quest for a simple, fast, and efficient hyperpolarization technique is ongoing. Here, we describe that continuous, weak irradiation in the audio-frequency range of the 13C spin at the 121 μT magnetic field (approximately twice Earth's field) enables spin order transfer from parahydrogen to 13C magnetization of 1-13C-pyruvate. These so-called LIGHT-SABRE pulses couple nuclear spin states of parahydrogen and pyruvate via the J-coupling network of reversibly exchanging Ir-complexes. Using ∼100% parahydrogen at ambient pressure, we polarized 51 mM 1-13C-pyruvate in the presence of 5.1 mM Ir-complex continuously and repeatedly to a polarization of 1.1% averaged over free and catalyst-bound pyruvate. The experiments were conducted at -8 °C, where almost exclusively bound pyruvate was observed, corresponding to an estimated 11% polarization on bound pyruvate. The obtained hyperpolarization levels closely match those obtained via SABRE-SHEATH under otherwise identical conditions. The creation of three different types of spin orders was observed: transverse 13C magnetization along the applied magnetic field, 13C z-magnetization along the main field B 0, and 13C-1H zz-spin order. With a superconducting quantum interference device (SQUID) for detection, we found that the generated spin orders result from 1H-13C J-coupling interactions, which are not visible even with our narrow linewidth below 0.3 Hz and at -8 °C.
Collapse
Affiliation(s)
- Andrey
N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Kai Buckenmaier
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Nicolas Kempf
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Gabriele Stevanato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- NMR
Signal Enhancement Group, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klaus Scheffler
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Department
for Biomedical Magnetic Resonance, University
of Tübingen, 72076 Tübingen, Germany
| | - Joern Engelmann
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Markus Plaumann
- Otto-von-Guericke
University, Medical Faculty, Institute of
Biometry and Medical Informatics, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Rainer Koerber
- Department
‘Biosignals’, Physikalisch-Technische
Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Thomas Theis
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Departments
of Chemistry and Physics, North Carolina
State University, Raleigh, North Carolina 27695, United States
- Joint
UNC-NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
45
|
Ellermann F, Saul P, Hövener JB, Pravdivtsev AN. Modern Manufacturing Enables Magnetic Field Cycling Experiments and Parahydrogen-Induced Hyperpolarization with a Benchtop NMR. Anal Chem 2023; 95:6244-6252. [PMID: 37018544 DOI: 10.1021/acs.analchem.2c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Benchtop NMR (btNMR) spectrometers are revolutionizing the way we use NMR and lowering the cost drastically. Magnetic field cycling (MFC) experiments with precise timing and control over the magnetic field, however, were hitherto not available on btNMRs, although some systems exist for high-field, high-resolution NMR spectrometers. Still, the need and potential for btNMR MFC is great─e.g., to perform and analyze parahydrogen-induced hyperpolarization, another method that has affected analytical chemistry and NMR beyond expectations. Here, we describe a setup that enables MFC on btNMRs for chemical analysis and hyperpolarization. Taking full advantage of the power of modern manufacturing, including computer-aided design, three-dimensional printing, and microcontrollers, the setup is easy to reproduce, highly reliable, and easy to adjust and operate. Within 380 ms, the NMR tube was shuttled reliably from the electromagnet to the NMR isocenter (using a stepper motor and gear rod). We demonstrated the power of this setup by hyperpolarizing nicotinamide using signal amplification by reversible exchange (SABRE), a versatile method to hyperpolarize a broad variety of molecules including metabolites and drugs. Here, the standard deviation of SABRE hyperpolarization was between 0.2 and 3.3%. The setup also allowed us to investigate the field dependency of the polarization and the effect of different sample preparation protocols. We found that redissolution of the activated and dried Ir catalyst always reduced the polarization. We anticipate that this design will greatly accelerate the ascension of MFC experiments for chemical analysis with btNMR─adding yet another application to this rapidly developing field.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Philip Saul
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Jan-Bernd Hövener
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Andrey N Pravdivtsev
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| |
Collapse
|
46
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
47
|
Wang W, Wang Q, Xu J, Deng F. Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
48
|
Stevanato G, Ding Y, Mamone S, Jagtap AP, Korchak S, Glöggler S. Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP. J Am Chem Soc 2023; 145:5864-5871. [PMID: 36857108 PMCID: PMC10021011 DOI: 10.1021/jacs.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.
Collapse
Affiliation(s)
- Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Yonghong Ding
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| |
Collapse
|
49
|
Gierse M, Nagel L, Keim M, Lucas S, Speidel T, Lobmeyer T, Winter G, Josten F, Karaali S, Fellermann M, Scheuer J, Müller C, van Heijster F, Skinner J, Löffler J, Parker A, Handwerker J, Marshall A, Salhov A, El-Kassem B, Vassiliou C, Blanchard JW, Picazo-Frutos R, Eills J, Barth H, Jelezko F, Rasche V, Schilling F, Schwartz I, Knecht S. Parahydrogen-Polarized Fumarate for Preclinical in Vivo Metabolic Magnetic Resonance Imaging. J Am Chem Soc 2023; 145:5960-5969. [PMID: 36857421 DOI: 10.1021/jacs.2c13830] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.
Collapse
Affiliation(s)
- Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Tobias Speidel
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Tobias Lobmeyer
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Senay Karaali
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | | | | | - Frits van Heijster
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jason Skinner
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University, 89081 Ulm, Germany
| | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
| | | | | | | | - Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, 89081 Ulm, Germany
| | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|
50
|
Marshall A, Salhov A, Gierse M, Müller C, Keim M, Lucas S, Parker A, Scheuer J, Vassiliou C, Neumann P, Jelezko F, Retzker A, Blanchard JW, Schwartz I, Knecht S. Radio-Frequency Sweeps at Microtesla Fields for Parahydrogen-Induced Polarization of Biomolecules. J Phys Chem Lett 2023; 14:2125-2132. [PMID: 36802642 DOI: 10.1021/acs.jpclett.2c03785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging of 13C-labeled metabolites enhanced by parahydrogen-induced polarization (PHIP) enables real-time monitoring of processes within the body. We introduce a robust, easily implementable technique for transferring parahydrogen-derived singlet order into 13C magnetization using adiabatic radio frequency sweeps at microtesla fields. We experimentally demonstrate the applicability of this technique to several molecules, including some molecules relevant for metabolic imaging, where we show significant improvements in the achievable polarization, in some cases reaching above 60% nuclear spin polarization. Furthermore, we introduce a site-selective deuteration scheme, where deuterium is included in the coupling network of a pyruvate ester to enhance the efficiency of the polarization transfer. These improvements are enabled by the fact that the transfer protocol avoids relaxation induced by strongly coupled quadrupolar nuclei.
Collapse
Affiliation(s)
- Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alex Retzker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|