1
|
Shao G, Huang X, Shen X, Li C, Thomas A. Metal-Organic Framework and Covalent-Organic Framework-Based Aerogels: Synthesis, Functionality, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409290. [PMID: 39467257 DOI: 10.1002/advs.202409290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs)-based aerogels are garnering significant attention owing to their unique chemical and structural properties. These materials harmoniously combine the advantages of MOFs and COFs-such as high surface area, customizable porosity, and varied chemical functionality-with the lightweight and structured porosity characteristic of aerogels. This combination opens up new avenues for advanced applications in fields where material efficiency and enhanced functionality are critical. This review provides a comparative overview of the synthetic strategies utilized to produce pristine MOF/COF aerogels as well as MOF/COF-based hybrid aerogels, which are functionalized with molecular precursors and nanoscale materials. The versatility of these aerogels positions them as promising candidates for addressing complex challenges in environmental remediation, energy storage and conversion, sustainable water-energy technologies, and chemical separations. Furthermore, this study discusses the current challenges and future prospects related to the synthesis techniques and applications of MOF/COF aerogels.
Collapse
Affiliation(s)
- Gaofeng Shao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaogu Huang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices and Interface Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310024, China
| | - Arne Thomas
- Institute for Chemistry, Division of Functional Materials, Technische Universität Berlin, 10623, Berlin, Germany
| |
Collapse
|
2
|
Ma S, Liu X, Chen T, Wang Y, Wang M, Jiang F, Zhou X, Gu X. A Sustainable and Cost-Effective Nitrogen-Doped Three-Dimensional Porous Carbon for High-Performance Lithium-Sulfur Batteries. CHEMSUSCHEM 2024:e202400576. [PMID: 38823005 DOI: 10.1002/cssc.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Affordable clean energy is one of the major sustainable development goals that can transform our world. At present, researchers are working to develop cheap electrode materials to develop energy storage devices, the Lithium-sulfur (Li-S) battery is considered a promising energy storage device owing to its excellent theoretical specific capacity and energy density. Herein, utilizing the ramie degumming waste liquid as raw materials, after freeze-drying and high-temperature calcination, a sustainable and cost-effective three-dimensional (3D) porous nitrogen-doped ramie carbon (N-RC) was synthesized. The N-RC calcined at 800 °C (N-RC-800) shows a superior high specific surface area of 1491.85 m2 ⋅ g-1 and a notable high pore volume of 0.90 cm3 ⋅ g-1. When employed as a sulfur host, the S@N-RC-800 cathode illustrates excellent initial discharge capacity (1120.6 mAh ⋅ g-1) and maintains a reversible capacity of 625.4 mAh ⋅ g-1 after 500 cycles at 1 C. Simultaneously, the S@N-RC-800 cathode also shows excellent coulombic efficiency and ideal rate performance. Such exceptional electrochemical performance of S@N-RC-800 can be primarily attributable to N-RC's high specific surface area, high porosity, and abundant polar functional groups. This green and low-cost synthesis strategy offers a new avenue for harnessing the potential of waste biomass in the context of clean energy storage.
Collapse
Affiliation(s)
- Shuang Ma
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067
| | - Xuecheng Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067
| | - Tiezhu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yan Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067
| | | | | | - Xia Zhou
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Xingxing Gu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067
| |
Collapse
|
3
|
Chang X, Wu F, Cheng X, Zhang H, He L, Li W, Yin X, Yu J, Liu YT, Ding B. Multiscale Interpenetrated/Interconnected Network Design Confers All-Carbon Aerogels with Unprecedented Thermomechanical Properties for Thermal Insulation under Extreme Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308519. [PMID: 37913824 DOI: 10.1002/adma.202308519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
With ultralight weight, low thermal conductivity, and extraordinary high-temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in-orbit operation and re-entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, a spatially confined assembly strategy of multiscale low-dimensional nanocarbons is reported to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin-film-like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all-carbon aerogels with a hierarchical cellular structure and quasi-closed cell walls achieve the best thermomechanical and insulation trade-off, exhibiting flyweight density (24 mg cm-3 ), temperature-constant compressibility (-196-1600 °C), and a low thermal conductivity of 0.04 829 W m-1 K-1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration.
Collapse
Affiliation(s)
- Xinyi Chang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaota Cheng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hao Zhang
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Lijuan He
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Wenjing Li
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Yang D, Xu P, Tian C, Li S, Xing T, Li Z, Wang X, Dai P. Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules 2023; 28:6377. [PMID: 37687208 PMCID: PMC10489653 DOI: 10.3390/molecules28176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.
Collapse
Affiliation(s)
- Dehong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Xu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaofan Tian
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Sen Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tao Xing
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Zhi Li
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
| | - Pengcheng Dai
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Cao M, Feng Y, Wang D, Xie Y, Gu X, Yao J. Construction of oxygen vacancy-rich ZnO@carbon nanofiber aerogels as a free-standing anode for superior lithium storage. J Colloid Interface Sci 2023; 644:177-185. [PMID: 37105041 DOI: 10.1016/j.jcis.2023.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
The development of next-generation high-capacity freestanding materials as electrodes in lithium-ion batteries (LIBs) has significant potential. Here, oxygen vacancy-rich ZnO (Ov-ZnO) deposited on carbonized bacterial cellulose (CBC) aerogels is developed via in-situ uniformly growing ZIF-8-NH2 particles on CBC aerogels, followed by the hydrazine reduction and pyrolysis. The CBC serves as a free-standing skeleton to disperse and support ZIF-8-NH2 derived ZnO while the introduction of oxygen vacancies can effectively promote the internal ion/electron transfer. As a result, the obtained free-standing aerogels (Ov-ZnO@CBC) displays a reversible capacity of 710 mAh g-1 at 1 A g-1 after 1000 cycles, which is superior to ZnO@CBC without hydrazine reduction treatment. Furthermore, the assembled Li free-standing full cell using the Ov-ZnO@CBC composite as the anode and BC@LiFePO4 (BC@LFP) as the cathode exhibits an outstanding cycling performance of 150 mAh g-1 after 100 cycles at 0.1 A g-1, displaying satisfactory lithium-ion storage capability. It is noteworthy that both Ov-ZnO@CBC and BC@LFP are obtained in the form of a free-standing aerogel. This work offers a strategy to prepare high-capacity and long-cycle self-supporting aerogel-based electrodes for flexible LIBs.
Collapse
Affiliation(s)
- Mengjue Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Duoying Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuming Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhao J, Yuan X, Wu X, Liu L, Guo H, Xu K, Zhang L, Du G. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment. Molecules 2023; 28:3541. [PMID: 37110772 PMCID: PMC10144172 DOI: 10.3390/molecules28083541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Nowadays, the fast expansion of the economy and industry results in a considerable volume of wastewater being released, severely affecting water quality and the environment. It has a significant influence on the biological environment, both terrestrial and aquatic plant and animal life, and human health. Therefore, wastewater treatment is a global issue of great concern. Nanocellulose's hydrophilicity, easy surface modification, rich functional groups, and biocompatibility make it a candidate material for the preparation of aerogels. The third generation of aerogel is a nanocellulose-based aerogel. It has unique advantages such as a high specific surface area, a three-dimensional structure, is biodegradable, has a low density, has high porosity, and is renewable. It has the opportunity to replace traditional adsorbents (activated carbon, activated zeolite, etc.). This paper reviews the fabrication of nanocellulose-based aerogels. The preparation process is divided into four main steps: the preparation of nanocellulose, gelation of nanocellulose, solvent replacement of nanocellulose wet gel, and drying of nanocellulose wet aerogel. Furthermore, the research progress of the application of nanocellulose-based aerogels in the adsorption of dyes, heavy metal ions, antibiotics, organic solvents, and oil-water separation is reviewed. Finally, the development prospects and future challenges of nanocellulose-based aerogels are discussed.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaoxiao Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
7
|
Liu P, Chen X, Li Y, Cheng P, Tang Z, Lv J, Aftab W, Wang G. Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS NANO 2022; 16:15586-15626. [PMID: 36226846 DOI: 10.1021/acsnano.2c05067] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the inherent properties of ultralight weight, ultrahigh porosity, ultrahigh specific surface area, adjustable thermal/electrical conductivities, and mechanical flexibility, aerogels are considered ideal supporting alternatives to efficiently encapsulate phase change materials (PCMs) and rationalize phase transformation behaviors. The marriage of versatile aerogels and PCMs is a milestone in pioneering advanced multifunctional composite PCMs. Emerging aerogel-based composite PCMs with high energy storage density are accepted as a cutting-edge thermal energy storage (TES) concept, enabling advanced functionality of PCMs. Considering the lack of a timely and comprehensive review on aerogel-based composite PCMs, herein, we systematically retrospect the state-of-the-art advances of versatile aerogels for high-performance and multifunctional composite PCMs, with particular emphasis on advanced multiple functions, such as acoustic-thermal and solar-thermal-electricity energy conversion strategies, mechanical flexibility, flame retardancy, shape memory, intelligent grippers, and thermal infrared stealth. Emphasis is also given to the versatile roles of different aerogels in composite PCMs and the relationships between their architectures and thermophysical properties. This review also showcases the discovery of an interdisciplinary research field combining aerogels and 3D printing technology, which will contribute to pioneering cutting-edge PCMs. This review aims to arouse wider research interests among interdisciplinary fields and provide insightful guidance for the rational design of advanced multifunctional aerogel-based composite PCMs, thus facilitating the significant breakthroughs in both fundamental research and commercial applications.
Collapse
Affiliation(s)
- Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Piao Cheng
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Junjun Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
- Shunde Graduate School, University of Science and Technology Beijing, Shunde 528399, P.R. China
| |
Collapse
|
8
|
Zhang L, Lei Y, He P, Wu H, Guo L, Wei G. Carbon Material-Based Aerogels for Gas Adsorption: Fabrication, Structure Design, Functional Tailoring, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3172. [PMID: 36144967 PMCID: PMC9504413 DOI: 10.3390/nano12183172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Carbon material-based aerogels (CMBAs) have three-dimensional porous structure, high specific surface area, low density, high thermal stability, good electric conductivity, and abundant surface-active sites, and, therefore, have shown great application potential in energy storage, environmental remediation, electrochemical catalysis, biomedicine, analytical science, electronic devices, and others. In this work, we present recent progress on the fabrication, structural design, functional tailoring, and gas adsorption applications of CMBAs, which are prepared by precursor materials, such as polymer-derived carbon, carbon nanotubes, carbon nanofibers, graphene, graphene-like carbides, fullerenes, and carbon dots. To achieve this aim, first we introduce the fabrication methods of various aerogels, and, then, discuss the strategies for regulating the structures of CMBAs by adjusting the porosity and periodicity. In addition, the hybridization of CMBAs with other nanomaterials for enhanced properties and functions is demonstrated and discussed through presenting the synthesis processes of various CMBAs. After that, the adsorption performances and mechanisms of functional CMBAs towards CO2, CO, H2S, H2, and organic gases are analyzed in detail. Finally, we provide our own viewpoints on the possible development directions and prospects of this promising research topic. We believe this work is valuable for readers to understand the synthesis methods and functional tailoring of CMBAs, and, meanwhile, to promote the applications of CMBAs in environmental analysis and safety monitoring of harmful gases.
Collapse
Affiliation(s)
- Lianming Zhang
- Engineering Research Center of Green Process, School of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Wu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Xu B, Luo Z, Wang D, Huang Z, Zhou Z, Wang H. In vitro and in vivo Repair Effects of the NCF-Col-NHA Aerogel Scaffold Loaded With SOST Monoclonal Antibody and SDF-1 in Steroid-Induced Osteonecrosis. Front Bioeng Biotechnol 2022; 10:825231. [PMID: 35372296 PMCID: PMC8964358 DOI: 10.3389/fbioe.2022.825231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
In the current study, we synthesized nanocellulose (NCF)-collagen (Col)-nano hydroxyapatite (NHA) organic-inorganic hybrid aerogels loaded with stromal cell derived factor-1 (SDF-1) and sclerostin monoclonal antibody (SOST McAb) and investigated their ability to repair steroid-induced osteonecrosis. Rabbit bone marrow mesenchymal stem cells (BMSCs) and human vascular endothelial cells (HUVECs) were used for the in vitro study. A rabbit steroid-induced osteonecrosis model was used for the in vivo study. The best elastic modulus reached 12.95 ± 4.77 MPa with a mean compressive property of 0.4067 ± 0.084 MPa for the scaffold containing 100% mass fraction. The average pore diameter of the aerogel was 75 ± 18 µm with a porosity of more than 90% (96.4 ± 1.6%). The aerogel-loaded SDF-1 and SOST were released at 40–50% from the material within the initial 3 h and maintained a stable release for more than 21 days. The in vitro study showed osteogenesis and vascularization capabilities of the scaffold. The in vivo study showed that rabbits received implantation of the scaffold with SOST McAb and SDF-1 showed the best osteogenesis of the osteonecrosis zone in the femoral head. Imaging examination revealed that most of the necrotic area of the femoral head was repaired. These results suggest that this hybrid aerogel scaffold could be used for future steroid-induced osteonecrosis repair.
Collapse
Affiliation(s)
- Bing Xu
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China.,Department of Orthopaedic Surgery, Chengdu Second People's Hospital, ChengDu, China
| | - Zeyu Luo
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Duan Wang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Zeyu Huang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Zongke Zhou
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| | - Haoyang Wang
- Department of Orthopaedic, West China Hospital, Orthopedic Research Institute, Sichuan University, ChengDu, China
| |
Collapse
|
10
|
Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites has been observed for membrane technology. This review highlights the design, properties, and promising features of the polymer/graphene nanomaterials and nanocomposite membranes for the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane properties are examined. Graphene oxide, an important modified form of graphene, is also utilized in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop high-performance membranes for methodological purposes. The adaptability of polymer/graphene nanocomposites is observed for water management and purification technologies.
Collapse
|
11
|
Guo X, Li W, Geng P, Zhang Q, Pang H, Xu Q. Construction of SiO x/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J Colloid Interface Sci 2022; 606:784-792. [PMID: 34419817 DOI: 10.1016/j.jcis.2021.08.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/12/2023]
Abstract
Silicon sub-oxides (SiOx) are increasingly becoming a prospective anode material for lithium-ion batteries (LIBs). Nevertheless, inferior electrical conductivity and drastic volume fluctuation upon cycling significantly hamper the electrochemical performance of SiOx. In this work, rice husks (RHs)-derived pitaya-like SiOx/nitrogen-doped carbon (SNC) superstructures have been prepared by a simple electrospray-carbonization approach. SiOx nanoparticles (NPs) are well-dispersed in a spherical nitrogen-doped carbon (NC) matrix. The carbon frameworks discourage the aggregation of SiOx NPs, facilitating the kinetics for ion diffusion and charge transfer, and maintaining structural stability upon cycling, thus bringing about improved electrochemical performance. When the optimized SNC superstructures with SiOx content of 64.3% are utilized as LIBs anodes, a stable specific capacity of 622.8 mA h g-1 after 100 cycles at 0.1 A g-1, and an excellent long cycle performance of 190.1 mA h g-1 after 5000 cycles at 5 A g-1 are obtained. This effective and universal synthetic strategy for fabricating controllable superstructures offers insights into the development of high-performance LIBs.
Collapse
Affiliation(s)
- Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Pengbiao Geng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Qinyi Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Qiang Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Department of Materials Science and Engineering and SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Xueyuan Ave, Nanshan, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Zhang Z, Wang C, Yao Y, Zhang H, Na J, Zhou Y, Zhu Z, Qi J, Eguchi M, Yamauchi Y, Li J. Modular Assembly of MOF-derived Carbon Nanofibers into Macroarchitectures for Water Treatment. Chem Sci 2022; 13:9159-9164. [PMID: 36093027 PMCID: PMC9384821 DOI: 10.1039/d2sc02619h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
The organized assembly of nanoparticles into complex macroarchitectures opens up a promising pathway to create functional materials. Here, we demonstrate a scalable strategy to fabricate macroarchitectures with high compressibility and elasticity from hollow particle-based carbon nanofibers. This strategy causes zeolitic imidazolate framework (ZIF-8)-polyacrylonitrile nanofibers to assemble into centimetre-sized aerogels (ZIF-8/NFAs) with expected shapes and tunable functions on a large scale. On further carbonization of ZIF-8/NFAs, ZIF-8 nanoparticles are transformed into a hollow structure to form the carbon nanofiber aerogels (CNFAs). The resulting CNFAs integrate the properties of zero-dimensional hollow structures, one-dimensional nanofibers, and three-dimensional carbon aerogels, and exhibit a low density of 7.32 mg cm−3, high mechanical strength (rapid recovery from 80% strain), outstanding adsorption capacity, and excellent photo-thermal conversion potential. These results provide a platform for the future development of macroarchitectured assemblies from nanometres to centimetres and facilitate the design of multifunctional materials. A scalable strategy is established to generate macroarchitectures based on MOF-related nanofibers. The modular assembly of macroarchitectures with luffa-like structures exhibits high mechanical strength and low densities.![]()
Collapse
Affiliation(s)
- Zishi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- Materials Architecturing Research Center, Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
13
|
Zhou Y. Artificial neural network-based smart aerogel glazing in low-energy buildings: A state-of-the-art review. iScience 2021; 24:103420. [PMID: 34849473 PMCID: PMC8608606 DOI: 10.1016/j.isci.2021.103420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aerogel materials with super-insulating, visual-penetrable, and sound-proof properties are promising in buildings, whereas the coupling effect of various parameters in complex porous aerogels proposes challenges for thermal/visual performance prediction. Traditional physics-based models face challenges such as modeling complexity, heavy computational load, and inadaptability for long-term validation (owing to boundary condition change, degradation of thermophysical properties, and so on). In this study, a holistic review is conducted on aerogel production, components prefabrication, modeling development, single-, and multi-objective optimizations. Methodologies to quantify parameter uncertainties are reviewed, including interface energy balance, Rosseland approximation and Monte Carlo method. Novel aerogel integrated glazing systems with synergistic functions are demonstrated. Originalities include an innovative modeling approach, enhanced computational efficiency, and user-friendly interface for non-professionals or multidisciplinary research. In addition, human knowledge-based machine learning can reduce abundant data requirement, increase performance prediction reliability, and improve model interpretability, so as to promote advanced aerogel materials in smart and energy-efficient buildings.
Collapse
Affiliation(s)
- Yuekuan Zhou
- Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology, Guangzhou, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
14
|
Zhu M, Li G, Gong W, Yan L, Zhang X. Calcium-Doped Boron Nitride Aerogel Enables Infrared Stealth at High Temperature Up to 1300 °C. NANO-MICRO LETTERS 2021; 14:18. [PMID: 34870761 PMCID: PMC8649065 DOI: 10.1007/s40820-021-00754-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Boron nitride (BN) aerogels, composed of nanoscale BN building units together with plenty of air in between these nanoscale building units, are ultralight ceramic materials with excellent thermal/electrical insulation, great chemical stability and high-temperature oxidation resistance, which offer considerable advantages for various applications under extreme conditions. However, previous BN aerogels cannot resist high temperature above 900 °C in air atmosphere, and high-temperature oxidation resistance enhancement for BN aerogels is still a great challenge. Herein, a calcium-doped BN (Ca-BN) aerogel with enhanced high-temperature stability (up to ~ 1300 °C in air) was synthesized by introducing Ca atoms into crystal structure of BN building blocks via high-temperature reaction between calcium phosphate and melamine diborate architecture. Such Ca-BN aerogels could resist the burning of butane flame (~ 1300 °C) and keep their megashape and microstructure very well. Furthermore, Ca-BN aerogel serves as thermal insulation layer, together with Al foil serving as both low-infrared-emission layer and high-infrared-reflection layer, forming a combination structure that can effectively hide high-temperature target (heated by butane flame). Such successful chemical doping of metal element into crystal structure of BN may be helpful in the future design and fabrication of advanced BN aerogel materials, and further extending their possible applications to extremely high-temperature environments.
Collapse
Affiliation(s)
- Mengya Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Guangyong Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China
| | - Lifeng Yan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK.
| |
Collapse
|
15
|
Bu Q, Cai J, Vasudevan SV, Ni J, Mao H. Microwave-assisted synthesis of bio-based Ni@NSiC nanocomposites for high efficient electrocatalysis of glucose. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Kang Z, Wang Y, Yang C, Xu B, Wang L, Zhu Z. Multifunctional N and O co-doped 3D carbon aerogel as a monolithic electrode for either enzyme immobilization, oxygen reduction and showing supercapacitance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Gao HL, Wang ZY, Cui C, Bao JZ, Zhu YB, Xia J, Wen SM, Wu HA, Yu SH. A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102724. [PMID: 34387379 DOI: 10.1002/adma.202102724] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon materials demonstrate extensive applications for their attractive characteristics. Mechanical flexibility is an essential property guaranteeing their durability. After decades of research efforts, compressive brittleness of porous carbon materials is well resolved. However, reversible stretchability remains challenging to achieve due to the intrinsically weak connections and fragile joints of the porous carbon networks. Herein, it is presented that a porous all-carbon material achieving both elastic compressibility and stretchability at large strain from -80% to 80% can be obtained when a unique long-range lamellar multi-arch microstructure is introduced. Impressively, the porous all-carbon material can maintain reliable structural robustness and durability under loading condition of cyclic compressing-stretching process, similar to a real metallic spring. The unique performance renders it as a promising platform for making smart vibration and magnetism sensors, even capable of operating at extreme temperatures. Furthermore, this study provides valuable insights for creating highly stretchable and compressible porous materials from other neat inorganic components for diverse applications in future.
Collapse
Affiliation(s)
- Huai-Ling Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ze-Yu Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Cui
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Zheng Bao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shao-Meng Wen
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Peng S, Yu Y, Wu S, Wang CH. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43831-43854. [PMID: 34515471 DOI: 10.1021/acsami.1c15014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.
Collapse
Affiliation(s)
- Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuyan Yu
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Chen C, Yan X, Wu R, Wu Y, Zhu Q, Hou M, Zhang Z, Fan H, Ma J, Huang Y, Ma J, Sun X, Lin L, Liu S, Han B. Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO 2 reduction with high efficiency. Chem Sci 2021; 12:11914-11920. [PMID: 34659731 PMCID: PMC8442700 DOI: 10.1039/d1sc02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm-2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd-O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2 via an adsorption-electrolysis device.
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
20
|
Wang DC, Yu HY, Qi D, Wu Y, Chen L, Li Z. Confined Chemical Transitions for Direct Extraction of Conductive Cellulose Nanofibers with Graphitized Carbon Shell at Low Temperature and Pressure. J Am Chem Soc 2021; 143:11620-11630. [PMID: 34286968 DOI: 10.1021/jacs.1c04710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose is the most abundant renewable natural polymer on earth, but it does not conduct electricity, which limits its application expansion. The existing methods of making cellulose conductive are combined with another conductive material or high-temperature/high-pressure carbonization of the cellulose itself, while in the traditional method of sulfuric acid hydrolysis to extract nanocellulose, it is usually believed that a too high temperature will destroy cellulose and lead to experimental failure. Now, based on a new research perspective, by controlling the continuous reaction process and isolating oxygen, we directly extracted intrinsically conductive cellulose nanofiber (CNF) from biomass, where the confined range molecular chains of CNF were converted to highly graphitized carbon at only 90 °C and atmospheric pressure, while large-scale twisted graphene films can be synthesized bottom-up from CNFene suspensions, called CNFene (cellulose nanofiber-graphene). The conductivity of the best CNFene can be as high as 1.099 S/cm, and the generality of this synthetic route has been verified from multiple biomass cellulose sources. By comparing the conventional high-pressure hydrothermal and high-temperature pyrolysis methods, this study avoided the dangerous high-pressure environment and saved 86.16% in energy. These findings break through the conventional notion that nanocellulose cannot conduct electricity by itself and are expected to extend the application potential of pure nanocellulose to energy storage, catalysis, and sensing.
Collapse
Affiliation(s)
- Duan-Chao Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuhang Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lumin Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ziheng Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
21
|
Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation. J Colloid Interface Sci 2021; 589:56-64. [DOI: 10.1016/j.jcis.2020.12.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
|
22
|
Niu Y, Li F, Zhao W, Cheng W. Fabrication and application of macroscopic nanowire aerogels. NANOSCALE 2021; 13:7430-7446. [PMID: 33928971 DOI: 10.1039/d0nr09236c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assembly of nanowires into three-dimensional macroscopic aerogels not only bridges a gap between nanowires and macroscopic bulk materials but also combines the benefits of two worlds: unique structural features of aerogels and unique physical and chemical properties of nanowires, which has triggered significant progress in the design and fabrication of nanowire-based aerogels for a diverse range of practical applications. This article reviews the methods developed for processing nanowires into three-dimensional monolithic aerogels and the applications of the resultant nanowire aerogels in many emerging fields. Detailed discussions are given on gelation mechanisms involved in every preparation method and the pros and cons of the different methods. Furthermore, we systematically scrutinize the application of nanowire-based aerogels in the fields of thermal management, energy storage and conversion, catalysis, adsorbents, sensors, and solar steam generation. The unique benefits offered by nanowire-based aerogels in every application field are clarified. We also discuss how to improve the performance of nanowire-based aerogels in those fields by engineering the compositions and structures of the aerogels. Finally, we provide our perspectives on future development of nanowire-based aerogels.
Collapse
Affiliation(s)
- Yutong Niu
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Fuzhong Li
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Wuxi Zhao
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Wei Cheng
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China. and Fujian Key Laboratory of Materials Genome, Xiamen University, China
| |
Collapse
|
23
|
Almarasy AA, Hayasaki T, Abiko Y, Kawabata Y, Akasaka S, Fujimori A. Comparison of characteristics of single-walled carbon nanotubes obtained by super-growth CVD and improved-arc discharge methods pertaining to interfacial film formation and nanohybridization with polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Sun W, Thummavichai K, Chen D, Lei Y, Pan H, Song T, Wang N, Zhu Y. Co-Zeolitic Imidazolate Framework@Cellulose Aerogels from Sugarcane Bagasse for Activating Peroxymonosulfate to Degrade P-Nitrophenol. Polymers (Basel) 2021; 13:polym13050739. [PMID: 33673597 PMCID: PMC7957538 DOI: 10.3390/polym13050739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
An efficient, green and reusable catalyst for organic pollutant wastewater treatment has been a subject of intense research in recent decades due to the limitation of current technologies. Cellulose based aerogel composites are considered to be an especially promising candidate for next-generation catalytic material. This project was conducted in order to evaluate the behavior and ability of green and reusable sugarcane bagasse aerogels to remove P-Nitrophesnol from waste-water aqueous. Co-Zeolitic imidazolate framework@ sugarcane bagasse aerogels composite catalysts were successfully prepared via simple in situ synthesis. The structure of hybrid aerogels and their efficient catalyst in peroxymonosulfate (PMS) activation for the degradation of p-nitrophenol (PNP) was investigated. As a result, the hybrid aerogels/PMS system removed 98.5% of PNP (10 mg/L) within 60~70 min, while the traditional water treatment technology could not achieve this. In addition, through a free radical capture experiment and electron paramagnetic resonance (EPR), the degradation mechanism of PNP was investigated. Further research found that the hybrid aerogels can effectively activate PMS to produce sulfate (SO4• −) and hydroxyl (OH• ). Both of them contributed to the degradation of PNP, and SO4• − plays a crucial role in the degradative process. The most important feature of hybrid aerogels can be easily separated from the solution. The obtained results showed that the outer coating structure of cellulose can stabilize Co-ZIF and reduce the dissolution of cobalt ions under complex reaction conditions. Moreover, the prepared hybrid aerogels exhibit excellent reusability and are environmentally friendly with efficient catalytic efficiency. This work provides a new strategy for bagasse applications and material reusability.
Collapse
|
25
|
Zhang C, Huang R, Wang P, Wang Y, Zhou Z, Zhang H, Wu Z, Li L. Highly Compressible, Thermally Conductive, yet Electrically Insulating Fluorinated Graphene Aerogel. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58170-58178. [PMID: 33337132 DOI: 10.1021/acsami.0c19628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon-based aerogels have drawn substantial attention for a wide scope of applications. However, the high intrinsic electrical conductivity limits their potential thermal management application in electronic packaging materials. Herein, a highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel (FGA) is developed through a hydrofluoric acid-assisted hydrothermal process. The macroscopic-assembled FGA constituting of tailored interconnected graphene networks with tunable fluorine coverage shows excellent elasticity and fatigue resistance for compression, despite a low density of 10.6 mg cm-3. Moreover, the aerogel is proved to be highly insulating, with the observed lowest electrical conductivity reaching 4 × 10-7 S cm-1. Meanwhile, the aerogel exhibits prominent heat dissipation performance in a typical cooling procedure, which can be used to fabricate thermoconductive polymer composites for electronic packaging.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjin Huang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongguang Wang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengrong Zhou
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengcheng Zhang
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixiong Wu
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Laifeng Li
- State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Li T, Li H, Li C. Progress in Effects of Microenvironment of Carbon‐based Catalysts on Hydrodeoxygenation of Biomass. ChemCatChem 2020. [DOI: 10.1002/cctc.202001369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology 8 Guangrong Road Tianjin 300000 P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology 8 Guangrong Road Tianjin 300000 P. R. China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology Hebei University of Technology 8 Guangrong Road Tianjin 300000 P. R. China
| |
Collapse
|
27
|
Yu S, Song S, Li R, Fang B. The lightest solid meets the lightest gas: an overview of carbon aerogels and their composites for hydrogen related applications. NANOSCALE 2020; 12:19536-19556. [PMID: 32968741 DOI: 10.1039/d0nr05050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrogen, a renewable and recyclable energy, has been regarded as the best solution for global energy supply in the 21st century. Hydrogen production, hydrogen storage and hydrogen sensing are three most important aspects for hydrogen economy. Interestingly, the lightest solid, carbon aerogels (CAs), has found wide applications in these aspects due to its unique characteristics including large specific surface area, hierarchical porous structure, high electrical conductivity, superb chemical stability, and low fabrication cost. Herein, various fabrication strategies of CAs are presented, and their applications in the three most important aspects are comprehensively reviewed. In addition, the challenges and prospects are also discussed. In the light of the recent progress in CAs for hydrogen-related applications, this review provides a comprehensive assessment on materials selection, synthesis, hydrogen adsorption characteristics of CAs and catalytic activity of CA-supported nanocatalysts, offering a strategic guide to build a close connection between CAs and hydrogen economy.
Collapse
Affiliation(s)
- Sheng Yu
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | | | | | | |
Collapse
|
28
|
Liu Y, Chen J, Liu Z, Xu H, Shi Z, Yang Q, Hu GH, Xiong C. Necklace-like ferroferric oxide (Fe3O4) nanoparticle/carbon nanofibril aerogels with enhanced lithium storage by carbonization of ferric alginate. J Colloid Interface Sci 2020; 576:119-126. [DOI: 10.1016/j.jcis.2020.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
29
|
Zhou S, Qi H. A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co 3O 4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation. NANOSCALE 2020; 12:17373-17384. [PMID: 32789386 DOI: 10.1039/d0nr04431h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Both exploring high-performance catalytic materials with ultrafine active sites from sustainable feedstocks and selective transformation of bio-renewable carboxides are very significant and challenging topics. Herein, we utilized bacterial cellulose to construct highly dispersed Co3O4 nanocatalysts embedded within nitrogen-doped carbon nanofibers (NCNFs). Benefiting from the nanofibrous confinement strategy, a urea-assisted carbonation process and a mild nitrate decomposition process, the cobalt precursor was transformed into ultrasmall and homogeneous Co3O4 nanoparticles (NPs) of ca. 1.57 nm, which is to our knowledge the smallest value among the reported supported Co3O4 materials. The as-obtained Co3O4/NCNF exhibits superior catalytic activity for the selective hydrogenation of bioderived α,β-unsaturated aldehydes with 2-propanol as a H-source, yielding 90-100% conversion under mild conditions. Controlled experiments and detailed characterization revealed that the three-dimensional nanofibrous porous structure can be favourable for improved diffusion and mass transfer, while the uniform distribution of ultrafine Co3O4 NPs and urea-derived abundant basic sites exhibit synergism in the adsorption and activation of reactants, which contributes to excellent catalytic performance. This approach opens up a new way to the design and fabrication of highly dispersed nanocatalysts based on NCNF materials from sustainable natural polymers for biomass valorization.
Collapse
Affiliation(s)
- Shenghui Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. and Guangdong Engineering Research Centre for Green Fine Chemicals, Guangzhou 510640, China
| |
Collapse
|
30
|
Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun 2020; 11:3732. [PMID: 32709868 PMCID: PMC7382455 DOI: 10.1038/s41467-020-17533-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/29/2020] [Indexed: 01/20/2023] Open
Abstract
Advanced ceramic sponge materials with temperature-invariant high compressibility are urgently needed as thermal insulators, energy absorbers, catalyst carriers, and high temperature air filters. However, the application of ceramic sponge materials is severely limited due to their complex preparation process. Here, we present a facile method for large-scale fabrication of highly compressible, temperature resistant SiO2-Al2O3 composite ceramic sponges by blow spinning and subsequent calcination. We successfully produce anisotropic lamellar ceramic sponges with numerous stacked microfiber layers and density as low as 10 mg cm-3. The anisotropic lamellar ceramic sponges exhibit high compression fatigue resistance, strain-independent zero Poisson's ratio, robust fire resistance, temperature-invariant compression resilience from -196 to 1000 °C, and excellent thermal insulation with a thermal conductivity as low as 0.034 W m-1 K-1. In addition, the lamellar structure also endows the ceramic sponges with excellent sound absorption properties, representing a promising alternative to existing thermal insulation and acoustic absorption materials.
Collapse
|
31
|
Li X, Li Q, Fei J, Jia Y, Xue H, Zhao J, Li J. Self-Assembled Dipeptide Aerogels with Tunable Wettability. Angew Chem Int Ed Engl 2020; 59:11932-11936. [PMID: 32314502 DOI: 10.1002/anie.202005575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Constructing supramolecular materials with tunable properties and functions is a great challenge due to the complex competition between multiple assembly pathways. Herein, we report that dipeptides can self-assemble into aerogels with entirely different surface wettability through precisely controlling the assembly pathways. Charged groups or aromatic residues are selectively exposed on the surface of their nanoscale building blocks which results either in a superhydrophilic or highly hydrophobic surface. With this special property, single component dipeptide aerogels can play diverse roles in medical care applications. This study suggests great promise in the synthesis of supramolecular materials with different targeted functions from the same molecular unit.
Collapse
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Yang Y, Zhang H, Wang Z, Li X, Abdelsamie Abdelrahim Abdelsamie A, Yuan X, Fan X, Zhang R, Chang H. Highly Sensitive Electrochemical Detection of Reactive Oxygen Species in Living Cancer Cells Using Monolithic Metallic Foam Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Yang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Ministry of Education Key Laboratory of Micro/Nano Systems for AerospaceNorthwestern Polytechnical University Xi'an 710072 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Heng Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xuepeng Li
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
| | | | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
- Key Laboratory for Space Bioscience and Biotechnology School of Life SciencesNorthwestern Polytechnical University
| | - Xiaomeng Fan
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical University Xi'an 710072 China
| | - Ruirong Zhang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| | - Honglong Chang
- Research & Development Institute of Northwestern Polytechnical University School of Mechanical Engineering Shenzhen 518057 China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang China
| |
Collapse
|
33
|
Li X, Li Q, Fei J, Jia Y, Xue H, Zhao J, Li J. Self‐Assembled Dipeptide Aerogels with Tunable Wettability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xianbao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Dang C, Huang Z, Chen Y, Zhou S, Feng X, Chen G, Dai F, Qi H. Direct Dissolution of Cellulose in NaOH/Urea/α-Lipoic Acid Aqueous Solution to Fabricate All Biomass-Based Nitrogen, Sulfur Dual-Doped Hierarchical Porous Carbon Aerogels for Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21528-21538. [PMID: 32315149 DOI: 10.1021/acsami.0c01537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using the disulfide bond and carboxyl group in the molecular structure, α-lipoic acid was easily dissolved in the NaOH/urea solution and could be used as a ternary solvent for dissolving cellulose. Through this platform, N, S dual-doped hierarchical porous carbon aerogels (NSHPAs) were successfully obtained via directly dissolving cellulose in this ternary solvent, followed by gelling and carbonization. Because the fabricated carbon materials had a proper structure and a uniform heteroatom doping, their capacitance could reach 329 F g-1 at 0.5 A g-1, 1647.5 mF cm-2 at 2.5 mA cm-2, and the fine rate property was 215 F g-1 at 10 A g-1 and 1075 mF cm-2 at 50 mA cm-2, respectively. Additionally, the electric double-layer contribution and pseudocapacitance contribution from the N,S dual doping were also analyzed. Meanwhile, they showed outstanding capacitance retention in a 2 M H2SO4 electrolyte. Additionally, a symmetric supercapacitor (SSC) was assembled by NSHPAs, and yielded a high specific capacitance of 63.6 F g-1 at 1 A g-1. At a power density of 130 W kg-1, the SSC showed a high energy density of 10.3 W h kg-1 and a long cycle life with 10% capacitance decay over 5000 cycles at 1 A g-1. These electrochemical performances suggest that this adopted synthesis route may open a novel avenue for the fabrication of heteroatom-doped carbon electrode materials, especially based on renewable and low-cost cellulose.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhongyuan Huang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yian Chen
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Hohe Straße 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Shenghui Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao Feng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guixian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fanglin Dai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510641, China
| |
Collapse
|
35
|
Chen C, Sun X, Yan X, Wu Y, Liu H, Zhu Q, Bediako BBA, Han B. Boosting CO
2
Electroreduction on N,P‐Co‐doped Carbon Aerogels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004226] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Yahui Wu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Bernard Baffour Asare Bediako
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
36
|
Chen C, Sun X, Yan X, Wu Y, Liu H, Zhu Q, Bediako BBA, Han B. Boosting CO
2
Electroreduction on N,P‐Co‐doped Carbon Aerogels. Angew Chem Int Ed Engl 2020; 59:11123-11129. [DOI: 10.1002/anie.202004226] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Yahui Wu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| | - Bernard Baffour Asare Bediako
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
37
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Jiang Q, Xu P, Sun M. Resorcinol–formaldehyde aerogel coating for in‐tube solid‐phase microextraction of estrogens. J Sep Sci 2020; 43:1323-1330. [DOI: 10.1002/jssc.201901025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Qiong Jiang
- College of Plant ProtectionGansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province Lanzhou Gansu P. R. China
| | - Peng Xu
- College of Plant ProtectionGansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province Lanzhou Gansu P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
39
|
Lu M, Li J, Song S, Li L, Lin J, Zhang B, Li J. The synthesis of 3D graphene/Au composites via γ-ray irradiation and their use for catalytic reduction of 4-nitrophenol. NANOTECHNOLOGY 2020; 31:235604. [PMID: 32106098 DOI: 10.1088/1361-6528/ab7aa5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) and gold ions (Au3+) can be simultaneously reduced and self-assembled into a three-dimensional (3D) graphene/Au composite (GA/Au) porous structure at room temperature via one-step γ-ray irradiation. The microstructure of GA/Au composites were observed under different magnifications and the pores were observed to be uniform 3D porous structure. In addition, Au nanoparticles were homogeneously attached to graphene sheets and had a typical diameter of 6 nm. These GA/Au composites were analyzed and characterized by x-ray diffraction analysis, x-ray photoelectron spectroscopy, and thermal gravity analysis. Due to synergistic catalysis between graphene and Au nanoparticles, GA/Au composites catalyzed 4-nitrophenol with excellent catalytic performance, even at concentrations up to 6.48 × 10-3 M. When the concentration of 4-nitrophenol was 2.16 × 10-3 M and 4.22 × 10-3 M, the first-order kinetic constants were 2.00 and 1.43 min-1, respectively.
Collapse
Affiliation(s)
- Manli Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv Colloid Interface Sci 2020; 276:102101. [PMID: 31978639 DOI: 10.1016/j.cis.2020.102101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022]
Abstract
Conventional silica-based aerogels are among the most promising materials considering their special properties, such as extremely low thermal conductivity (~15 mW/mK) and low-density (∼0.003-0.5 g.cm-3) as well as high surface area (500-1200 m2. g-1). However, they have relatively low mechanical properties and entail extensive and energy-consuming processing steps. Silica-based aerogels are mostly fragile and possess minimal mechanical properties as well as a long processing procedure which hinders their application range. The key point in improving the mechanical properties of such a material is to increase the connectivity in the aerogel backbone. Several methods of mechanical improvement of silica-based aerogels have been explored by researchers such as (i) use of flexible silica precursors in silica gel backbone, (ii) surface-crosslinking of silica particles with a polymer, (iii) prolonged aging step in different solutions, (iv) distribution of flexible nanofillers into the silica solution prior to gelation, and, most recently, (v) polymerizing the silica precursor prior to gelation. The polymerized silica precursor, as in the most recent approach, can be gelled either by binodal decomposition (nucleation and growth), resulting in a particulate structure, or by spinodal decomposition, resulting in a non-particulate structure. By optimizing the material composition and processing conditions of materials, the aerogel can be tailored with different functional capabilities. This review paper presents a literature survey of precursor modification toward increased connectivity in the backbone, and the synthesis of inorganic and hybrid systems containing siloxane in the backbone of the silica-based aerogels and its composite version with carbon nanofillers. This review also explains the novel properties and applications of these material systems in a wide area. The relationship among the materials-processing-structure-properties in these kinds of aerogels is the most important factor in the development of aerogel products with given morphologies (particulate, fiber-like, or non-particulate) and their resultant properties. This approach to advancing precursor systems leads to the next-generation, multifunctional silica-based aerogel materials.
Collapse
|
41
|
Wang C, Kim J, Tang J, Na J, Kang Y, Kim M, Lim H, Bando Y, Li J, Yamauchi Y. Large‐Scale Synthesis of MOF‐Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angew Chem Int Ed Engl 2020; 59:2066-2070. [DOI: 10.1002/anie.201913719] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources ReuseKey Laboratory of New Membrane MaterialsMinistry of Industry and Information TechnologySchool of Environmental and Biological EngineeringNanjing University of Science and Technology Nanjing 210094 P. R. China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
- Department of ChemistryKookmin University, 77 Jeongneung-ro, Seongbuk-gu Seoul 02707 South Korea
| | - Jing Tang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Yong‐Mook Kang
- Department of Materials Science and EngineeringKorea University Seoul 02841 Republic of Korea
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Yoshio Bando
- Institute of Molecular PlusTianjin University No. 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
- Australian Institute of Innovative Materials (AIIM)The University of Wollongong Squires Way North Wollongong NSW 2500 Australia
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources ReuseKey Laboratory of New Membrane MaterialsMinistry of Industry and Information TechnologySchool of Environmental and Biological EngineeringNanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Plant & Environmental New ResourcesKyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|
42
|
Li J, Wong WY, Tao XM. Recent advances in soft functional materials: preparation, functions and applications. NANOSCALE 2020; 12:1281-1306. [PMID: 31912063 DOI: 10.1039/c9nr07035d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic materials and biomaterials with elastic moduli lower than 10 MPa are generally considered as soft materials. Research studies on soft materials have been boosted due to their intriguing features such as light-weight, low modulus, stretchability, and a diverse range of functions including sensing, actuating, insulating and transporting. They are ideal materials for applications in smart textiles, flexible devices and wearable electronics. On the other hand, benefiting from the advances in materials science and chemistry, novel soft materials with tailored properties and functions could be prepared to fulfil the specific requirements. In this review, the current progress of soft materials, ranging from materials design, preparation and application are critically summarized based on three categories, namely gels, foams and elastomers. The chemical, physical and electrical properties and the applications are elaborated. This review aims to provide a comprehensive overview of soft materials to researchers in different disciplines.
Collapse
Affiliation(s)
- Jun Li
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Xiao-Ming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
43
|
Wang Q, Chen S, Jiang J, Liu J, Deng J, Ping X, Wei Z. Manipulating the surface composition of Pt–Ru bimetallic nanoparticles to control the methanol oxidation reaction pathway. Chem Commun (Camb) 2020; 56:2419-2422. [DOI: 10.1039/c9cc09423g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we achieve surface composition by precisely manipulating bimetallic Pt–Ru alloys from Pt-skin-rich to Ru-skin-rich materials and report that the MOR pathway can be controlled by tuning the location and content of Ru on the Pt–Ru alloy surface.
Collapse
Affiliation(s)
- Qingmei Wang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
| | - Siguo Chen
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
| | - Jian Jiang
- The State Key Laboratory of Fine Chemical Industry
- Dalian University of Technology
- Dalian
- China
| | - Jinxuan Liu
- The State Key Laboratory of Fine Chemical Industry
- Dalian University of Technology
- Dalian
- China
| | - Jianghai Deng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
| | - Xinyu Ping
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
| |
Collapse
|
44
|
Yang Y, Ma W, Zhang T, Ye D, Chen R, Zhu X. Pore engineering of graphene aerogels for vanadium redox flow batteries. Chem Commun (Camb) 2020; 56:14984-14987. [PMID: 33150342 DOI: 10.1039/d0cc06027e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The all-vanadium redox flow battery is considered to be a dispersive and non-perennial energy source due to its grid reliability, high efficiency, standalone modular design, and excellent cycling stability. However, the large vanadium ionic size and relatively high viscosity lead to poor compatibility with most carbon-based microporous electrodes, resulting in sluggish mass diffusion and unsatisfied capacitance retention. Herein, a novel cross-coupled porous graphene aerogel is proposed via the NaNO3-template pore engineering strategy. The microscopic observations and N2 adsorption-desorption isotherms validate the successful regulation of the surface area and porous structure, with the addition of different porogen contents (6.25-25 g L-1). The vanadium redox flow battery delivers a specific capacity of 163.4 mA h g-1 (5.6 A h L-1) at a current density of 25 mA cm-2, surpassing most previously reported batteries with a similar reactor volume. This method holds great promise for the better design and preparation of porous electrodes, and potential suitable applications.
Collapse
Affiliation(s)
- Yang Yang
- Ministry of Education Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Chongqing 400030, China.
| | | | | | | | | | | |
Collapse
|
45
|
Wang C, Kim J, Tang J, Na J, Kang Y, Kim M, Lim H, Bando Y, Li J, Yamauchi Y. Large‐Scale Synthesis of MOF‐Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources ReuseKey Laboratory of New Membrane MaterialsMinistry of Industry and Information TechnologySchool of Environmental and Biological EngineeringNanjing University of Science and Technology Nanjing 210094 P. R. China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
- Department of ChemistryKookmin University, 77 Jeongneung-ro, Seongbuk-gu Seoul 02707 South Korea
| | - Jing Tang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Yong‐Mook Kang
- Department of Materials Science and EngineeringKorea University Seoul 02841 Republic of Korea
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Hyunsoo Lim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
| | - Yoshio Bando
- Institute of Molecular PlusTianjin University No. 92 Weijin Road, Nankai District Tianjin 300072 P. R. China
- Australian Institute of Innovative Materials (AIIM)The University of Wollongong Squires Way North Wollongong NSW 2500 Australia
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources ReuseKey Laboratory of New Membrane MaterialsMinistry of Industry and Information TechnologySchool of Environmental and Biological EngineeringNanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical EngineeringCollege of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Plant & Environmental New ResourcesKyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|
46
|
Guo X, Wang S, Yang B, Xu Y, Liu Y, Pang H. Porous pyrrhotite Fe 7S 8 nanowire/SiO x/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. J Colloid Interface Sci 2019; 561:801-807. [PMID: 31767394 DOI: 10.1016/j.jcis.2019.11.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Iron sulfides, known as attractive anode materials for rechargeable lithium-ion batteries, have been extensively studied. Nevertheless, low electrical conductivity and huge volume expansion of iron sulfides hinder its practical applications. Herein, a novel method was developed to synthesize ternary porous Fe7S8 nanowires/SiOx/nitrogen-doped carbon matrix by facile hydrothermal method and subsequent sulfidation derived from bamboo leaves. The SiOx/nitrogen-doped carbon matrix can ensure the growth of nanowires, maintain the structural stability, improve the conductivity and provide improved capacity of Fe7S8. The 3D matrix structure and porous properties of Fe7S8 nanowires effectively relieve the volume change upon the insertion/extraction of Li+. The Fe7S8/SiOx/nitrogen-doped carbon anode exhibited a superior discharge capacity of 1060.2 mA h g-1 at 200 mA g-1 along with good long cycling performance of 415.8 mA h g-1 at the 1000th cycle at 5 A g-1. The facile strategy for preparing ternary Fe7S8 composites with superb LIB electrochemical performances demonstrates a great potential in electrochemical energy storage.
Collapse
Affiliation(s)
- Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Sibo Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Biao Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Yong Liu
- Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, Henan University of Science and Technology, Luoyang, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
47
|
Zhang H, Zhang D, Wang J, Xu W, Yang D, Jiao T, Zhang W, Liang P. Simultaneous removal of Hg 0 and H 2S at a high space velocity by water-resistant SnO 2/carbon aerogel. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:123-129. [PMID: 30849566 DOI: 10.1016/j.jhazmat.2019.02.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
A seaweed-templated pathway was developed for the controllable synthesis of SnO2/carbon aerogel for the simultaneous removal of Hg0 and H2S in natural gases, where the SnO2 nanoparticles with an outer diameter of 4-20 nm were highly dispersed and conjoined by graphitic carbon, forming a 3D core-shell structure with a developed pore network. The synthesized sorbent performed a complete removal of Hg0 and H2S at a high space velocity of 70,000 h-1 and showed resistance to water. At 5% breakthrough, the Hg0 and H2S capture capacities reached as high as 10.37 mg g-1 and 392.23 mg g-1, respectively, which are much higher than those of the existing commercial sorbents. More importantly, the spent sorbent could be easily regenerated without significant performance degradation over five cycles. The 3D interconnected macro- and mesopores are beneficial for the Hg0 and H2S removal at a high space velocity, and the core-shell structure is conducive to prevent poisoning from water. The Hg0 and H2S removal over the SnO2/aerogel conforms to the E-R mechanism, where H2S is first adsorbed and dissociated on the SnO2 surface to produce active sulfur species, and the adsorbed sulfur then reacts with gaseous Hg0 to form HgS.
Collapse
Affiliation(s)
- Huawei Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Dingyuan Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Juan Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Wenjia Xu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Queensland Micro - and Nanotechnology Centre (QMNC) Griffith University Nathan, Brisbane, Queensland 4111, Australia
| | - Tiantian Jiao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Wenrui Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Peng Liang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
48
|
Barrios E, Fox D, Li Sip YY, Catarata R, Calderon JE, Azim N, Afrin S, Zhang Z, Zhai L. Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers (Basel) 2019; 11:E726. [PMID: 31010008 PMCID: PMC6523290 DOI: 10.3390/polym11040726] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
Aerogels are one of the most interesting materials of the 21st century owing to their high porosity, low density, and large available surface area. Historically, aerogels have been used for highly efficient insulation and niche applications, such as interstellar particle capture. Recently, aerogels have made their way into the composite universe. By coupling nanomaterial with a variety of matrix materials, lightweight, high-performance composite aerogels have been developed for applications ranging from lithium-ion batteries to tissue engineering materials. In this paper, the current status of aerogel composites based on nanomaterials is reviewed and their application in environmental remediation, energy storage, controlled drug delivery, tissue engineering, and biosensing are discussed.
Collapse
Affiliation(s)
- Elizabeth Barrios
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - David Fox
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Yuen Yee Li Sip
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Jean E Calderon
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Sajia Afrin
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Zeyang Zhang
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
49
|
Peng L, Hung CT, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. J Am Chem Soc 2019; 141:7073-7080. [PMID: 30964289 DOI: 10.1021/jacs.9b02091] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional mesoporous carbons have attracted significant scientific and technological interest owning to their fascinating and excellent properties. However, controlled synthesis of functional mesoporous carbons with large tunable pore sizes, small particle size, well-designed functionalities, and uniform morphology is still a great challenge. Herein, we report a versatile nanoemulsion assembly approach to prepare N-doped mesoporous carbon nanospheres with high uniformity and large tunable pore sizes (5-37 nm). We show that the organic molecules (e.g., 1,3,5-trimethylbenzene, TMB) not only play an important role in the evolution of pore sizes but also significantly affect the interfacial interaction between soft templates and carbon precursors. As a result, a well-defined Pluronic F127/TMB/dopamine nanoemulsion can be facilely obtained in the ethanol/water system, which directs the polymerization of dopamine into highly uniform polymer nanospheres and their derived N-doped carbon nanospheres with diversely novel structures such as smooth, golf ball, multichambered, and dendritic nanospheres. The resultant uniform dendritic mesoporous carbon nanospheres show an ultralarge pore size (∼37 nm), small particle size (∼128 nm), high surface area (∼635 m2 g-1), and abundant N content (∼6.8 wt %), which deliver high current density and excellent durability toward oxygen reduction reaction in alkaline solution.
Collapse
Affiliation(s)
- Liang Peng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Chin-Te Hung
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Shuwen Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Xingmiao Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Xiaohang Zhu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Zaiwang Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Yun Tang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200433 , People's Republic of China
| |
Collapse
|