1
|
Guo T, Hu P, Liu Y, Zhang P, Zhao Y, Zhu C. Ketosulfonylmethylenation and sulfonylethyleneation of imidazoheterocycles with dimethylformamide as a methylene source. Chem Commun (Camb) 2023; 59:12455-12458. [PMID: 37781868 DOI: 10.1039/d3cc03850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A hitherto unreported ketosulfonylmethylenation occurring at the C-3 position of imidazoheterocycles, with dimethylformamide as the methylene source was described. Using CoCl2·6H2O or Fe(acac)3 as efficient and inexpensive catalysts, some important biologically active methylenated compounds were prepared, with high efficacy, favorable functional group compatibilities, and a broad substrate scope.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Penghua Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Henan Advanced Institute of Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Congjun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
2
|
Kumari S, Joshi A, Borthakur I, Kundu S. Activation of Ethanol via Conjunction of a Photocatalyst and a HAT Reagent for the Synthesis of Benzimidazoles. J Org Chem 2023; 88:11523-11533. [PMID: 37525430 DOI: 10.1021/acs.joc.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The transformation of ethanol to value-added chemicals has tremendous potential. However, generally, harsh reaction conditions are needed for the functionalization of ethanol due to its high dehydrogenation energy. Herein, a metal-free photo-mediated activation of challenging ethanol and higher aliphatic alcohols for the synthesis of differently functionalized benzimidazoles under mild conditions is disclosed. The interplay of a photocatalyst and a HAT reagent facilitated the activation of aliphatic alcohols. A wide array of diamines with different functional groups were well tolerated, and the protocol was also extended to N-substituted diamines for the synthesis of industrially important benzimidazoles. A probable catalytic cycle was proposed based on various mechanistic studies.
Collapse
Affiliation(s)
- Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Abhisek Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Putta RR, Chun S, Lee SB, Hong J, Choi SH, Oh DC, Hong S. Chemoselective α-Alkylation and α-Olefination of Arylacetonitriles with Alcohols via Iron-Catalyzed Borrowing Hydrogen and Dehydrogenative Coupling. J Org Chem 2022; 87:16378-16389. [PMID: 36417466 DOI: 10.1021/acs.joc.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
α-Alkyl and α-olefin nitriles are very important for organic synthesis and medicinal chemistry. However, different types of catalysts are employed to achieve either α-alkylation of nitriles by borrowing hydrogen or α-olefination by dehydrogenative coupling methods. Designing and developing high-performance earth-abundant catalysts that can procure different products from the same starting materials remain a great challenge. Herein, we report an iron(0) catalyst system that achieves chemoselectivity between borrowing hydrogen and dehydrogenative coupling protocols by simply changing the base. A broad range of nitriles and alcohols, including benzylic, linear aliphatic, cycloaliphatic, heterocyclic, and allylic alcohols, were selectively and efficiently converted to the corresponding products. Mechanistic studies reveal that the reaction mechanism proceeds through a dehydrogenative pathway. This iron catalytic protocol is environmentally benign and atom-efficient with the liberation of H2 and H2O as green byproducts.
Collapse
Affiliation(s)
- Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Křoustková J, Ritomská A, Al Mamun A, Hulcová D, Opletal L, Kuneš J, Cahlíková L, Bucar F. Structural analysis of unusual alkaloids isolated from Narcissus pseudonarcissus cv. Carlton. PHYTOCHEMISTRY 2022; 204:113439. [PMID: 36152726 DOI: 10.1016/j.phytochem.2022.113439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Narciindole A, the first representative of Amaryllidaceae alkaloids with an indol-3-ylmethanone framework, was isolated from bulbs of Narcissus pseudonarcissus (L.) cv. Carlton, together with carltonine D and carltonine E, which share the same unusual structural motif as dimeric carltonine C (reported in 2020), exhibiting atropisomerism. Unambiguous structure elucidations have been achieved by NMR spectroscopy, HRMS, and comparison with literature data of related alkaloids. Furthermore, the chirality of known alkaloids with a galanthindole biaryl core was revised using optical rotation. Last, but not least, a biosynthetic pathway for dimeric carltonine-type alkaloids was proposed. Unfortunately, in terms of biological activity, the isolated alkaloids showed only moderate inhibition of human acetylcholinesterase and/or butyrylcholinesterase.
Collapse
Affiliation(s)
- Jana Křoustková
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria.
| | - Aneta Ritomská
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria
| |
Collapse
|
6
|
Borthakur I, Srivastava S, Kumari S, Kundu S. Tandem synthesis of N-methylated tertiary amines via three-component coupling of carbonyl compounds, amines, and methanol. Chem Commun (Camb) 2022; 58:9822-9825. [PMID: 35975637 DOI: 10.1039/d2cc03115a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ir-catalyzed tandem synthesis of various N-methylated tertiary amines from three-component coupling of carbonyl compounds, amines, and methanol following reductive amination/N-methylation is reported for the first time. A wide array of substrates with tolerance of different functional groups was demonstrated. The protocol was extended to the synthesis of N-methyl containing pharmaceutically important drug molecules. A probable catalytic cycle was proposed based on various control experiments and different analytical techniques such as NMR, IR and ESI-MS.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sameer Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
7
|
Gimferrer M, Joly N, Escayola S, Viñas E, Gaillard S, Solà M, Renaud JL, Salvador P, Poater A. Knölker Iron Catalysts for Hydrogenation Revisited: A Nonspectator Solvent and Fine-Tuning. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martí Gimferrer
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Nicolas Joly
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Eduard Viñas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sylvain Gaillard
- Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- Normandie Univ, LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma̲ Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
8
|
Hackl L, Ho LP, Bockhardt D, Bannenberg T, Tamm M. Tetraaminocyclopentadienone Iron Complexes as Hydrogenation Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludwig Hackl
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Luong Phong Ho
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Dustin Bockhardt
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Ye Z, Yang Z, Yang C, Huang M, Xu X, Ke Z. Disarming the alkoxide trap to access a practical FeCl 3 system for borrowing-hydrogen N-alkylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disarming the alkoxide trap using an in situ reduction strategy to access a practical FeCl3 and N-heterocyclic carbene system for borrowing-hydrogen N-alkylation.
Collapse
Affiliation(s)
- Zongren Ye
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhenjie Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chenhui Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xianfang Xu
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming, 525000, P.R. China
| |
Collapse
|
10
|
Ma Z, Zhou B, Li X, Kadam RG, Gawande MB, Petr M, Zbořil R, Beller M, Jagadeesh RV. Reusable Co-nanoparticles for general and selective N-alkylation of amines and ammonia with alcohols. Chem Sci 2021; 13:111-117. [PMID: 35059158 PMCID: PMC8694384 DOI: 10.1039/d1sc05913k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023] Open
Abstract
A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines including N-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a Rostock D-18059 Germany
| | - Bei Zhou
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a Rostock D-18059 Germany
| | - Xinmin Li
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a Rostock D-18059 Germany
| | - Ravishankar G Kadam
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc Šlechtitelů 27, 73 71 Olomouc Czech Republic
| | - Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc Šlechtitelů 27, 73 71 Olomouc Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc Šlechtitelů 27, 73 71 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc Šlechtitelů 27, 73 71 Olomouc Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava 17. Listopadu 2172/15 Ostrava-Poruba 708 00 Czech Republic
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a Rostock D-18059 Germany
| | | |
Collapse
|
11
|
Akter M, Anbarasan P. (Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chem Asian J 2021; 16:1703-1724. [PMID: 33999506 DOI: 10.1002/asia.202100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Indexed: 12/22/2022]
Abstract
(Cyclopentadienone)iron tricarbonyl complexes are catalytically active, inexpensive, easily accessible and air-stable that are extensively studied as an active pre-catalyst in homogeneous catalysis. Its versatile catalytic activity arises exclusively due to the presence of a non-innocent ligand, which can trigger its unique redox properties effectively. These complexes have been employed widely in (transfer)hydrogenation (e. g., reduction of polar multiple bonds, Oppenauer-type oxidation of alcohols), C-C and C-N bond formation (e. g., reductive aminations, α-alkylation of ketones) and other synthetic transformations. In this review, we discuss the remarkable advancement of its various synthetic applications along with synthesis and mechanistic studies, until February 2021.
Collapse
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
12
|
Bettoni L, Joly N, Lohier J, Gaillard S, Poater A, Renaud J. Ruthenium‐Catalyzed Three‐Component Alkylation: A Tandem Approach to the Synthesis of Nonsymmetric
N,N‐
Dialkyl Acyl Hydrazides with Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Léo Bettoni
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Nicolas Joly
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐François Lohier
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Sylvain Gaillard
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) University of Girona c/ Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jean‐Luc Renaud
- Normandie Univ. LCMT, ENSICAEN, UNICAEN, CNRS 6 boulevard du Maréchal Juin 14000 Caen France
| |
Collapse
|
13
|
Qu R, Cheng Y, Yang S, Zhao C, Liu H, Huang X. Iron‐Catalyzed N‐Alkylation of Secondary Amines with Alcohols Using Borrowing Hydrogen Strategy. ChemistrySelect 2021. [DOI: 10.1002/slct.202100712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruxin Qu
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University Liutiao Road Changchun 130023 China
| | - Yaxuan Cheng
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University Liutiao Road Changchun 130023 China
| | - Siwei Yang
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University Liutiao Road Changchun 130023 China
| | - Chaoyu Zhao
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University Liutiao Road Changchun 130023 China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University, Liutiao Road Changchun 130023 China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry Jilin University, Liutiao Road Changchun 130023 China
| |
Collapse
|
14
|
Joly N, Bettoni L, Gaillard S, Poater A, Renaud JL. Phosphine-Free Ruthenium Complex-Catalyzed Synthesis of Mono- or Dialkylated Acyl Hydrazides via the Borrowing Hydrogen Strategy. J Org Chem 2021; 86:6813-6825. [PMID: 33878271 DOI: 10.1021/acs.joc.1c00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a diaminocyclopentadienone ruthenium tricarbonyl complex-catalyzed synthesis of mono- or dialkylated acyl hydrazide compounds using the borrowing hydrogen strategy in the presence of various substituted primary and secondary alcohols as alkylating reagents. Deuterium labeling experiments confirm that the alcohols were the hydride source in this cascade process. Density functional theory (DFT) calculations unveil the origin and the threshold between the mono- and dialkylation.
Collapse
Affiliation(s)
- Nicolas Joly
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France.,Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Léo Bettoni
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Sylvain Gaillard
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- LCMT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
15
|
Reed-Berendt B, Latham DE, Dambatta MB, Morrill LC. Borrowing Hydrogen for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:570-585. [PMID: 34056087 PMCID: PMC8155478 DOI: 10.1021/acscentsci.1c00125] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/03/2023]
Abstract
Borrowing hydrogen is a process that is used to diversify the synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol by removing hydrogen to form a reactive carbonyl compound. This intermediate can undergo a diverse range of subsequent transformations before the catalyst returns the "borrowed" hydrogen to liberate the product and regenerate the catalyst. In this way, alcohols may be used as alkylating agents whereby the sole byproduct of this one-pot reaction is water. In recent decades, significant advances have been made in this area, demonstrating many effective methods to access valuable products. This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances. By succinctly describing and conveying the versatility of borrowing hydrogen chemistry, we anticipate its uptake will increase across a wider scientific audience, expanding opportunities for further development.
Collapse
|
16
|
Takallou A, Mesgarsaravi N, Beigbaghlou SS, Sakhaee N, Halimehjani AZ. Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphine‐Free Earth‐Abundant Metal Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of Chemistry Kharazmi University 49 Mofateh St. Tehran 15719-14911 Iran
| | | | | | - Nader Sakhaee
- Roger Adams Lab, School of Chemical Sciences University of Illinois Urbana Champaign Illinois 61801 USA
| | | |
Collapse
|
17
|
Wu J, Darcel C. Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles. J Org Chem 2020; 86:1023-1036. [DOI: 10.1021/acs.joc.0c02505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajun Wu
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Christophe Darcel
- UnivRennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| |
Collapse
|
18
|
Chun S, Ahn J, Putta RR, Lee SB, Oh DC, Hong S. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. J Org Chem 2020; 85:15314-15324. [DOI: 10.1021/acs.joc.0c02145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Luo N, Zhong Y, Wen H, Luo R. Cyclometalated Iridium Complex-Catalyzed N-Alkylation of Amines with Alcohols via Borrowing Hydrogen in Aqueous Media. ACS OMEGA 2020; 5:27723-27732. [PMID: 33134736 PMCID: PMC7594325 DOI: 10.1021/acsomega.0c04192] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 05/06/2023]
Abstract
This paper develops a methodology for cyclometalated iridium complex-catalyzed N-alkylation of amines with alcohols via borrowing hydrogen in the aqueous phase. The cyclometalated iridium catalyst-mediated N-alkylation of amines with alcohols displays high activity (S/C up to 10,000 and yield up to 96%) and ratio of amine/imine (up to >99:1) in a broad range of substrates (up to 46 examples) using water as the green and eco-friendly solvent. Most importantly, this transformation is simple, efficient, and can be performed at a gram scale, showcasing its potential for industrially synthesizing N-alkylamine compounds.
Collapse
|
20
|
Kobayashi M, Itoh S, Yoshimura K, Tsukamoto Y, Obora Y. Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction. J Org Chem 2020; 85:11952-11958. [PMID: 32786619 DOI: 10.1021/acs.joc.0c01540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of a C2-extension of primary alcohols with ethanol as the C2 source and catalysis by [Cp*IrCl2]2 (where Cp* = pentamethylcyclopentadiene) is described. This new extension system was used for a range of benzylic alcohol substrates and for aliphatic alcohols with ethanol as an alkyl reagent to generate the corresponding C2-extended linear alcohols. Mechanistic studies of the reaction by means of intermediates and deuterium labeling experiments suggest the reaction is based on hydrogen autotransfer.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Satoshi Itoh
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Keisuke Yoshimura
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yuya Tsukamoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
21
|
Pignataro L, Gennari C. Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901925] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luca Pignataro
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19-20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi 19-20133 Milan Italy
| |
Collapse
|
22
|
Shaikh MA, Agalave SG, Ubale AS, Gnanaprakasam B. Ligand-Free Ru-Catalyzed Direct sp 3 C-H Alkylation of Fluorene Using Alcohols. J Org Chem 2020; 85:2277-2290. [PMID: 31905282 DOI: 10.1021/acs.joc.9b02913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sp3 C-H alkylation of 9H-fluorene using alcohol and a Ru catalyst via the borrowing hydrogen concept has been described. This reaction was catalyzed by the [Ru(p-cymene)Cl2]2 complex (3 mol %) and exhibited a broad reaction scope with different alcohols, allowing primary and secondary alcohols to be employed as nonhazardous and greener alkylating agents with the formation of environmentally benign water as a byproduct. A variety of 9H-fluorene underwent selective and exclusive mono-C9-alkylation with primary alcohols in good to excellent isolated yield (26 examples, 50-92% yield), whereas this reaction with secondary alcohols in the absence of any external oxidants furnished the tetrasubstituted alkene as the major product. Furthermore, a base-mediated C-H hydroxylation of the synthesized 9H-fluorene derivatives afforded 9H-hydroxy-functionalized quaternary fluorene derivatives in excellent yield.
Collapse
Affiliation(s)
- Moseen A Shaikh
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| | - Sandip G Agalave
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| | - Akash S Ubale
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| | - Boopathy Gnanaprakasam
- Department of Chemistry , Indian Institute of Science Education and Research , Pune 411008 , India
| |
Collapse
|
23
|
Latham DE, Polidano K, Williams JMJ, Morrill LC. One-Pot Conversion of Allylic Alcohols to α-Methyl Ketones via Iron-Catalyzed Isomerization-Methylation. Org Lett 2019; 21:7914-7918. [PMID: 31536370 PMCID: PMC7007281 DOI: 10.1021/acs.orglett.9b02900] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/28/2022]
Abstract
A one-pot iron-catalyzed conversion of allylic alcohols to α-methyl ketones has been developed. This isomerization-methylation strategy utilized a (cyclopentadienone)iron(0) carbonyl complex as precatalyst and methanol as the C1 source. A diverse range of allylic alcohols undergoes isomerization-methylation to form α-methyl ketones in good isolated yields (up to 84% isolated yield).
Collapse
Affiliation(s)
- Daniel E. Latham
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| | - Kurt Polidano
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| | | | - Louis C. Morrill
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Main Building,
Park Place, Cardiff, CF10 3AT, U.K.
| |
Collapse
|
24
|
Chen PK, Wong YF, Yang D, Pettus TRR. Nucleophilic Imines and Electrophilic o-Quinone Methides, a Three-Component Assembly of Assorted 3,4-Dihydro-2 H-1,3-benzoxazines. Org Lett 2019; 21:7746-7749. [PMID: 31532216 DOI: 10.1021/acs.orglett.9b02655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot method for joining three separate components leading to an assortment of N-substituted 3,4-dihydro-2H-1,3-benzoxazines is described. The method involves the addition of a Grignard reagent to an o-OBoc salicylaldehyde in the presence of an imine. With a variety of components, 15 examples are presented, including the diastereoselective incorporation of chiral imines.
Collapse
Affiliation(s)
- Peishan Kc Chen
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106-9510 , United States
| | - Yuk Fai Wong
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106-9510 , United States
| | - Derek Yang
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106-9510 , United States
| | - Thomas R R Pettus
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106-9510 , United States
| |
Collapse
|
25
|
Polidano K, Williams JMJ, Morrill LC. Iron-Catalyzed Borrowing Hydrogen β- C(sp 3)-Methylation of Alcohols. ACS Catal 2019; 9:8575-8580. [PMID: 32064149 PMCID: PMC7011770 DOI: 10.1021/acscatal.9b02461] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Herein we report the iron-catalyzed β-C(sp3)-methylation of primary alcohols using methanol as a C1 building block. This borrowing hydrogen approach employs a well-defined bench-stable (cyclopentadienone)iron(0) carbonyl complex as precatalyst (5 mol %) and enables a diverse selection of substituted 2-arylethanols to undergo β-C(sp3)-methylation in good isolated yields (24 examples, 65% average yield).
Collapse
Affiliation(s)
- Kurt Polidano
- Cardiff
Catalysis Institute, School of Chemistry,
Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | | | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry,
Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| |
Collapse
|
26
|
Dambatta MB, Polidano K, Northey AD, Williams JMJ, Morrill LC. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols. CHEMSUSCHEM 2019; 12:2345-2349. [PMID: 30958919 PMCID: PMC6619250 DOI: 10.1002/cssc.201900799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Indexed: 05/25/2023]
Abstract
A general and efficient iron-catalyzed C-alkylation of oxindoles has been developed. This borrowing hydrogen approach employing a (cyclopentadienone)iron carbonyl complex (2 mol %) exhibited a broad reaction scope, allowing benzylic and simple primary and secondary aliphatic alcohols to be employed as alkylating agents. A variety of oxindoles underwent selective mono-C3-alkylation in good-to-excellent isolated yields (28 examples, 50-92 % yield, 79 % average yield).
Collapse
Affiliation(s)
- Mubarak B Dambatta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Kurt Polidano
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alexander D Northey
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | | | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
27
|
Hofmann N, Hultzsch KC. Switching theN-Alkylation of Arylamines with Benzyl Alcohols to Imine Formation Enables the One-Pot Synthesis of Enantioenriched α-N-Alkylaminophosphonates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Natalie Hofmann
- Fakultät für Chemie; Institut für Chemische Katalyse; Universität Wien; Währinger Straße 38 1090 Wien Austria
| | - Kai C. Hultzsch
- Fakultät für Chemie; Institut für Chemische Katalyse; Universität Wien; Währinger Straße 38 1090 Wien Austria
| |
Collapse
|
28
|
Lator A, Gaillard QG, Mérel DS, Lohier JF, Gaillard S, Poater A, Renaud JL. Room-Temperature Chemoselective Reductive Alkylation of Amines Catalyzed by a Well-Defined Iron(II) Complex Using Hydrogen. J Org Chem 2019; 84:6813-6829. [DOI: 10.1021/acs.joc.9b00581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alexis Lator
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | | | - Delphine S. Mérel
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Jean-François Lohier
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC), University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France
| |
Collapse
|
29
|
Wei D, Netkaew C, Darcel C. Multi-Step Reactions Involving Iron-Catalysed Reduction and Hydrogen Borrowing Reactions. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duo Wei
- Univ Rennes; CNRS, ISCR, UMR 6226; 35000 Rennes France
| | | | | |
Collapse
|
30
|
Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Reed-Berendt BG, Polidano K, Morrill LC. Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Org Biomol Chem 2019; 17:1595-1607. [PMID: 30222171 DOI: 10.1039/c8ob01895b] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the recent advances (2013-present) in the use of earth-abundant first row transition metals in homogeneous borrowing hydrogen catalysis. The utility of catalysts based on Mn, Fe, Co, Ni and Cu to promote a diverse array of important C-C and C-N bond forming reactions is described, including discussion on reaction mechanisms, scope and limitations, and future challenges in this burgeoning area of sustainable catalysis.
Collapse
|
32
|
Qiu Y, Zhang Y, Jin L, Pan L, Du G, Ye D, Wang D. Immobilization of manganese dioxide nanoparticles on modified poly 2,4-dichlorostyrene microspheres: a highly efficient and recyclable catalyst for borrowing hydrogen reactions. Org Chem Front 2019. [DOI: 10.1039/c9qo00892f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modified poly 2,4-dichlorostyrene microspheres were designed and synthesized, and were proved to be an effective carrier to synthesize supported manganese dioxide nanoparticles.
Collapse
Affiliation(s)
- Ye Qiu
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
- Key Laboratory of Synthetic and Biological Colloids
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Lu Jin
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
| | - Le Pan
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
| | - Guangming Du
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
| | - Dongdong Ye
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Dawei Wang
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
- Key Laboratory of Synthetic and Biological Colloids
| |
Collapse
|
33
|
Benitez-Medina GE, García JJ. Hydrogenation and N-alkylation of anilines and imines via transfer hydrogenation with homogeneous nickel compounds. Dalton Trans 2019; 48:17579-17587. [DOI: 10.1039/c9dt04111g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nickel-catalyzed N-alkylation of a variety of arylamines via transfer hydrogenation in the absence of pressurized hydrogen and basic or acidic additives was achieved in a tandem reaction.
Collapse
Affiliation(s)
| | - Juventino J. García
- Facultad de Química
- Universidad Nacional Autónoma de México
- México City 04510
- Mexico
| |
Collapse
|
34
|
Waiba S, Barman MK, Maji B. Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones. J Org Chem 2018; 84:973-982. [DOI: 10.1021/acs.joc.8b02911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Milan K. Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
35
|
Irrgang T, Kempe R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chem Rev 2018; 119:2524-2549. [DOI: 10.1021/acs.chemrev.8b00306] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II − Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II − Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
36
|
Cettolin M, Bai X, Lübken D, Gatti M, Facchini SV, Piarulli U, Pignataro L, Gennari C. Improving C=N Bond Reductions with (Cyclopentadienone)iron Complexes: Scope and Limitations. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mattia Cettolin
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| | - Xishan Bai
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| | - Dennis Lübken
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| | - Marco Gatti
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| | - Sofia Vailati Facchini
- Università degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia Via Valleggio, 11 22100 Como Italy
| | - Umberto Piarulli
- Università degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia Via Valleggio, 11 22100 Como Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Via C. Golgi, 19 ‐ Università degli Studi di Milano 20133 Milan Italy
| |
Collapse
|
37
|
Hu X, Zhu H, Sang X, Wang D. Design and Synthesis of Zirconium-Containing Coordination Polymer Based on Unsymmetric Indolyl Dicarboxylic Acid and Catalytic Application on Borrowing Hydrogen Reaction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800875] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Haiyan Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering; China Three Gorges University; Yichang, Hubei 443002 People's Republic of China
| |
Collapse
|
38
|
Lator A, Gaillard S, Poater A, Renaud JL. Well-Defined Phosphine-Free Iron-Catalyzed N-Ethylation and N-Methylation of Amines with Ethanol and Methanol. Org Lett 2018; 20:5985-5990. [PMID: 30234993 DOI: 10.1021/acs.orglett.8b02080] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An iron(0) complex bearing a cyclopentadienone ligand catalyzed N-methylation and N-ethylation of aryl and aliphatic amines with methanol or ethanol in mild and basic conditions through a hydrogen autotransfer borrowing process is reported. A broad range of aromatic and aliphatic amines underwent mono- or dimethylation in high yields. DFT calculations suggest molecular hydrogen acts not only as a reducing agent but also as an additive to displace thermodynamic equilibria.
Collapse
Affiliation(s)
- Alexis Lator
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Sylvain Gaillard
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , c/Ma Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Jean-Luc Renaud
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| |
Collapse
|
39
|
Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen or Dehydrogenative Condensation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02530] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robin Fertig
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Torsten Irrgang
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Frederik Freitag
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Judith Zander
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II—Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
40
|
Polidano K, Allen BDW, Williams JMJ, Morrill LC. Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02158] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kurt Polidano
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Benjamin D. W. Allen
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | | | - Louis C. Morrill
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| |
Collapse
|