1
|
Saez J, Quero J, Rodriguez-Yoldi MJ, Gimeno MC, Cerrada E. Gold(I) Complexes Based on Nonsteroidal Anti-Inflammatory Derivatives as Multi-Target Drugs against Colon Cancer. Inorg Chem 2024; 63:19769-19782. [PMID: 39389034 PMCID: PMC11497205 DOI: 10.1021/acs.inorgchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Targeting inflammation and the molecules involved in the inflammatory process could be an effective cancer prevention and therapy strategy. Therefore, the use of anti-inflammatory strategies, such as NSAIDs and metal-based drugs, has become a promising approach for preventing and treating cancer by targeting multiple pathways involved in tumor progression. The present work describes new phosphane gold(I) complexes derived from nonsteroidal anti-inflammatory drugs as multitarget drugs against colon cancer. The antiproliferative effect of the most active complexes, [Au(L3)(JohnPhos)] (3b), [Au(L4)(CyJohnPhos)] (4a) and [Au(L4)(JohnPhos)] (4b) against colon cancer cells (Caco2-/TC7) seems to be mediated by the inhibition of the enzyme cyclooxygenase-1/2, modulation of reactive oxygen species levels by targeting thioredoxin reductase (TrxR) activity, and induction of apoptosis in cancer cells. Additionally, the three complexes exhibit high selectivity index values toward noncancerous cells. The research highlights the importance of maintaining cellular redox balance and the role of TrxR in cancer cell survival.
Collapse
Affiliation(s)
- Javier Saez
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Javier Quero
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - María Jesús Rodriguez-Yoldi
- Departamento
de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de
Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
- Instituto
de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento
de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea-ISQCH,
Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Peng W, Qin L, Wang T, Sun Y, Li Z, Lefer DJ, Luo C, Ye F, Wang B, Guo W, Zheng Y. A Highly Atom-Efficient Prodrug Approach to Generate Synergy between H 2S and Nonsteroidal Anti-inflammatory Drugs and Improve Safety. J Med Chem 2024; 67:17350-17362. [PMID: 39316761 DOI: 10.1021/acs.jmedchem.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Efforts to synergize hydrogen sulfide (H2S) with NSAIDs have faced challenges due to complex structural entities and independent release kinetics. This study presents a highly atom-efficient approach of using a thiocarboxylic acid (thioacid) as a novel H2S releasing precursor and successfully employs it to modify NSAIDs, which offers several critical advantages. First, thioacid-modified NSAID is active in inhibiting cyclooxygenase, sometimes with improved potency. Second, this prodrug approach avoids introducing extra structural moieties, allowing for the release of only the intended active principals. Third, the release of H2S and NSAID is concomitant, thus optimally synchronizing the concentration profiles of the two active principals. The design is based on our discovery that esterases can directly and efficiently hydrolyze thiocarboxylic acids, enabling controlled release H2S. This study demonstrates the proof of principle through synthesizing analogs, assesses release kinetics, enzyme inhibition, and pharmacological efficacy, and evaluates toxicity and gut microbiota regulation in animal models.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lixiao Qin
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tianci Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yangqian Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhen Li
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - David J Lefer
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, Illinois 60153, United States
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Cui Z, Huang B, Zheng J, Tian J, Zhang W. A TME-enlightened protein-binding photodynamic nanoinhibitor for highly effective oncology treatment. Proc Natl Acad Sci U S A 2024; 121:e2321545121. [PMID: 38713621 PMCID: PMC11098098 DOI: 10.1073/pnas.2321545121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.
Collapse
Affiliation(s)
- Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
5
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
7
|
Ņikitjuka A, Žalubovskis R. Asparagusic Acid - A Unique Approach toward Effective Cellular Uptake of Therapeutics: Application, Biological Targets, and Chemical Properties. ChemMedChem 2023; 18:e202300143. [PMID: 37366073 DOI: 10.1002/cmdc.202300143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.
Collapse
Affiliation(s)
- Anna Ņikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| |
Collapse
|
8
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
9
|
Felber JG, Kitowski A, Zeisel L, Maier MS, Heise C, Thorn-Seshold J, Thorn-Seshold O. Cyclic Dichalcogenides Extend the Reach of Bioreductive Prodrugs to Harness Thiol/Disulfide Oxidoreductases: Applications to seco-Duocarmycins Targeting the Thioredoxin System. ACS CENTRAL SCIENCE 2023; 9:763-776. [PMID: 37122469 PMCID: PMC10141580 DOI: 10.1021/acscentsci.2c01465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/03/2023]
Abstract
Small-molecule prodrug approaches that can activate cancer therapeutics selectively in tumors are urgently needed. Here, we developed the first antitumor prodrugs designed for activation by thiol-manifold oxidoreductases, targeting the thioredoxin (Trx) system. The Trx system is a critical cellular redox axis that is tightly linked to dysregulated redox/metabolic states in cancer, yet it cannot be addressed by current bioreductive prodrugs, which mainly cluster around oxidized nitrogen species. We instead harnessed Trx/TrxR-specific artificial dichalcogenides to gate the bioactivity of 10 "off-to-on" reduction-activated duocarmycin prodrugs. The prodrugs were tested for cell-free and cellular reductase-dependent activity in 177 cell lines, establishing broad trends for redox-based cellular bioactivity of the dichalcogenides. They were well tolerated in vivo in mice, indicating low systemic release of their duocarmycin cargo, and in vivo anti-tumor efficacy trials in mouse models of breast and pancreatic cancer gave promising indications of effective tumoral drug release, presumably by in situ bioreductive activation. This work therefore presents a chemically novel class of bioreductive prodrugs against a previously unaddressed reductase chemotype, validates its ability to access in vivo-compatible small-molecule prodrugs even of potently cumulative toxins, and so introduces carefully tuned dichalcogenides as a platform strategy for specific bioreduction-based release.
Collapse
|
10
|
Chang B, Xu Q, Guo H, Zhong M, Shen R, Zhao L, Zhao J, Ma T, Chu Y, Zhang J, Fang J. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J Med Chem 2023; 66:3250-3261. [PMID: 36855911 DOI: 10.1021/acs.jmedchem.2c01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.
Collapse
Affiliation(s)
- Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hairui Guo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 453100, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yajun Chu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
11
|
Xu J, Vlamis-Gardikas A, Fang J. Editorial: Small molecule inhibitors targeting mammalian selenoprotein thioredoxin reductases (TXNRDs): Interactions, mechanisms, and applications. Front Mol Biosci 2023; 10:1141772. [PMID: 36818046 PMCID: PMC9932965 DOI: 10.3389/fmolb.2023.1141772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) and Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China,*Correspondence: Jianguo Fang, ; Jianqiang Xu, ; Alexios Vlamis-Gardikas,
| | - Alexios Vlamis-Gardikas
- Department of Chemistry, University of Patras, Rion, Greece,*Correspondence: Jianguo Fang, ; Jianqiang Xu, ; Alexios Vlamis-Gardikas,
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China,*Correspondence: Jianguo Fang, ; Jianqiang Xu, ; Alexios Vlamis-Gardikas,
| |
Collapse
|
12
|
Wang R, Li Y, Gao J, Luan Y. WRQ-2, a gemcitabine prodrug, reverses gemcitabine resistance caused by hENT1 inhibition. Drug Discov Ther 2022; 16:286-292. [PMID: 36529509 DOI: 10.5582/ddt.2022.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gemcitabine is widely used in the clinic as a first-line antitumor agent. However, intrinsic and acquired resistance hinders its wide clinical application. In this study, a gemcitabine prodrug nominated as WRQ-2 was designed and synthesized by conjugating gemcitabine with the indole-3-methanol analogue OSU-A9 through a carbamate linkage. WRQ-2 exhibited high cytotoxicity against six cancer cell lines (HeLa, A549, MDA-MB-231, HuH-7, MGC-803, and HCT-116) with IC50 values in low micromolar range. WRQ-2 reversed the resistance of HeLa cells to gemcitabine caused by hENT1 inhibition. Compared to gemcitabine, WRQ-2 induced a higher degree of DNA damage and apoptosis in the presence of hENT1 inhibitor. Our study suggests that compound WRQ-2 is a potential gemcitabine prodrug and worth of further antitumor activity investigation.
Collapse
Affiliation(s)
- Ruquan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yongliang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Liu J, Xu Y, Lu H, Wang R, Xia Z, Zhao C, Huang D, Jiang F, Chen W. Nanoaggregates of Disulfide-Decorated TrxR Inhibitor Promote Cellular Uptake, Selective Targeting, and Antitumor Efficacy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13955-13962. [PMID: 36377412 DOI: 10.1021/acs.langmuir.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three self-assembled nanoaggregates (CPUL1-LA NAs, CPUL1-DA NAs, and CPUL1-AA NAs) were constructed through lipoic acid (LA), dithiodipropionic acid (DA), and adipic acid (AA) decorated TrxR inhibitor (CPUL1), respectively. Measurements of DLS, TEM, UV-vis, fluorescence, 1H NMR, ITC, and MTT assays verified disulfide-containing CPUL1-LA NAs and CPUL1-DA NAs spontaneously assembled carrier-free nanoparticles in aqueous solution, which possessed high drug contents, excellent stability, improved cytotoxicity against HUH7 hepatoma cells, and potential biosafety because of low cytotoxicity against L02 normal cells. In contrast, disulfide-free CPUL1-AA NAs happened to aggregate and precipitate after 48 h, which showed distinct instability in aqueous solution. Thus, disulfide units seemed to be crucial for constructing controllable and stable nanoaggregates. While measuring the reduction of nanoaggregates by TrxR/NADPH and GSH/GR/NADPH, cyclic disulfide of LA and linear disulfide of DA were verified to endow the nanoaggregates with targeting ability to respond specifically to TrxR over GSH. Furthermore, by tests of flow cytometry, fluorescence images, and CLSM, both CPUL1-LA NAs and CPUL1-DA NAs displayed a faster cellular uptake characteristic to be internalized by cancer cells and could generate more abundant ROS to induce cell apoptosis than that of free CPUL1, resulting in significantly improved antitumor efficacy against HUH7 cells in vitro.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Youqiao Xu
- Department of Infection Control, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| | - Haojie Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rong Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuolu Xia
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Wang X, Sun B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-Responsive COF-Based Thiol-Targeting Nanoinhibitor for Curing Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38483-38496. [PMID: 35989491 DOI: 10.1021/acsami.2c08845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pathogen infections impose severe challenges in clinical practice, especially for patients infected with antibiotic-resistant microbes. The thioredoxin (Trx) system in Gram-positive bacteria serves as an ideal antimicrobial target for novel medicine design due to the structural differences from corresponding system in mammals. However, a backup thiol-dependent antioxidant glutathione (GSH) system limits the effectiveness of drugs in many Gram-negative bacteria. Herein, we synthesize a thiol-targeting nanoinhibitor based on an enzyme-responsive covalent organic framework (COF) coloaded with silver nanoparticles (AgNPs) and ebselen (EBS) (Ag-TA-CON@EBS@PEG) to exert synergistic antibacterial effects. Since azoreductase can dissociate the enzyme-responsive COF, we adopt this strategy to achieve the accurate release of EBS and Ag+ at infection sites. Our research identifies that the functionalized nanoinhibitor shows excellent bactericidal performance for Gram-positive and Gram-negative bacteria in vitro and exhibits low toxicity to normal cells. Besides, the nanoinhibitor presents favorable biocompatibility, anti-inflammatory property, and effective wound healing ability in mice. This paper provides a promising clinical strategy for synergistic antibacterial therapy and enhanced wound healing properties via an optimized combination of the targeted nanomedicines with an intelligent drug conveying platform.
Collapse
Affiliation(s)
- Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenjia Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
15
|
Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli-Responsive Small-Molecule Metal-Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angew Chem Int Ed Engl 2022; 61:e202203500. [PMID: 35513877 DOI: 10.1002/anie.202203500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/25/2022]
Abstract
Selective activation of prodrugs is an important approach to reduce the side effects of disease treatment. We report a prodrug design concept for metal complexes, termed "metal-carrying prochelator", which can co-carry a metal ion and chelator within a single small-molecule compound and remain inert until it undergoes a specifically triggered intramolecular chelation to synthesize a bioactive metal complex in situ for targeted therapy. As a proof-of-concept, we designed a H2 O2 -responsive small-molecule prochelator, DPBD, based on the strong chelator diethyldithiocarbamate (DTC) and copper. DPBD can carry Cu2+ (DPBD-Cu) and respond to elevated H2 O2 levels in tumor cells by releasing DTC, which rapidly chelates Cu2+ from DPBD-Cu affording a DTC-copper complex with high cytotoxicity, realizing potent antitumor efficacy with low systemic toxicity. Thus, with its unique intramolecularly triggered activation mechanism, this concept based on a small-molecule metal-carrying prochelator can help in the prodrug design of metal complexes.
Collapse
Affiliation(s)
- Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli‐Responsive Small‐Molecule Metal‐Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zeqian Huang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yong Luo
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Tao Zhang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yaqing Ding
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Meixu Chen
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Jie Chen
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
17
|
Felber JG, Poczka L, Scholzen KC, Zeisel L, Maier MS, Busker S, Theisen U, Brandstädter C, Becker K, Arnér ESJ, Thorn-Seshold J, Thorn-Seshold O. Cyclic 5-membered disulfides are not selective substrates of thioredoxin reductase, but are opened nonspecifically. Nat Commun 2022; 13:1754. [PMID: 35365603 PMCID: PMC8975869 DOI: 10.1038/s41467-022-29136-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
The cyclic five-membered disulfide 1,2-dithiolane has been widely used in chemical biology and in redox probes. Contradictory reports have described it either as nonspecifically reduced in cells, or else as a highly specific substrate for thioredoxin reductase (TrxR). Here we show that 1,2-dithiolane probes, such as "TRFS" probes, are nonspecifically reduced by thiol reductants and redox-active proteins, and their cellular performance is barely affected by TrxR inhibition or knockout. Therefore, results of cellular imaging or inhibitor screening using 1,2-dithiolanes should not be interpreted as reflecting TrxR activity, and previous studies may need re-evaluation. To understand 1,2-dithiolanes' complex behaviour, probe localisation, environment-dependent fluorescence, reduction-independent ring-opening polymerisation, and thiol-dependent cellular uptake must all be considered; particular caution is needed when co-applying thiophilic inhibitors. We present a general approach controlling against assay misinterpretation with reducible probes, to ensure future TrxR-targeted designs are robustly evaluated for selectivity, and to better orient future research.
Collapse
Affiliation(s)
- Jan G Felber
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lena Poczka
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karoline C Scholzen
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Lukas Zeisel
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Martin S Maier
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sander Busker
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
- Pelago Bioscience AB, 171 48, Solna, Sweden
| | - Ulrike Theisen
- Zoological Institute, Cellular and Molecular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Christina Brandstädter
- Interdisciplinary Research Centre (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Centre (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elias S J Arnér
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
- Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
18
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
19
|
Xu Q, Zhang J. Novel strategies for targeting the thioredoxin system for cancer therapy. Expert Opin Drug Discov 2022; 17:437-442. [PMID: 35193453 DOI: 10.1080/17460441.2022.2045270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION : The thioredoxin system is increasingly recognized as an important executor for maintaining cell redox homeostasis and regulating multiple cell signaling pathways. Targeting this system for cancer treatment has therefore attracted much attention. AREAS COVERED : The authors focus on providing coverage and emphasizing the strategy of targeting the thioredoxin system to develop anticancer therapeutics in the past five years, especially from the perspective of discovering novel protein functions or new downstream regulatory pathways, and designing new therapeutic reagents. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION : The limited pharmacophore of inhibitors and the slow progress of clinical research partially restrict the development of anticancer drugs targeting the thioredoxin system, necessitating thus novel strategies to accelerate the system for treating cancer. Nevertheless, the synergistic targeting of thioredoxin system for cancer therapy is a promising strategy, particularly with regards to chemotherapy resistance and/or sensitization immunotherapy.
Collapse
Affiliation(s)
- Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Jia M, Wei L, Lu Y, Zhang R, Chen Q, Xia W, Liu Y, Li F, Zhou Y. A mitochondria targetable near-infrared fluorescence probe for glutathione visual biological detection. RSC Adv 2022; 12:2668-2674. [PMID: 35425335 PMCID: PMC8979032 DOI: 10.1039/d1ra08917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Glutathione (GSH), an abundant non-protein thiol, plays a crucial role in numerous biotic processes. Herein, a mitochondria-targeted near-infrared GSH probe (JGP) was synthesized, which displayed desired properties with high specificity and sensitivity, appreciable water solubility, and rapid response time. In the presence of GSH, nearly a 13-fold fluorescence emission growth appeared at 730 nm and the solvent color changed from blue to cyan. The sensing mechanism of JGP and GSH was confirmed by a high-resolution mass spectroscopy analysis. Moreover, good cell penetration enabled JGP to be successfully used for imaging biological samples such as HeLa cells, C. elegans, and especially rat brain slices. Imaging experiments showed that JGP could monitor the GSH concentration changes with a dose-dependent direct ratio in all the tested samples. The successful application of JGP in brain imaging indicates that JGP is a suitable GSH optical probe, which may have wide application value in fields of brain imaging. It also lays a theoretical and practical foundation for the further application of fluorescent probes in brain sciences.
Collapse
Affiliation(s)
- Mingxuan Jia
- College of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Liangnian Wei
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming Yunnan 650000 P. R. China
| | - Yuxun Lu
- College of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Ruqiu Zhang
- School of Basic Medical Sciences, Kunming Medical University Kunming 650500 P. R. China.,Department of Pathology and Pathophysiology, Medical College, Yunnan University Kunming 650091 P. R. China
| | - Qiuling Chen
- College of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wenjiang Xia
- School of Basic Medical Sciences, Kunming Medical University Kunming 650500 P. R. China.,Department of Pathology and Pathophysiology, Medical College, Yunnan University Kunming 650091 P. R. China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming Yunnan 650000 P. R. China
| | - Fan Li
- Department of Pathology and Pathophysiology, Medical College, Yunnan University Kunming 650091 P. R. China
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
21
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
22
|
Sheng H, Chen Z, Li X, Su J, Song Q. Construction and transformations of 2,2-difluoro-2,3-dihydrofurans from enaminones and diflurocarbene. Org Chem Front 2022. [DOI: 10.1039/d2qo00468b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient construction of 2-difluoro-2,3-dihydrofurans was reported, which features metal-free, additive-free, broad functional group tolerance and readily accessible starting materials. It is worth mentioning that this type of...
Collapse
|
23
|
Zhao J, Wang Z, Zhong M, Xu Q, Li X, Chang B, Fang J. Integration of a Diselenide Unit Generates Fluorogenic Camptothecin Prodrugs with Improved Cytotoxicity to Cancer Cells. J Med Chem 2021; 64:17979-17991. [PMID: 34852457 DOI: 10.1021/acs.jmedchem.1c01362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A diselenide/disulfide unit was introduced into camptothecin (CPT), and two selenoprodrugs (e.g., CPT-Se3 and CPT-Se4) were identified to show improved potency in killing cancer cells and inhibiting tumor growth in vivo. Interestingly, the intrinsic fluorescence of CPT was severely quenched by the diselenide bond. Both the selenoprodrugs were activated by glutathione with a nearly complete recovery of CPT's fluorescence. The activation of prodrugs was accompanied by the production of selenol intermediates, which catalyzed the constant conversion of glutathione and oxygen to oxidized glutathione and superoxides. The diselenide unit is widely employed in constructing thiol-responsive materials. However, the selenol intermediates were largely ignored in the activation process prior to this study. Our work verified that integration of the diselenide unit may further enhance the parent drug's efficacy. Also, the discovery of the fluorescence quenching property of the diselenide/disulfide bond further shed light on constructing novel theranostic agents.
Collapse
Affiliation(s)
- Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Duan D, Wang Y, Jin X, Li M, Wang L, Yan Y, Xiao J, Song P, Wang X. Natural diterpenoid eriocalyxin B covalently modifies glutathione and selectively inhibits thioredoxin reductase inducing potent oxidative stress-mediated apoptosis in colorectal carcinoma RKO cells. Free Radic Biol Med 2021; 177:15-23. [PMID: 34656698 DOI: 10.1016/j.freeradbiomed.2021.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests the significant contribution of high levels of thioredoxin reductase (TrxR) in various stages of tumorigenesis and resistance to tumor chemotherapy. Thus, inhibition of TrxR with small molecules is an attractive strategy for cancer therapy. Eriocalyxin B (EriB), a naturally occurring diterpenoid extracted from Isodon eriocalyx, has reflected potential anticancer activities through numerous pathways. Here, we describe that EriB covalently modifies GSH and selectively inhibits TrxR activity by targeting the Sec residue of the enzyme. Pharmacological inhibition of TrxR by EriB results in elevated ROS levels, reduced total GSH and thiols content, which ultimately induced potent RKO cell apoptosis mediated by oxidative stress. Importantly, EriB indicates potent synthetic lethality with GSH inhibitors, BSO, in RKO cells. In summary, our results highlight that targeting TrxR by EriB explores a novel mechanism for the biological action of EriB. This opened up a new therapeutic indication for using EriB to combat cancers.
Collapse
Affiliation(s)
- Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Yanru Wang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Xiaojie Jin
- School of Pharmacy and Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Mi Li
- School of Pharmacy and Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Yunyun Yan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Peng Song
- Affiliated Hospital of Gansu University of Chinese Medicine and Key Laboratory of Prevention and Treatment for Chronic Diseases By TCM, Gansu Province, Lanzhou, 730000, China.
| | - Xiaoling Wang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
25
|
Zhang J, Zheng ZQ, Xu Q, Li Y, Gao K, Fang J. Onopordopicrin from the new genus Shangwua as a novel thioredoxin reductase inhibitor to induce oxidative stress-mediated tumor cell apoptosis. J Enzyme Inhib Med Chem 2021; 36:790-801. [PMID: 33733960 PMCID: PMC7993383 DOI: 10.1080/14756366.2021.1899169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Isolation and identification of natural products from plants is an essential approach for discovering drug candidates. Herein we report the characterization of three sesquiterpene lactones from a new genus Shangwua, e.g. onopordopicrin (ONP), C2, and C3, and evaluation of their pharmacological functions in interfering cellular redox signaling. Compared to C2 and C3, ONP shows the most potency in killing cancer cells. Further experiments demonstrate that ONP robustly inhibits thioredoxin reductase (TrxR), which leads to perturbation of cellular redox homeostasis with the favor of oxidative stress. Knockdown of the TrxR sensitizes cells to the ONP treatment while overexpression of the enzyme reduces the potency of ONP, underpinning the correlation of TrxR inhibition to the cytotoxicity of ONP. The discovery of ONP expands the library of the natural TrxR inhibitors, and the disclosure of the action mechanism of ONP provides a foundation for the further development of ONP as an anticancer agent.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Zai-Qin Zheng
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kun Gao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Ferhati X, Salas-Cubero M, Garrido P, García-Sanmartín J, Guerreiro A, Avenoza A, Busto JH, Peregrina JM, Martínez A, Jiménez-Moreno E, Bernardes GJL, Corzana F. Bioorthogonal Self-Immolative Linker Based on Grob Fragmentation. Org Lett 2021; 23:8580-8584. [PMID: 34694118 PMCID: PMC8576835 DOI: 10.1021/acs.orglett.1c03299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
A self-immolative
bioorthogonal conditionally cleavable linker
based on Grob fragmentation is described. It is derived from 1,3-aminocyclohexanols
and allows the release of sulfonate-containing compounds in aqueous
media. Modulation of the amine pKa promotes
fragmentation even at slightly acidic pH, a common feature of several
tumor environments. The Grob fragmentation can also occur under physiological
conditions in living cells, highlighting the potential bioorthogonal
applicability of this reaction.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Marina Salas-Cubero
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina de Universidad de Lisboa, 1649-028 Lisboa, Portugal
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular Joao Lobo Antunes, Faculdade de Medicina de Universidad de Lisboa, 1649-028 Lisboa, Portugal.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
27
|
Ren L, Nie J, Wei J, Li Y, Yin J, Yang X, Chen G. RGD-targeted redox responsive nano micelle: co-loading docetaxel and indocyanine green to treat the tumor. Drug Deliv 2021; 28:2024-2032. [PMID: 34569890 PMCID: PMC8477929 DOI: 10.1080/10717544.2021.1977425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer, also known as a malignant tumor, has developed into a type of disease with the highest fatality rate, seriously threatening the lives and health of people. Chemotherapy is one of the most important methods for the treatment of cancer. However, chemotherapy drugs have some problems, such as low solubility and lack of targeting, which severely limit their clinical applications. To solve these problems, we designed a block copolymer that has a disulfide bond response. The polymer uses RGD peptide (arginine-glycine-aspartic acid) as the active targeting group, PEG (polyethylene glycol) as the hydrophilic end, and PCL (polycaprolactone) as the hydrophobic end. Then we utilized the amphiphilic polymer as a carrier to simultaneously deliver DOC (docetaxel) and ICG (indocyanine green), to realize the combined application of chemotherapy and photothermal therapy. The antitumor efficacy in vivo and histology analysis showed that the DOC/ICG-loaded micelle exhibited higher antitumor activity. The drug delivery system improved the solubility of DOC and the stability of ICG, realized NIR-guided photothermal therapy, and achieved an ideal therapeutic effect.
Collapse
Affiliation(s)
- Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, China.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Junfang Nie
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Jie Wei
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Yaning Li
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Jun Yin
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Xiaolong Yang
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Guoguang Chen
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| |
Collapse
|
28
|
Zhang J, Xu Q, Yang HY, Yang M, Fang J, Gao K. Inhibition of Thioredoxin Reductase by Santamarine Conferring Anticancer Effect in HeLa Cells. Front Mol Biosci 2021; 8:710676. [PMID: 34485384 PMCID: PMC8416462 DOI: 10.3389/fmolb.2021.710676] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Natural products frequently have unique physiological activities and new action mechanisms due to their structural diversity and novelty, and are an important source for innovative drugs and lead compounds. We present herein that natural product santamarine targeted thioredoxin reductase (TrxR) to weaken its antioxidative function in cells, accompanied by accumulation of high levels of reactive oxygen species (ROS), and finally induced a new mechanism of tumor cell oxidative stress-mediated apoptosis. TrxR knockdown or overexpression cell lines were employed to further evaluate the cytotoxicity of santamarine regulated by TrxR, demonstrated that TrxR played a key role in the physiological effect of santamarine on cells. Santamarine targeting TrxR reveals its previously unrecognized mechanism of antitumor and provides a basis for the further development of santamarine as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hong-Ying Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Minghao Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kun Gao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
30
|
Felber JG, Zeisel L, Poczka L, Scholzen K, Busker S, Maier MS, Theisen U, Brandstädter C, Becker K, Arnér ESJ, Thorn-Seshold J, Thorn-Seshold O. Selective, Modular Probes for Thioredoxins Enabled by Rational Tuning of a Unique Disulfide Structure Motif. J Am Chem Soc 2021; 143:8791-8803. [PMID: 34061528 DOI: 10.1021/jacs.1c03234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specialized cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to μM concentrations), they must also be able to resist non-specific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will enable redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.
Collapse
Affiliation(s)
- Jan G Felber
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lukas Zeisel
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lena Poczka
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Karoline Scholzen
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden
| | - Sander Busker
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden
| | - Martin S Maier
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Ulrike Theisen
- Institute of Pharmacology and Toxicology, Medical Center, University of Rostock, Schillingallee 70, 18057 Rostock, Germany
| | - Christina Brandstädter
- Interdisciplinary Research Centre (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Centre (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Elias S J Arnér
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 17177 Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, 1122 Budapest, Hungary
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
31
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
32
|
Zhang J, Duan D, Osama A, Fang J. Natural Molecules Targeting Thioredoxin System and Their Therapeutic Potential. Antioxid Redox Signal 2021; 34:1083-1107. [PMID: 33115246 DOI: 10.1089/ars.2020.8213] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Thioredoxin (Trx) and thioredoxin reductase are two core members of the Trx system. The system bridges the gap between the universal reducing equivalent NADPH and various biological molecules and plays an essential role in maintaining cellular redox homeostasis and regulating multiple cellular redox signaling pathways. Recent Advance: In recent years, the Trx system has been well documented as an important regulator of many diseases, especially tumorigenesis. Thus, the development of potential therapeutic molecules targeting the system is of great significance for disease treatment. Critical Issues: We herein first discuss the physiological functions of the Trx system and the role that the Trx system plays in various diseases. Then, we focus on the introduction of natural small molecules with potential therapeutic applications, especially the anticancer activity, and review their mechanisms of pharmacological actions via interfering with the Trx system. Finally, we further discuss several natural molecules that harbor therapeutic potential and have entered different clinical trials. Future Directions: Further studies on the functions of the Trx system in multiple diseases will not only improve our understanding of the pathogenesis of many human disorders but also help develop novel therapeutic strategies against these diseases. Antioxid. Redox Signal. 34, 1083-1107.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| |
Collapse
|
33
|
Chen J, Li Y, Feng X, She M, Yao W, Leng X, Liu P, Zhang S, Li J. An ICT-based fluorescent probe guided by theoretical calculation for selectively mapping endogenous GSH in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119041. [PMID: 33080512 DOI: 10.1016/j.saa.2020.119041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Glutathione (GSH) is one of the most essential bio-thiols to maintain the redox balance of organisms which is strongly associated with many physiological processes. Detecting the concentration and mapping the distribution of GSH in the living system is significant to study many related diseases. In this work, we have successfully constructed an ICT-based model to guide the design and synthesis of GSH specific fluorescent probe CF1. A serials spectroscopy test demonstrated that the response of CF1 towards GSH owned large stokes shift (~167 nm) and an excellent linear relationship (0-120 μM, R2 = 0.9961). Furthermore, CF1 was successfully applied to image endogenous GSH in different cell lines with high sensitivity. This work is instructive for the oriented synthesis of ICT-based functional fluorescent probe and the further visualization of intracellular targets in the living system.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Yiwei Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Xukai Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Wenxin Yao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Xin Leng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi province 710127, PR China.
| |
Collapse
|
34
|
Xu J, Fang J. How can we improve the design of small molecules to target thioredoxin reductase for treating cancer? Expert Opin Drug Discov 2020; 16:331-333. [PMID: 33307863 DOI: 10.1080/17460441.2021.1854220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) and Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Cheng Y, Pham AT, Kato T, Lim B, Moreau D, López-Andarias J, Zong L, Sakai N, Matile S. Inhibitors of thiol-mediated uptake. Chem Sci 2020; 12:626-631. [PMID: 34163793 PMCID: PMC8179002 DOI: 10.1039/d0sc05447j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellman's reagent has caused substantial confusion and concern as a probe for thiol-mediated uptake because it is the only established inhibitor available but works neither efficiently nor reliably. Here we use fluorescent cyclic oligochalcogenides that enter cells by thiol-mediated uptake to systematically screen for more potent inhibitors, including epidithiodiketopiperazines, benzopolysulfanes, disulfide-bridged γ-turned peptides, heteroaromatic sulfones and cyclic thiosulfonates, thiosulfinates and disulfides. With nanomolar activity, the best inhibitors identified are more than 5000 times better than Ellman's reagent. Different activities found with different reporters reveal thiol-mediated uptake as a complex multitarget process. Preliminary results on the inhibition of the cellular uptake of pseudo-lentivectors expressing SARS-CoV-2 spike protein do not exclude potential of efficient inhibitors of thiol-mediated uptake for the development of new antivirals. Thiol-reactive inhibitors for the cellular entry of cyclic oligochalcogenide (COC) transporters and SARS-CoV-2 spike pseudo-lentivirus are reported.![]()
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland http://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
36
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Mafireyi TJ, Laws M, Bassett JW, Cassidy PB, Escobedo JO, Strongin RM. A Diselenide Turn‐On Fluorescent Probe for the Detection of Thioredoxin Reductase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tendai J. Mafireyi
- Department of Chemistry Portland State University 1719 SW 10th Avenue Portland OR 97201 USA
| | - Madeleine Laws
- Department of Dermatology Oregon Health & Science University Portland OR 97201 USA
| | - John W. Bassett
- Department of Dermatology Oregon Health & Science University Portland OR 97201 USA
| | - Pamela B. Cassidy
- Department of Dermatology Oregon Health & Science University Portland OR 97201 USA
| | - Jorge O. Escobedo
- Department of Chemistry Portland State University 1719 SW 10th Avenue Portland OR 97201 USA
| | - Robert M. Strongin
- Department of Chemistry Portland State University 1719 SW 10th Avenue Portland OR 97201 USA
| |
Collapse
|
38
|
Mafireyi TJ, Laws M, Bassett JW, Cassidy PB, Escobedo JO, Strongin RM. A Diselenide Turn-On Fluorescent Probe for the Detection of Thioredoxin Reductase. Angew Chem Int Ed Engl 2020; 59:15147-15151. [PMID: 32449244 DOI: 10.1002/anie.202004094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Indexed: 12/21/2022]
Abstract
We report the first diselenide-based probe for the selective detection of thioredoxin reductase (TrxR), an enzyme commonly overexpressed in melanomas. The probe design involves conjugation of a seminaphthorhodafluor dye with a diselenide moiety. TrxR reduces the diselenide bond, triggering a fluorescence turn-on response of the probe. Kinetic studies reveal favorable binding of the probe with TrxR with a Michaelis-Menten constant (Km ) of 15.89 μm. Computational docking simulations predict a greater binding affinity to the TrxR active site in comparison to its disulfide analogue. In vitro imaging studies further confirmed the diselenide probe exhibited improved signaling of TrxR activity compared to the disulfide analogue.
Collapse
Affiliation(s)
- Tendai J Mafireyi
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| | - Madeleine Laws
- Department of Dermatology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - John W Bassett
- Department of Dermatology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Jorge O Escobedo
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, OR, 97201, USA
| |
Collapse
|
39
|
Ghareeb H, Metanis N. The Thioredoxin System: A Promising Target for Cancer Drug Development. Chemistry 2020; 26:10175-10184. [PMID: 32097513 DOI: 10.1002/chem.201905792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
The thioredoxin system is highly conserved system found in all living cells and comprises NADPH, thioredoxin, and thioredoxin reductase. This system plays a critical role in preserving a reduced intracellular environment, and its involvement in regulating a wide range of cellular functions makes it especially vital to cellular homeostasis. Its critical role is not limited to healthy cells, it is also involved in cancer development, and is overexpressed in many cancers. This makes the thioredoxin system a promising target for cancer drug development. As such, over the last decade, many inhibitors have been developed that target the thioredoxin system, most of which are small molecules targeting the thioredoxin reductase C-terminal redox center. A few inhibitors of thioredoxin have also been developed. We believe that more efforts should be invested in developing protein/peptide-based inhibitors against both thioredoxin reductase and/or thioredoxin.
Collapse
Affiliation(s)
- Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
40
|
Yao J, Duan D, Song ZL, Zhang J, Fang J. Sanguinarine as a new chemical entity of thioredoxin reductase inhibitor to elicit oxidative stress and promote tumor cell apoptosis. Free Radic Biol Med 2020; 152:659-667. [PMID: 31931095 DOI: 10.1016/j.freeradbiomed.2020.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The alteration of redox homeostasis is a hallmark of cancer cells. As a critical player in regulating cellular redox signaling, thioredoxin reductase (TrxR) enzymes are increasingly recognized as attractive targets for anticancer drug development. We reported herein the natural product sanguinarine (SAN) as a potent inhibitor of TrxR with a new chemical scaffold. Inhibition of TrxR leads to accumulation of the oxidized thioredoxin, elicits oxidative stress, and finally promotes apoptosis of cancer cells. Further synthesis of different model compounds of SAN demonstrated that the phenanthridinium unit is responsible for the TrxR inhibition. The core structure of SAN, e.g., the phenanthridinium moiety, is different from those of known TrxR inhibitors, and thus SAN is a new chemical entity of TrxR inhibitors and may serve a lead for further development. In addition, as the phenanthridinium scaffold is widely present in natural products, the disclosure of TrxR inhibition by such unit sheds light in understanding the pharmacological actions of these molecules.
Collapse
Affiliation(s)
- Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
41
|
Bian M, Sun Y, Liu Y, Xu Z, Fan R, Liu Z, Liu W. A Gold(I) Complex Containing an Oleanolic Acid Derivative as a Potential Anti‐Ovarian‐Cancer Agent by Inhibiting TrxR and Activating ROS‐Mediated ERS. Chemistry 2020; 26:7092-7108. [DOI: 10.1002/chem.202000045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Mianli Bian
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ying Sun
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Yuanhao Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Zhongren Xu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Rong Fan
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Ziwen Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Wukun Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
42
|
Yin HQ, Cao PP, Wang XY, Li YH, Yin XB. Computed Tomography Imaging-Guided Tandem Catalysis-Enhanced Photodynamic Therapy with Gold Nanoparticle Functional Covalent Organic Polymers. ACS APPLIED BIO MATERIALS 2020; 3:2534-2542. [DOI: 10.1021/acsabm.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hua-Qing Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Pei-Pei Cao
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Xin-Yao Wang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
43
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
44
|
Li X, Hou Y, Zhao J, Li J, Wang S, Fang J. Combination of chemotherapy and oxidative stress to enhance cancer cell apoptosis. Chem Sci 2020; 11:3215-3222. [PMID: 34122827 PMCID: PMC8157308 DOI: 10.1039/c9sc05997k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer cells are vulnerable to reactive oxygen species (ROS) due to their abnormal redox environment. Accordingly, combination of chemotherapy and oxidative stress has gained increasing interest for the treatment of cancer. We report a novel seleno-prodrug of gemcitabine (Gem), Se-Gem, and evaluated its activation and biological effects in cancer cells. Se-Gem was prepared by introducing a 1,2-diselenolane (a five-membered cyclic diselenide) moiety into the parent drug Gem via a carbamate linker. Se-Gem is preferably activated by glutathione (GSH) and displays a remarkably higher potency than Gem (up to a 6-fold increase) to a panel of cancer cell lines. The activation of Se-Gem by GSH releases Gem and a seleno-intermediate nearly quantitatively. Unlike the most ignored side products in prodrug activation, the seleno-intermediate further catalyzes a conversion of GSH and oxygen to GSSG (oxidized GSH) and ROS via redox cycling reactions. Thus Se-Gem may be considered as a suicide agent to deplete GSH and works by a combination of chemotherapy and oxidative stress. This is the first case that employs a cyclic diselenide in prodrug design, and the success of Se-Gem as well as its well-defined action mechanism demonstrates that the 1,2-diselenolane moiety may serve as a general scaffold to advance constructing novel therapeutic molecules with improved potency via a combination of chemotherapy and oxidative stress.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Song Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
45
|
Silvestri I, Lyu H, Fata F, Banta PR, Mattei B, Ippoliti R, Bellelli A, Pitari G, Ardini M, Petukhova V, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. Ectopic suicide inhibition of thioredoxin glutathione reductase. Free Radic Biol Med 2020; 147:200-211. [PMID: 31870799 PMCID: PMC7583042 DOI: 10.1016/j.freeradbiomed.2019.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Selective suicide inhibitors represent a seductively attractive approach for inactivation of therapeutically relevant enzymes since they are generally devoid of off-target toxicity in vivo. While most suicide inhibitors are converted to reactive species at enzyme active sites, theoretically bioactivation can also occur in ectopic (secondary) sites that have no known function. Here, we report an example of such an "ectopic suicide inhibition", an unprecedented bioactivation mechanism of a suicide inhibitor carried out by a non-catalytic site of thioredoxin glutathione reductase (TGR). TGR is a promising drug target to treat schistosomiasis, a devastating human parasitic disease. Utilizing hits selected from a high throughput screening campaign, time-resolved X-ray crystallography, molecular dynamics, mass spectrometry, molecular modeling, protein mutagenesis and functional studies, we find that 2-naphtholmethylamino derivatives bound to this novel ectopic site of Schistosoma mansoni (Sm)TGR are transformed to covalent modifiers and react with its mobile selenocysteine-containing C-terminal arm. In particular, one 2-naphtholmethylamino compound is able to specifically induce the pro-oxidant activity in the inhibited enzyme. Since some 2-naphtholmethylamino analogues show worm killing activity and the ectopic site is not conserved in human orthologues, a general approach to development of novel and selective anti-parasitic therapeutics against schistosoma is proposed.
Collapse
Affiliation(s)
- Ilaria Silvestri
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Haining Lyu
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Francesca Fata
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Paul R Banta
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Benedetta Mattei
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Rodolfo Ippoliti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Andrea Bellelli
- Dept. of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Giuseppina Pitari
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Matteo Ardini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Valentina Petukhova
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Gregory R J Thatcher
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Pavel A Petukhov
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - David L Williams
- Dept. of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Italy.
| |
Collapse
|
46
|
Laurent Q, Berthet M, Cheng Y, Sakai N, Barluenga S, Winssinger N, Matile S. Probing for Thiol-Mediated Uptake into Bacteria. Chembiochem 2020; 21:69-73. [PMID: 31603284 DOI: 10.1002/cbic.201900378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 01/02/2023]
Abstract
Cellular uptake mediated by cyclic oligochalcogenides (COCs) is emerging as a conceptually innovative method to penetrate mammalian cells. Their mode of action is based on dynamic covalent oligochalcogenide exchange with cellular thiols. To test thiol-mediated uptake in bacteria, five antibiotics have been equipped with up to three different COCs: One diselenolane and two dithiolanes. We found that the COCs do not activate antibiotics in Gram-negative bacteria. In Gram-positive bacteria, the COCs inactivate antibiotics that act in the cytoplasm and reduce the activity of antibiotics that act on the cell surface. These results indicate that thiol-mediated uptake operates in neither of the membranes of bacteria. COCs are likely to exchange with thiols on the inner, maybe also on the outer membrane, but do not move on. Concerning mammalian cells, the absence of a COC-mediated uptake into bacteria observed in this study disfavors trivial mechanisms, such as passive diffusion, and supports the existence of more sophisticated, so far poorly understood uptake pathways.
Collapse
Affiliation(s)
- Quentin Laurent
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Mathéo Berthet
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Yangyang Cheng
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Sofia Barluenga
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
47
|
Zhang B, Zhang H, Zhong M, Wang S, Xu Q, Cho DH, Qiu H. A novel off-on fluorescent probe for specific detection and imaging of cysteine in live cells and in vivo. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Zhao J, Qu Y, Gao H, Zhong M, Li X, Zhang F, Chen Y, Gan L, Hu G, Zhang H, Zhang S, Fang J. Loss of thioredoxin reductase function in a mouse stroke model disclosed by a two-photon fluorescent probe. Chem Commun (Camb) 2020; 56:14075-14078. [DOI: 10.1039/d0cc05900e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first two-photon fluorescent probe (TP-TRFS) is reported, and it was successfully used in vivo.
Collapse
|
49
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Domračeva I, Žalubovskis R, Senćanski M, Glišić S, Sharoyko V, Tennikova T, Dar'in D, Pešić M, Krasavin M. Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: Identification of DVD-445 as a new lead compound for anticancer therapy. Eur J Med Chem 2019; 181:111580. [PMID: 31400708 DOI: 10.1016/j.ejmech.2019.111580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
A series of peptidomimetic compounds incorporating an electrophilic moiety was synthesized using the Ugi reaction. These compounds (termed the Ugi Michael acceptors or UMAs) were designed to target the selenocysteine catalytic residue of thioredoxin reductase 1 (TrxR1), a promising cancer target. The compounds were assessed for their potential to inhibit TrxR1 using human neuroblastoma (SH-SY5Y) cell lysate. Based on this initial screening, six compounds were selected for testing against recombinant rat TrxR1 and in the insulin assay to reveal low-micromolar to submicromolar potency of these inhibitors. The same frontrunner compounds were evaluated for their ability to exert antiproliferative activity and induce cell death and this activity was compared to the UMA effects on the levels of reactive oxygen and nitrogen species (RONS). Collectively, the UMA compounds class presented itself as a rich source of leads for TrxR1 inhibitor discovery for anticancer application. Compound 7 (DVD-445) was nominated a lead for further optimization.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Ilona Domračeva
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Milan Senćanski
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Sanja Glišić
- Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
50
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019; 58:9522-9526. [PMID: 31168906 PMCID: PMC6618005 DOI: 10.1002/anie.201905003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cyclic oligochalcogenides (COCs) are emerging as promising systems to penetrate cells. Clearly better than and different to the reported diselenolanes and epidithiodiketopiperazines, we introduce the benzopolysulfanes (BPS), which show efficient delivery, insensitivity to inhibitors of endocytosis, and compatibility with substrates as large as proteins. This high activity coincides with high reactivity, selectively toward thiols, exceeding exchange rates of disulfides under tension. The result is a dynamic-covalent network of extreme sulfur species, including cyclic oligomers, from dimers to heptamers, with up to nineteen sulfurs in the ring. Selection from this unfolding adaptive network then yields the reactivities and selectivities needed to access new uptake pathways. Contrary to other COCs, BPS show high retention on thiol affinity columns. The identification of new modes of cell penetration is important because they promise new solutions to challenges in delivery and beyond.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: School of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: SyMMES, UMR 5819CEA38054GrenobleFrance
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of BaselBaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|