1
|
Qin GQ, Wang J, Cao XR, Chu XQ, Zhou X, Rao W, Zhai LX, Miao C, Shen ZL. Nickel-Catalyzed Reductive Amidation of Aryl Fluorosulfates with Isocyanates: Synthesis of Amides via C-O Bond Cleavage. J Org Chem 2024; 89:13735-13743. [PMID: 39213645 DOI: 10.1021/acs.joc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With the assistance of nickel as catalyst, 2,2'-bipyridine (bpy) as ligand, and manganese as reducing metal, the reductive amidation of isocyanates with readily accessible aryl fluorosulfates could be successfully accomplished. The reactions proceeded effectively via C-O bond activation in DMF at room temperature, enabling the facile synthesis of a range of structurally diverse amides in moderate to high yields with broad functionality compatibility. In addition, the synthetic usefulness of the method was further demonstrated by applying the reaction in scale-up synthesis and the late-stage functionalization of complex molecules with biological activities.
Collapse
Affiliation(s)
- Gan-Qi Qin
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiao Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Rong Cao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Xin Zhai
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
3
|
Doktor K, Vantourout JC, Michaudel Q. A Unified Synthesis of Diazenes from Primary Amines Using a SuFEx/Electrochemistry Strategy. Org Lett 2024; 26:7501-7506. [PMID: 39225700 PMCID: PMC11406575 DOI: 10.1021/acs.orglett.4c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electrochemical synthesis of 1,2-disubsituted diazenes via anodic oxidation of bench stable symmetrical and unsymmetrical sulfamides is reported. This work capitalizes on the streamlined preparation of diverse N,N'-disubstituted sulfamides using Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry that were subsequently subjected to electrochemical oxidation to afford the desired diazenes. The electrochemical nature of the reaction conditions obviated the need for chlorinating reagents, which considerably improved the sustainability of the overall process. Noteworthy, in addition to the synthesis of alkyl diazenes, these milder conditions were shown to be competent for the formation of azobenzenes, albeit in lower yields. Mechanistic experiments were conducted to delineate the reaction pathway and to rationalize the formation of side products observed during the electro-oxidation of N,N'-diarylsulfamides.
Collapse
Affiliation(s)
- Katarzyna Doktor
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Chappell WP, Favié M, Sammis GM. Thionyl fluoride as a sulfur(IV) SuFEx hub for the efficient syntheses of sulfinamides and sulfinate esters. Chem Commun (Camb) 2024; 60:9765-9768. [PMID: 39157931 DOI: 10.1039/d4cc02876g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Herein, we demonstrate a method for the syntheses of sulfinamides and sulfinate esters using a novel sulfur(IV) fluoride exchange reaction with organometallic reagents. Our strategy involves the addition of an amine or alcohol nucleophile to thionyl fluoride, acting as a S(IV) SuFEx hub, followed by an organometallic reagent. This approach allows efficient access to sulfinamides (45-91% yields) and sulfinate esters (44-82% yields) in only 30 minutes. The sulfinamide and sulfinate esters also can be readily derivatized to the corresponding S(VI) sulfonamides, sulfonate esters, sulfonimidamides, and sulfonimidates without isolation of the intermediates.
Collapse
Affiliation(s)
- William P Chappell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Marie Favié
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
5
|
Lional N, Miloserdov FM, Zuilhof H. 2-Methylimidazole-1-(N-tert-octyl)sulfonimidoyl Fluoride: A Bench-Stable Alternative to SOF 4 as Precursor to N,O-Substituted S(VI) Compounds. Angew Chem Int Ed Engl 2024; 63:e202406915. [PMID: 38856007 DOI: 10.1002/anie.202406915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
S(VI) compounds with multiple N or O substituents are often difficult to make and several crucial routes, such as multimodal SuFEx (Sulfur (VI) Fluoride Exchange) chemistry, rely on the highly useful but hazardous SOF4 gas. Safety issues and inaccessibility of SOF4 strongly hamper the developments of these organic compounds. Here we describe the synthesis and applications of 2-methylimidazole-1-(N-tert-octyl)sulfonimidoyl fluoride (ImSF), a novel bench-stable analogue of SOF4. ImSF is synthesized on a gram scale via a double fluorination of t-OctNSO. We show ImSF can undergo substitution reactions with phenols and amines, which lead to sulfurimidates and sulfuramidimidates, respectively, the intrinsically chiral analogous of medicinally relevant sulfates and sulfamates in which an S=O moiety is replaced by S=NR unit. Finally we demonstrate that such substitutions can occur enantiospecifically, providing the first entry to chiral sulfurimidates and sulfuramidimidates.
Collapse
Affiliation(s)
- Natassa Lional
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
6
|
Mazzarella D, Stanić J, Bernús M, Mehdi AS, Henderson CJ, Boutureira O, Noël T. In-Flow Generation of Thionyl Fluoride (SOF 2) Enables the Rapid and Efficient Synthesis of Acyl Fluorides from Carboxylic Acids. JACS AU 2024; 4:2989-2994. [PMID: 39211602 PMCID: PMC11350575 DOI: 10.1021/jacsau.4c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Herein, we report an approach for generating thionyl fluoride (SOF2) from the commodity chemicals thionyl chloride (SOCl2) and potassium fluoride (KF). The methodology relies on a microfluidic device that can efficiently produce and dose this toxic gaseous reagent under extremely mild and safe conditions. Subsequently, the in situ-generated thionyl fluoride is reacted with an array of structurally and electronically differing carboxylic acids, leading to the direct and efficient synthesis of highly sought-after acyl fluorides. Importantly, our investigation also highlights the inherent modularity of this flow-based platform. We demonstrate the adaptability of this approach by not only synthesizing acyl fluorides but also directly converting carboxylic acids into a diverse array of valuable compounds such as esters, thioesters, amides, and ketones. This versatility showcases the potential of this approach for a wide range of synthetic applications, underscoring its significance in the realm of chemical synthesis.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131 Padova, Italy
| | - Jelena Stanić
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Bernús
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Arad Seyed Mehdi
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Cassandra J. Henderson
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Omar Boutureira
- Departament
de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Carrer Marcel·lí Domingo
1, 43007 Tarragona, Spain
| | - Timothy Noël
- Flow
Chemistry Group, Van’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Wang P, Lin L, Huang Y, Zhang H, Liao S. Radical Fluorosulfonamidation: A Facile Access to Sulfamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202405944. [PMID: 38837324 DOI: 10.1002/anie.202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
He XB, Jia X, Zhao PQ, Fang Z, Qing FL. Photoredox-Catalysis Fluorosulfonyldifluoromethylation of Unactivated Alkenes and (Hetero)arenes with ICF 2SO 2F. Org Lett 2024; 26:6900-6904. [PMID: 39115249 DOI: 10.1021/acs.orglett.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The fluorosulfonyldifluoromethylation of unactivated alkenes and (hetero)arenes with iododifluoromethanesulfonyl fluoride (ICF2SO2F) under visible light photoredox catalysis was successfully developed. Key to the successful fluorosulfonyldifluoromethylation of aromatic compounds was the usage of AgOTf as an additive to promote the formation of the CF2SO2F radical. The protocol provided a straightforward way to introduce the interesting and useful CF2SO2F group on sp3 and sp2 carbons.
Collapse
Affiliation(s)
- Xu-Biao He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xin Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Pin-Qiao Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Wang M, Hou J, Do H, Wang C, Zhang X, Du Y, Dong Q, Wang L, Ni K, Ren F, An J. Intramolecular chalcogen bonding activated SuFEx click chemistry for efficient organic-inorganic linking. Nat Commun 2024; 15:6849. [PMID: 39127764 DOI: 10.1038/s41467-024-50922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
SuFEx click chemistry demonstrates remarkable molecular assembly capabilities. However, the effective utilization of alkyl sulfonyl fluoride hubs in SuFEx chemistry, particularly in reactions with alcohols and primary amines, presents considerable challenges. This study pioneers an intramolecular chalcogen bonding activated SuFEx (S-SuFEx) click chemistry employing alkyl sulfonyl fluorides with γ-S as the activating group. The ChB-activated alkyl sulfonyl fluorides can react smoothly with phenols, alcohols, and amines, exhibiting enhanced reactivity compared to SO2F2. Excellent yields have been achieved with all 75 tested substrates. Pioneering the application of S-SuFEx chemistry, we highlight its immense potential in organic-inorganic linking, considering the critical role of interfacial covalent bonding in material fabrication. The S-SuFEx hub 1c, incorporating a trialkoxy silane group has been specifically designed and synthesized for organic-inorganic linking. In a simple step, 1c efficiently anchors various organic compounds onto surfaces of inorganic materials, forming functionalized surfaces with properties such as antibacterial activity, hydrophobicity, and fluorescence.
Collapse
Affiliation(s)
- Minlong Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiaman Hou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Chao Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaohe Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Ying Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Qixin Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Lijun Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Ke Ni
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Li H, Zhang X, Wang Z, Sun C, Huang M, Liu J, Li Y, Zou Z, Pan Y, Zhang W, Wang Y. Pyridinium-Based Fluorosulfonamide Reagents Enabled Photoredox-Catalyzed Radical Fluorosulfonamidation. Org Lett 2024; 26:6714-6719. [PMID: 39058587 DOI: 10.1021/acs.orglett.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Sulfamoyl fluorides, as a crucial building block of SuFEx, have garnered extensive research interest due to their unique properties. However, the direct radical fluorosulfonamidation process for the synthesis of sulfamoyl fluorides has been overlooked. We herein disclosed a practical procedure for constructing a redox-active fluorosulfonamide radical reagent named fluorosulfonyl-N-pyridinium tetrafluoroborate (PNSF) from SO2F2. These reagents can facilitate a range of reactions, including the N-(fluorosulfonyl) sulfonamidation of (hetero)arenes, sequential radical stereoselective fluorosulfonamidation, and 1,2-difunctionalization of alkenes.
Collapse
Affiliation(s)
- Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenlei Zou
- Anhui Technology Research Center of Optoelectronic Technology Appliance, Biomimetic Energy Laboratory, School of Electrical Engineering, Tongling University, Tongling 244000, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Jaeger R, Rachor SG, Ahrens M, Braun T. Activation of SO 2F 2 at a Rhodium PNP Pincer Complex: Ligand Supported S-F Bond Cleavage to Generate NSO 2F Derivatives. Chemistry 2024; 30:e202401571. [PMID: 38757784 DOI: 10.1002/chem.202401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
The κ2-(P,N)-phosphine ligand precursor NH(CH2CH2PCy2)2 can be used for the synthesis of the rhodium(I) complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NHC2H4PCy2}][Cl] (1). The deprotonated complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NC2H4PCy2}] (2) shows a cooperative reactivity of the PNP ligand in the activation reaction of SO2F2 to yield the rhodium fluorido complex trans-[Rh(F)(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (3) by S-F bond cleavage. It is remarkable that no reaction was observed when 3 was treated with hydrogen sources e. g. dihydrogen, organosilicon compounds such as triethylsilane or TMS-CF3 and different fluorine sources such as SF4 or Selectfluor®. However, the treatment of complex 3 with XeF2 in the presence of CsF resulted in the formation of the unique fluorido rhodium(III) complex cis,trans-[Rh(F)3(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (4). In the presence of pyridine(HF)X or BF3 the fluorido complex 3 converted into the dicationic complexes [Rh(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2[XF]2, X=HF (5) or BF3 (6), respectively.
Collapse
Affiliation(s)
- Ruben Jaeger
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Simon G Rachor
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Mike Ahrens
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Chen X, Liang Y, Wang WW, Miao C, Chu XQ, Rao W, Xu H, Zhou X, Shen ZL. Palladium-Catalyzed Esterification of Aryl Fluorosulfates with Aryl Formates. Molecules 2024; 29:1991. [PMID: 38731482 PMCID: PMC11085239 DOI: 10.3390/molecules29091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
An efficient palladium-catalyzed carbonylation of aryl fluorosulfates with aryl formates for the facile synthesis of esters was developed. The cross-coupling reactions proceeded effectively in the presence of a palladium catalyst, phosphine ligand, and triethylamine in DMF to produce the corresponding esters in moderate to good yields. Of note, functionalities or substituents, such as nitro, cyano, methoxycarbonyl, trifluoromethyl, methylsulfonyl, trifluoromethoxy, fluoro, chloro, bromo, methyl, methoxy, N,N-dimethyl, and [1,3]dioxolyl, were well-tolerated in the reactions, which could be kept for late-stage modification. The reactions employing readily available and relatively robust aryl fluorosulfates as coupling electrophiles could potentially serve as an attractive alternative to traditional cross-couplings with the use of aryl halides and pseudohalides as substrates.
Collapse
Affiliation(s)
- Xue Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Yuan Liang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Wen-Wen Wang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China;
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.C.); (Y.L.); (W.-W.W.); (X.-Q.C.)
| |
Collapse
|
13
|
Wang W, Li J, Xu L, Dong J. N-Fluorosulfonyl Guanidine: An Entry to N-Guanyl Sulfamides and Sulfamates. Org Lett 2024; 26:3202-3207. [PMID: 38578703 DOI: 10.1021/acs.orglett.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Here, we present the straightforward synthesis of N-fluorosulfonyl guanidine (1) from two industrial feedstocks, guanidine hydrochloride and sulfuryl fluoride (SO2F2), using SuFEx chemistry. Compound 1 exhibits excellent stability under ambient conditions and displays unique SuFEx reactivity toward amines and phenols to generate N-guanyl sulfamides and sulfamates that have rarely been accessed. Notably, water serves as an effective solvent in this process. Our protocol provides a reliable pathway for the synthesis and investigation of these novel guanidine-containing molecules.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingyuan Li
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Sugisawa N, Nakabayashi K, Sugisawa H, Fuse S. One-Flow Syntheses of Unsymmetrical Sulfamides and N-Substituted Sulfamate Esters. Org Lett 2024; 26:2739-2744. [PMID: 37306668 DOI: 10.1021/acs.orglett.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We developed one-flow syntheses of unsymmetrical sulfamides and N-substituted sulfamate esters by changing a nucleophile and a tertiary amine from inexpensive and commercially available chlorosulfonic acid. In the synthesis of N-substituted sulfamate esters, unexpected symmetrical sulfite formation was suppressed by changing the tertiary amine. The effect of tertiary amines was proposed using linear regression. Our approach rapidly (≤90 s) provides desired products containing acidic and/or basic labile groups without tedious purification under mild (20 °C) conditions.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kohei Nakabayashi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroki Sugisawa
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, 227-8502, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
15
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
16
|
Bertram J, Neumaier F, Zlatopolskiy BD, Neumaier B. Desmethyl SuFEx-IT: SO 2F 2-Free Synthesis and Evaluation as a Fluorosulfurylating Agent. J Org Chem 2024; 89:3821-3833. [PMID: 38386004 PMCID: PMC10949248 DOI: 10.1021/acs.joc.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Access to SuFExable compounds was remarkably simplified by introduction of the solid FO2S-donor SuFEx-IT. However, the published process for preparation of this reagent relies on the use of sulfuryl fluoride (SO2F2), which is difficult to obtain and highly toxic. Herein, we disclose a simple protocol for SO2F2-free, hectogram-scale preparation of the analogous desmethyl SuFEx-IT from inexpensive starting materials. The reagent was prepared in a high (85%) total yield and without chromatographic purification steps. In addition, we demonstrate the utility of desmethyl SuFEx-IT by successful preparation of a series of fluorosulfates and sulfamoyl fluorides in high to excellent yields. As such, our work recognizes desmethyl SuFEx-IT as a valuable alternative to common FO2S-donors and enables cost-efficient access to substrates for SuFEx click chemistry.
Collapse
Affiliation(s)
- Jan Bertram
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
| | - Felix Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum
Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear
Chemistry (INM-5), Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Faculty
of Medicine and Cologne University Hospital, Institute of Radiochemistry
and Experimental Molecular Imaging, University
of Cologne, Kerpener
Straße 62, Cologne 50937, Germany
| |
Collapse
|
17
|
Wei J, Chai Y, Zhou J, Pan Y, Jia T, Xiong L, Yao G, Zhang Z, Xu H, Zhao C. Discovery of Arylfluorosulfates as Novel Fungicidal Agents against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3456-3468. [PMID: 38331710 DOI: 10.1021/acs.jafc.3c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 μg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 μg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 μg/mL, respectively) comparable to carbendazim (EC50 = 1.02 μg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 μg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 μg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.
Collapse
Affiliation(s)
- Junjie Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunlong Chai
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiarun Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaxin Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tianhao Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lantu Xiong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Ng A, Offensperger F, Cisneros JA, Scholes NS, Malik M, Villanti L, Rukavina A, Ferrada E, Hannich JT, Koren A, Kubicek S, Superti-Furga G, Winter GE. Discovery of Molecular Glue Degraders via Isogenic Morphological Profiling. ACS Chem Biol 2023; 18:2464-2473. [PMID: 38098458 PMCID: PMC10764104 DOI: 10.1021/acschembio.3c00598] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins. Here we develop a high-throughput workflow for MGD discovery that also reaches the nonessential proteome. This workflow begins with the rapid synthesis of a compound library by sulfur(VI) fluoride exchange chemistry coupled to a morphological profiling assay in isogenic cell lines that vary in levels of the E3 ligase CRBN. By comparing the morphological changes induced by compound treatment across the isogenic cell lines, we were able to identify FL2-14 as a CRBN-dependent MGD targeting the nonessential protein GSPT2. We envision that this workflow would contribute to the discovery and characterization of MGDs that target a wider range of proteins.
Collapse
Affiliation(s)
- Amanda Ng
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Fabian Offensperger
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Jose A. Cisneros
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Natalie S. Scholes
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Monika Malik
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Ludovica Villanti
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Andrea Rukavina
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Evandro Ferrada
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - J. Thomas Hannich
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Anna Koren
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
19
|
Wang H, Li Z, Dai R, Jiao N, Song S. An efficient and mild oxidative approach from thiols to sulfonyl derivatives with DMSO/HBr. Chem Sci 2023; 14:13228-13234. [PMID: 38023524 PMCID: PMC10664549 DOI: 10.1039/d3sc04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Zhaoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| |
Collapse
|
20
|
Deng X, Zhu X. Recent Advances of S- 18F Radiochemistry for Positron Emission Tomography. ACS OMEGA 2023; 8:37720-37730. [PMID: 37867643 PMCID: PMC10586020 DOI: 10.1021/acsomega.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
The click chemistry of sulfur(VI) fluoride exchange (SuFEx) has facilitated the widespread application of sulfur-fluoride compounds such as sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides in various fields, especially in the development of 18F ligands for PET (positron emission tomography) imaging. In recent years, the prominent progress of sulfur-[18F]fluoride compounds has been achieved through the combination of 18F and sulfur-fluoride chemistry. These compounds serve as potential 18F tracers, 18F synthons, and reagents for 18F-fluorination, thereby complementing the range of 18F ligands, typically C-18F structures, used in PET studies. This review aims to provide an overview of S-18F labeling reactions through examples of relevant 18F compounds and highlight the advancements and breakthroughs achieved in the past decade.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
21
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
22
|
Abstract
The impact of click chemistry was recently recognized with the 2022 Nobel Prize in Chemistry. The breadth of areas where click chemistry has accelerated discovery is prodigal. In one of the most written about subjects in chemistry over recent years, this short perspective zones in on a small fragment of what we, the authors, consider are some of the most critical developments in synthetic chemistry, which have expanded access to the click chemistry toolbox. In addition, we touch upon areas within medicinal chemistry and novel approaches to drug discovery enabled by click chemistry, where we believe there is untapped potential for biological function to be found and exploited.
Collapse
Affiliation(s)
- Adam D Moorhouse
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - Joshua A Homer
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
| | - John E Moses
- Cancer Centre, Cold Spring Harbor Laboratory, 1 Bungtown Road, New York, NY 11724, USA
- Lead Contact
| |
Collapse
|
23
|
Chattapadhyay D, Aydogan A, Doktor K, Maity A, Wu JW, Michaudel Q. Harnessing Sulfur(VI) Fluoride Exchange Click Chemistry and Photocatalysis for Deaminative Benzylic Arylation. ACS Catal 2023; 13:7263-7268. [PMID: 37655265 PMCID: PMC10468006 DOI: 10.1021/acscatal.3c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/07/2023] [Indexed: 09/02/2023]
Abstract
While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.
Collapse
Affiliation(s)
| | | | - Katarzyna Doktor
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Arunava Maity
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jiun Wei Wu
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
24
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
25
|
Huang H, Jones LH. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opin Drug Discov 2023:1-11. [PMID: 37243622 DOI: 10.1080/17460441.2023.2218642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Covalent drug discovery has traditionally focused on targeting cysteine, but the amino acid is often absent in protein binding sites. This review makes the case to move beyond cysteine labeling using sulfur (VI) fluoride exchange (SuFEx) chemistry to expand the druggable proteome. AREAS COVERED Recent advances in SuFEx medicinal chemistry and chemical biology are described, which have enabled the development of covalent chemical probes that site-selectively engage amino acid residues (including tyrosine, lysine, histidine, serine, and threonine) in binding pockets. Areas covered include chemoproteomic mapping of the targetable proteome, structure-based design of covalent inhibitors and molecular glues, metabolic stability profiling, and synthetic methodologies that have expedited the delivery of SuFEx modulators. EXPERT OPINION Despite recent innovations in SuFEx medicinal chemistry, focused preclinical research is required to ensure the field moves from early chemical probe discovery to the delivery of transformational covalent drug candidates. The authors believe that covalent drug candidates designed to engage residues beyond cysteine using sulfonyl exchange warheads will likely enter clinical trials in the coming years.
Collapse
Affiliation(s)
- Huang Huang
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Huang KH, Morato NM, Feng Y, Cooks RG. High-Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets. Angew Chem Int Ed Engl 2023; 62:e202300956. [PMID: 36941213 PMCID: PMC10182919 DOI: 10.1002/anie.202300956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/23/2023]
Abstract
Late-stage diversification of drug molecules is an important strategy in drug discovery that can be facilitated by reaction screening using high-throughput experimentation. Here we present a rapid method for functionalizing bioactive molecules based on accelerated reactions in microdroplets. Reaction mixtures are nebulized at throughputs better than 1 reaction/second and the accelerated reactions occurring in the microdroplets are followed by desorption electrospray ionization mass spectrometry (DESI-MS). Because the accelerated reactions occur on the millisecond timescale, they allow an overall screening throughput of 1 Hz working at the low nanogram scale. Using this approach, an opioid agonist (PZM21) and an antagonist (naloxone) were diversified using three reactions important in medicinal chemistry: sulfur fluoride exchange (SuFEx) click reactions, imine formation reactions, and ene-type click reactions. Some 269 functionalized analogs of naloxone and PZM21 were generated and characterized by tandem mass spectrometry (MS/MS) after screening over 500 reactions.
Collapse
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Nicolás M Morato
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yunfei Feng
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
27
|
Kim MP, Cho H, Kayal S, Jeon MH, Seo JK, Son J, Jeong J, Hong SY, Chun JH. Direct 18F-Fluorosulfurylation of Phenols and Amines Using an [ 18F]FSO 2+ Transfer Agent Generated In Situ. J Org Chem 2023; 88:6263-6273. [PMID: 37032486 DOI: 10.1021/acs.joc.3c00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
We report the direct radiofluorosulfurylation method for the synthesis of 18F-labeled fluorosulfuryl derivatives from phenols and amines using an [18F]FSO2+ transfer agent generated in situ. Nucleophilic radiofluorination is achieved even in a hydrous organic medium, obviating the need for azeotropic drying and the use of cryptands. This unprecedented, operationally simple isotopic functionalization facilitates the reliable production of potential radiotracers for positron emission tomography, rendering facile access to SuFEx radiochemistry.
Collapse
Affiliation(s)
- Min Pyeong Kim
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hojin Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Swatilekha Kayal
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsil Jeong
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung You Hong
- Department of Chemistry and Department of Chemical Engineering, Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
29
|
Downey KT, Mo JY, Lai J, Thomson BJ, Sammis GM. Sulfur(iv) reagents for the SuFEx-based synthesis of substituted sulfamate esters. Chem Sci 2023; 14:1775-1780. [PMID: 36819869 PMCID: PMC9930924 DOI: 10.1039/d2sc05945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Sulfur(vi) fluoride exchange chemistry has been reported to be effective at synthesizing valuable sulfur(vi) functionalities through sequential nucleophilic additions, yet oxygen-based nucleophiles are limited in this approach to phenolic derivatives. Herein, we report a new sulfur(iv) fluoride exchange strategy to access synthetically challenging substituted sulfamate esters from alkyl alcohols and amines. We also report the development of a non-gaseous, sulfur(iv) fluoride exchange reagent, N-methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF). By leveraging the reactivity of the sulfur(iv) center of this novel reagent, the sequential addition of alcohols and amines to MISF followed by oxidation afforded the desired substituted sulfamates in 40-83% yields after two steps. This new strategy expands the scope of SuFEx chemistry by increasing the accessibility of underdeveloped -S(O)F intermediates for future explorations.
Collapse
Affiliation(s)
- Kathleen T. Downey
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| | - Jia Yi Mo
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Joey Lai
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J. Thomson
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| | - Glenn M. Sammis
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| |
Collapse
|
30
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
Wu JW, Kulow RW, Redding MJ, Fine AJ, Grayson SM, Michaudel Q. Synthesis of Degradable Polysulfamides via Sulfur(VI) Fluoride Exchange Click Polymerization of AB-Type Monomers. ACS POLYMERS AU 2023. [DOI: 10.1021/acspolymersau.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiun Wei Wu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan W. Kulow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - McKenna J. Redding
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander J. Fine
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Passia MT, Demaerel J, Amer MM, Drichel A, Zimmer S, Bolm C. Acid-Mediated Imidazole-to-Fluorine Exchange for the Synthesis of Sulfonyl and Sulfonimidoyl Fluorides. Org Lett 2022; 24:8802-8805. [PMID: 36417547 DOI: 10.1021/acs.orglett.2c03546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfur(VI) fluoride motifs are important entities in organic chemistry. Typically, their syntheses involve the corresponding chlorides, which are often difficult to prepare and characterized by a poor storability due to the inherently weak S-Cl bond. Here, a single-step procedure for the preparation of sulfur(VI) fluorides starting from sulfonyl imidazoles as stable S(VI) reservoirs is described. By using a simple combination of AcOH and potassium bifluoride (KF2H), an imidazole-to-fluorine exchange furnishes a variety of sulfonyl, sulfonimidoyl, sulfoxyl, and sulfamoyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Marco T Passia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Joachim Demaerel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Molecular Design and Synthesis, Dept. of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Belgium
| | - Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,Egyptian Petroleum Research Institute, Nasr City 11727 Cairo Egypt
| | - Alwin Drichel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Stefanie Zimmer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
33
|
Cui Y, Zhao Y, Shen J, Zhang G, Ding C. The stable "F-SO 2 +" donor provides a mild and efficient approach to nitriles and amides. RSC Adv 2022; 12:33064-33068. [PMID: 36425170 PMCID: PMC9672908 DOI: 10.1039/d2ra05890a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
In this update, we developed a mild, efficient and practical method using fluorosulfuryl imidazolium salt A as an environment friendly promoter for conversion of oximes to nitriles or amides via β-elimination or Beckmann rearrangement in almost quantitative yield in 10 minutes. The target products were generated in gram-scale and could be collected through crystallization without silica gel column purification in excellent yield.
Collapse
Affiliation(s)
- Yin Cui
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center Hangzhou 310014 P. R. China
| | - Junjie Shen
- Zhejiang Kefeng New Material Co. LTD Huzhou 313200 P. R. China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
34
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
35
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur-Phenolate Exchange: SuFEx-Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022; 61:e202207456. [PMID: 35819248 PMCID: PMC9540147 DOI: 10.1002/anie.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The products of the SuFEx reaction between sulfonimidoyl fluorides and phenols, sulfonimidates, are shown to display dynamic covalent chemistry with other phenols. This reaction was shown to be enantiospecific, finished in minutes at room temperature in high yields, and useful for both asymmetric synthesis and sustainable polymer production. Its wide scope further extends the usefulness of SuFEx and related click chemistries.
Collapse
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Akash Krishna
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Sidharam P. Pujari
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | | | - Guanna Li
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Biobased Chemistry and TechnologyWageningen UniversityBornse Weilanden 96708WGWageningenThe Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University21589JeddahSaudi Arabia
| |
Collapse
|
36
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
37
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Akash Krishna
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sidharam P. Pujari
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | | | - Guanna Li
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
38
|
Chrominski M, Ziemkiewicz K, Kowalska J, Jemielity J. Introducing SuFNucs: Sulfamoyl-Fluoride-Functionalized Nucleosides That Undergo Sulfur Fluoride Exchange Reaction. Org Lett 2022; 24:4977-4981. [PMID: 35771144 PMCID: PMC9295159 DOI: 10.1021/acs.orglett.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The reaction between
ribonucleosides and ex situ generated sulfonyl
fluoride has been developed. The reaction takes place at the −NH2 groups of nucleobases, and the resulting nucleosides are
equipped with a sulfamoyl fluoride moiety, dubbed SuFNucs. These species
undergo a selective sulfur fluoride exchange (SuFEx) reaction with
various amines, leading to sulfamide-functionalized derivatives of
adenosine, guanosine, and cytidine (SulfamNucs). The scope and examples
of further SuFNucs fuctionalization leading to nucleotides, oligonucleotides,
and peptide–nucleoside conjugates are presented.
Collapse
Affiliation(s)
- Mikołaj Chrominski
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
39
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang CJ, Zhang ZM, Gao L, Yao SQ. Cell-Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR-ABL Kinase. Angew Chem Int Ed Engl 2022; 61:e202203878. [PMID: 35438229 DOI: 10.1002/anie.202203878] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
40
|
Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO 2F radical reagent. Nat Commun 2022; 13:3515. [PMID: 35717500 PMCID: PMC9206656 DOI: 10.1038/s41467-022-31296-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides are key components in the fields of chemical biology, materials science and drug discovery. In this line, the highly active SO2F radical has been employed for the construction of sulfonyl fluorides, but the utilization of gaseous ClSO2F as radical precursor is limited due to the tedious and hazardous preparation. Meanwhile, the synthesis of sulfonyl fluorides from inert SO2F2 gas through a fluorosulfonyl radical (·SO2F) process has met with inevitable difficulties due to the high homolytic bond dissociation energy of the S(VI)-F bond. Here we report a radical fluorosulfonylation strategy for the stereoselective synthesis of alkenyl sulfonyl fluorides and functional alkyl sulfonyl fluorides with an air-stable crystalline benzimidazolium fluorosulfonate cationic salt reagent. This bench-stable redox-active reagent offers a useful and operational protocol for the radical fluorosulfonylation of unsaturated hydrocarbons with good yield and high stereoselectivity, which can be further transformed into valuable functional SO2F moieties. Sulfonyl fluorides have potential application in chemical biology, materials science, and drug discovery, but their preparation remains challenging. Here, the authors report an air-stable fluorosulfonylating reagent that enables the radical fluorosulfonylation, hydrofluorosulfonylation and migratory SO2F-difunctionalization of unsaturated hydrocarbons to construct a variety of sulfonyl fluoride compounds.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
41
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
42
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
43
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang C, Zhang Z, Gao L, Yao SQ. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chengjun Zhu
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Guanghui Tang
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chong‐Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Zhi‐Min Zhang
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
44
|
Walter N, Bertram J, Drewes B, Bahutski V, Timmer M, Schütz MB, Krämer F, Neumaier F, Endepols H, Neumaier B, Zlatopolskiy BD. Convenient PET-tracer production via SuFEx 18F-fluorination of nanomolar precursor amounts. Eur J Med Chem 2022; 237:114383. [DOI: 10.1016/j.ejmech.2022.114383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/31/2022]
|
45
|
Efficient Synthesis of Azido Sugars Using Fluorosulfuryl Azide Diazotransfer Reagent. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Bai X, Huang L, Zhou P, Xi H, Hu J, Zuo Z, Feng H. Selectivity Controlled Hydroamination of Alkynes to Sulfonyl Fluoride Hubs: Development and Application. J Org Chem 2022; 87:4998-5004. [PMID: 35316042 DOI: 10.1021/acs.joc.1c03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A hydroamination of unactivated alkynes and lithium bis(fluorosulfonyl)imide (LiN(SO2F)2) is described under mild conditions, affording a single regioisomer of the sulfonyl fluorides. This method features broad functional group compatibility and delivers the target vinyl fluorosulfonimides in good to excellent yields. Moreover, gram-scale hydroamination of terminal and internal alkynes is achieved. Further transformations exploiting the reactivity of the vinyl fluorosulfonimide are subsequently developed for the synthesis of fluorosulfates and diphenyl sulfate.
Collapse
Affiliation(s)
- Xueying Bai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Pengyu Zhou
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research, Zhengzhou 450001, China
| | - Junduo Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
47
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
48
|
Oe Y, Yoshida R, Tanaka A, Adachi A, Ishibashi Y, Okazoe T, Aikawa K, Hashimoto T. An N-Fluorinated Imide for Practical Catalytic Imidations. J Am Chem Soc 2022; 144:2107-2113. [PMID: 35084841 DOI: 10.1021/jacs.1c13569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic imidation using NFSI as the nitrogen source has become an emerging tool for oxidative carbon-nitrogen bond formation. However, the less than ideal benzenesulfonimide moiety is incorporated into products, severely detracting its synthetic value. As a solution to this challenge, we report herein the development of a novel N-fluorinated imide, N-fluoro-N-(fluorosulfonyl)carbamate (NFC), by which the attached imide moiety acts as a modular synthetic handle for one-step derivatization to amines, sulfonamides, and sulfamides. Furthermore, this study revealed the superior reactivity of NFC as showcased in a copper-catalyzed imidation of benzene derivatives and imidocyanation of aliphatic alkenes, overcoming the limitation of NFSI-mediated reactions.
Collapse
Affiliation(s)
- Yuno Oe
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Ryuhei Yoshida
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Airi Tanaka
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Akiya Adachi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuichiro Ishibashi
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.,Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
49
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
50
|
Lin J, Xiao J. Photoredox Catalytic Radical Fluorosulfonylation of Olefins. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|