1
|
Iglhaut M, Freund P, Bach T. Photochemical Deracemization of N-Carboxyanhydrides En Route to Chiral α-Amino Acid Derivatives. Angew Chem Int Ed Engl 2025; 64:e202418873. [PMID: 39412185 DOI: 10.1002/anie.202418873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 11/14/2024]
Abstract
Readily accessible, racemic N-carboxyanhydrides (NCAs) of α-amino acids underwent a deracemization reaction upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst. The enantioenriched NCAs (up to 98 % ee) serve as activated α-amino acid surrogates and, due to their instability, they were directly converted into consecutive products. N-Protected α-amino acid esters were obtained after reaction with MeOH and N-benzoylation (14 examples, 70 %-quant., 82-96 % ee). Other consecutive reactions included amide (ten examples, 65 %-quant., 90-98 % ee) and peptide (three examples, 75-89 %, d. r.=97/3 to 94/6) bond formation. Limitations of the method relate for some NCAs to issues with solubility, photooxidation, and high configurational lability.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Philip Freund
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
2
|
Sun X, Li A, Li N, Ji G, Song Z. Facile Preparation of Heteropolypeptides from Crude Mixtures of α-Amino Acid N-Carboxyanhydrides. Biomacromolecules 2024; 25:6093-6102. [PMID: 39167691 DOI: 10.1021/acs.biomac.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heteropolypeptides bearing two or more functional side chains are promising polymeric materials for various biomedical applications. However, conventional preparation of heteropolypeptides relies on the synthesis and purification of each N-carboxyanhydride (NCA) monomer in a separate manner, which substantially increases the time and cost. Herein, we report the facile preparation of heteropolypeptides with up to 86% yield within several hours, which are obtained from a mixture of crude NCA monomers. The combination of n-hexane precipitation and biphasic segregation effectively removed >90% impurities from crude NCA mixtures, allowing for the successful polymerization process. Various heteropolypeptides with monomodal distribution and narrow dispersity were efficiently prepared, whose compositions were predetermined by the feeding ratios of amino acids. We believe that this work significantly simplifies the preparation of various heteropolypeptides, boosting the downstream studies of these promising materials.
Collapse
Affiliation(s)
- Xiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ning Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Wu Y, Chen K, Wang J, Chen M, Dai W, Liu R. Recent Advances and Future Developments in the Preparation of Polypeptides via N-Carboxyanhydride (NCA) Ring-Opening Polymerization. J Am Chem Soc 2024; 146:24189-24208. [PMID: 39172171 DOI: 10.1021/jacs.4c05382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Polypeptides have the same or similar backbone structures as proteins and peptides, rendering them as suitable and important biomaterials. Amino acid N-carboxyanhydrides (NCA) ring-opening polymerization has been the most efficient strategy for polypeptide preparation, with continuous advance in the design of initiators, catalysts and reaction conditions. This Perspective first summarizes the recent progress of NCA synthesis and purification. Subsequently, we focus on various initiators for NCA polymerization, catalysts for accelerating polymerization or enhancing the controllability of polymerization, and recent advances in the reaction approach of NCA polymerization. Finally, we discuss future research directions and open challenges.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangzhou Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhang Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhui Dai
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Terada M, Iwasaki Z, Yazaki R, Umemiya S, Kikuchi J. Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate. Beilstein J Org Chem 2024; 20:1973-1980. [PMID: 39161711 PMCID: PMC11331546 DOI: 10.3762/bjoc.20.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
A flow photochemical reaction system for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence was developed, which utilizes in situ-generated 2-benzopyrylium intermediates as the photoredox catalyst and electrophilic substrates. The key 2-benzopyrylium intermediates were generated in the flow reaction system through the intramolecular cyclization of ortho-carbonyl alkynylbenzene derivatives by the π-Lewis acidic metal catalyst AgNTf2 and the subsequent proto-demetalation with trifluoroacetic acid. The 2-benzopyrylium intermediates underwent further photoreactions with benzyltrimethylsilane derivatives as the donor molecule in the flow photoreactor to provide 1H-isochromene derivatives in higher yields in most cases than the batch reaction system.
Collapse
Affiliation(s)
- Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Zen Iwasaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ryohei Yazaki
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shigenobu Umemiya
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Capelôa L, Miravet Martí R, Duro-Castaño A, Nebot VJ, Barz M. Utility of Triethyloxonium Tetrafluoroborate for Chloride Removal during Sarcosine N-Carboxyanhydride Synthesis: Improving NCA Purity. Chemistry 2024; 30:e202304375. [PMID: 38563634 DOI: 10.1002/chem.202304375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.
Collapse
Affiliation(s)
- Leon Capelôa
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), University Leiden, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz (JGU), Obere Zahlbacher Straße 63, 55131, Mainz, Germany
| | | | | | - Vicent J Nebot
- Curapath, Av. Benjamin Franklin 19, 46980, Paterna, Valencia, Spain
| | - Matthias Barz
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), University Leiden, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz (JGU), Obere Zahlbacher Straße 63, 55131, Mainz, Germany
| |
Collapse
|
6
|
Matsuura Y, Fuse S. Rapid in situ generation of 2-(halomethyl)-5-phenylfuran and nucleophilic addition in a microflow reactor. Org Biomol Chem 2024; 22:3448-3452. [PMID: 38595317 DOI: 10.1039/d4ob00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
2,5-Disubstituted furans are frequently found in pharmaceuticals and bioactive natural products. Nucleophilic substitution reactions on the carbon atom adjacent to the furan ring are useful for producing various furan derivatives. However, the formation of 5-substituted 2-halomethylfuran and the subsequent nucleophilic substitution reactions are often limited by severe undesired reactions caused by the highly reactive halomethylfurans. This paper reports the successful rapid synthesis of various 2,5-disubstituted furans using microflow technology, which suppresses undesired reactions including dimerization and ring opening of the furans. We observed that Brønsted acids had a significant effect on the nucleophilic substitution reaction and the use of HBr and HI gave the best results. A plausible mechanism of the Brønsted acid-mediated nucleophilic substitutions in the developed approach was proposed.
Collapse
Affiliation(s)
- Yuma Matsuura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
7
|
Sugisawa N, Nakabayashi K, Sugisawa H, Fuse S. One-Flow Syntheses of Unsymmetrical Sulfamides and N-Substituted Sulfamate Esters. Org Lett 2024; 26:2739-2744. [PMID: 37306668 DOI: 10.1021/acs.orglett.3c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We developed one-flow syntheses of unsymmetrical sulfamides and N-substituted sulfamate esters by changing a nucleophile and a tertiary amine from inexpensive and commercially available chlorosulfonic acid. In the synthesis of N-substituted sulfamate esters, unexpected symmetrical sulfite formation was suppressed by changing the tertiary amine. The effect of tertiary amines was proposed using linear regression. Our approach rapidly (≤90 s) provides desired products containing acidic and/or basic labile groups without tedious purification under mild (20 °C) conditions.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kohei Nakabayashi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroki Sugisawa
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, 227-8502, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Yamashita S, Azuma K, Tanaka Y, Kimura S, Kiriyama A. Variations in the inner core affect the pharmacokinetics of indomethacin-encapsulated polymeric micelles. Int J Pharm 2024; 654:123933. [PMID: 38403090 DOI: 10.1016/j.ijpharm.2024.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Hydrophobic ion pairing (HIP) is a drug encapsulation technology that uses electrostatic interactions between a drug and an additive. However, although polymeric micelles can encapsulate hydrophobic drugs in the core, the encapsulated drug often leaks. Therefore, we designed polymeric micelles with HIP functionalized in a hydrophobic inner core using three diblock copolymers comprising polypeptides with different ratios of polar and hydrophobic amino acids and polyethylene glycol (PEG) to encapsulate indomethacin (IND). The three IND-encapsulated HIP micelles showed different area under the curve (AUC) values as an index of blood retention after intravenous injection in mice. Despite having the same PEG shell, IND-PEG-poly(H/F)n showed a 1.56-fold higher AUC than IND-PEG-poly(D/F)n. PEG interface morphologies were evaluated to determine the differences in pharmacokinetic parameters caused by changes in inner core HIP patterns. The micellarized diblock copolymer was desorbed from IND-PEG-poly(D/F)n due to electrostatic repulsion between IND and the diblock copolymer comprising aspartic acid. Our results suggest that changes in the HIP patterns of the micelle inner core affected the PEG interface morphologies, such as PEG density and diblock copolymer desorption from micelles. These phenomena might lead to changes in the interaction of plasma proteins and drug dispositions.
Collapse
Affiliation(s)
- Shugo Yamashita
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
| | - Karen Azuma
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yuka Tanaka
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Shunsuke Kimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
9
|
Chen Y, Song Y, Zhu X, Dong CM, Chen M. Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies. POLYM REV 2024; 64:528-574. [DOI: 10.1080/15583724.2023.2281462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/04/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
10
|
Nakabayashi K, Kitamura H, Fuse S. Microflow, Sequential Coupling and Cyclization Approach for Synthesis of Cyclic Phosphotriesters from PCl 3. Chem Asian J 2024:e202400256. [PMID: 38556466 DOI: 10.1002/asia.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
An approach for the synthesis of cyclic phosphotriesters with various ring sizes (5- to 8-membered rings) from phosphorus trichloride and diols was developed. The major challenge in developing this approach is the suppression of the undesired reactions caused by substrates containing multiple highly reactive sites. These undesired reactions were successfully suppressed by microflow technology, which can precisely control the reaction time and temperature. Two optimal conditions were developed, depending on the speed of cyclization. Fifteen cyclic phosphotriesters and their analogs were synthesized. A plausible mechanism for suppressing undesired reactions is proposed.
Collapse
Affiliation(s)
- Kohei Nakabayashi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Kitamura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
11
|
Matsuura Y, Fuse S. Micro-flow heteroatom alkylation via TfOH-mediated rapid in situ generation of carbocations and subsequent nucleophile addition. Chem Commun (Camb) 2024; 60:2497-2500. [PMID: 38285468 DOI: 10.1039/d3cc06308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A rapid nucleophilic substitution reaction was developed using carbocations generated from diarylmethanol and trifluoromethanesulfonic acid. Undesired reactions caused by the carbocations were suppressed, presumably due to the rapid and uniform generation of carbocations and the subsequent rapid and uniform distribution of nucleophiles by the micro-flow technology.
Collapse
Affiliation(s)
- Yuma Matsuura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
12
|
Tanaka Y, Kitamura H, Fuse S. Microflow Synthesis of Unsymmetrical H-Phosphonates via Sequential and Direct Substitution of Chlorine Atoms in Phosphorus Trichloride with Alkoxy Groups. J Org Chem 2024; 89:1777-1783. [PMID: 38163754 DOI: 10.1021/acs.joc.3c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Unsymmetrical H-phosphonates were synthesized by a rapid (<15 s) and mild (20 °C) process in a microflow reactor as the first example of the sequential direct substitution of the chlorine atoms in PCl3 with alkoxyl/aryloxy groups using equivalent amounts of PCl3 and alcohols. The optimal base concentration differed in each step, presumably attributed to differences in the Brønsted basicity of the electrophilic intermediates. Phosphite hydrolysis was observed, and the structure-hydrolysis relationship was quantitatively evaluated.
Collapse
Affiliation(s)
- Yuma Tanaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroshi Kitamura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Fuse S, Kanda S, Masui H. One-Flow Synthesis of Substituted Indoles via Sequential 1,2-Addition/Nucleophilic Substitution of Indolyl-3-Carbaldehydes. Chem Asian J 2024; 19:e202300909. [PMID: 37962410 DOI: 10.1002/asia.202300909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Substituted indoles are important as drugs. A number of valuable indoles have been synthesized via nucleophilic substitution at the 3'-position of indoles. However, the preparation of an indolylmethyl electrophile containing a tertiary carbon at the 3'-position and its subsequent nucleophilic substitution are challenging owing to the instability of the electrophile. Herein, we demonstrated the rapid one-flow synthesis of indoles via sequential 1,2-addition/nucleophilic substitution of indolyl-3-carbaldehydes. The use of a microflow technology helped in suppressing the undesired reactions caused by the unstable intermediates, resulting in significantly higher yields and reproducibility compared to those under batch conditions. A crown ether was effective when 1-alkylindole-3-carboxaldehyde was used as a substrate. However, the crown ether exerted a detrimental effect when 1H-indole-3-carboxaldehyde was used. A total of 15 structurally diverse indole derivatives were obtained in generally acceptable to good yields.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Sena Kanda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
14
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Sugisawa N, Ando A, Fuse S. Rapid and column-chromatography-free peptide chain elongation via a one-flow, three-component coupling approach. Chem Sci 2023; 14:6986-6991. [PMID: 37389269 PMCID: PMC10306071 DOI: 10.1039/d3sc01333b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Short peptides are extremely important as drugs and building blocks for the syntheses of longer peptides. Both solid- and liquid-phase peptide syntheses suffer from a large number of synthetic steps, high cost, and/or tedious purification. Here, we developed a rapid, mild, inexpensive, and column-chromatography-free peptide chain elongation via a one-flow, three-component coupling (3CC) approach that is the first to use α-amino acid N-carboxy anhydrides (α-NCAs) both as electrophiles and nucleophiles. We demonstrated the high-yielding and column-chromatography-free syntheses of 17 tripeptides, as well as a gram-scale synthesis of a tripeptide. The total synthesis of beefy meaty peptide was achieved by repeating the 3CC approach with the addition of only one column chromatographic purification. We also demonstrated a one-flow tripeptide synthesis via in situ preparation of α-NCA starting from three readily available protected amino acids. With this study, we achieved dramatic reductions in both time and cost compared with typical solid-phase synthesis.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| | - Akira Ando
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
16
|
Masui H, Kanda S, Fuse S. Verification of preparations of (1H-indol-3-yl)methyl electrophiles and development of their microflow rapid generation and substitution. Commun Chem 2023; 6:47. [PMID: 36871078 PMCID: PMC9985609 DOI: 10.1038/s42004-023-00837-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although highly reactive (1H-indol-3-yl)methyl electrophiles such as (1H-indol-3-yl)methyl halides are potential precursors for the synthesis of various indole derivatives, some researchers have reported difficulties in their preparation due to concomitant undesired dimerization/oligomerization. Nevertheless, there have been some reports on the preparation of (1H-indol-3-yl)methyl halides. To resolve this contradiction, all the previously reported preparations of (1H-indol-3-yl)methyl halides were examined. However, we could not reproduce any of these preparations, and we revised several structures of indole derivatives. Here we show the rapid (0.02 s) and mild (25 °C) generation of an (1H-indol-3-yl)methyl electrophile that enables the rapid (0.1 s) and mild (25 °C) nucleophilic substitution in a microflow reactor. Eighteen unprotected indole analogues can be successfully synthesized using the developed microflow nucleophilic substitution with various nucleophiles.
Collapse
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Sena Kanda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
17
|
Haji Abbasi Somehsaraie M, Fathi Vavsari V, Kamangar M, Balalaie S. Chemical Wastes in the Peptide Synthesis Process and Ways to Reduce Them. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123879. [PMID: 36942077 PMCID: PMC10024322 DOI: 10.5812/ijpr-123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In recent decades, a growing interest has been observed among pharmaceutical companies in producing and selling 80 FDA-approved therapeutic peptides. However, there are many drawbacks to peptide synthesis at the academic and industrial scales, involving the use of large amounts of highly hazardous coupling reagents and solvents. This review focuses on hideous and observant wastes produced before, during, and after peptide synthesis and proposes some solutions to reduce them.
Collapse
Affiliation(s)
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Kamangar
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
- Corresponding Author: Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
18
|
Sugimoto T, Kuwahara T, Liang F, Wang H, Tsuda A. Photo-On-Demand Synthesis of α-Amino Acid N-Carboxyanhydrides with Chloroform. ACS OMEGA 2022; 7:39250-39257. [PMID: 36340075 PMCID: PMC9631898 DOI: 10.1021/acsomega.2c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Amino acid N-carboxyanhydrides (NCAs) are conventionally synthesized from α-amino acids and phosgene. The present study reports in situ photo-on-demand phosgenation reactions of amino acids with CHCl3 for synthesizing NCAs. A series of NCAs were obtained on a gram scale upon photo-irradiation of a mixture solution of CHCl3 and CH3CN containing an amino acid at 60-70 °C under O2 bubbling. This method presents a safe and convenient reaction controlled by light without special apparatuses and reagents.
Collapse
|
19
|
Masui H, Fuse S. Micro-Flow <i>N</i>-Acylation Using Highly Electrophilic Acyl Ammonium Cations for Peptide and Urethane-Protected <i>N</i>-Carboxyanhydride Syntheses. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Kitamura H, Otake Y, Sugisawa N, Sugisawa H, Ida T, Nakamura H, Fuse S. Sequential Nucleophilic Substitution of Phosphorus Trichloride with Alcohols in a Continuous-Flow Reactor and Consideration of a Mechanism for Reduced Over-reaction through the Addition of Imidazole. Chemistry 2022; 28:e202200932. [PMID: 35481688 DOI: 10.1002/chem.202200932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 12/28/2022]
Abstract
We demonstrate a sequential nucleophilic substitution of highly electrophilic and inexpensive phosphorus trichloride with three different alcohols in a continuous-flow reactor. A variety of alcohols including ones that contained acid- and/or basic-labile functionalities were rapidly reacted. A over nucleophilic substitution that occurred during reaction of the second alcohol was suppressed by the addition of imidazole. Density functional theory calculations of the sequential nucleophilic substitutions of alcohols were performed both with and without imidazole, and Berry pseudorotation was suggested as a rate-limiting step in both cases. Herein, we discuss the reasons for the decreased selectivity in the absence of imidazole as well as those for improved selectivity in the presence of imidazole during the second nucleophilic substitution.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroki Sugisawa
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomonori Ida
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
22
|
Muramatsu W, Yamamoto H. An economical approach for peptide synthesis via regioselective C-N bond cleavage of lactams. Chem Sci 2022; 13:6309-6315. [PMID: 35733900 PMCID: PMC9159104 DOI: 10.1039/d2sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
An economical, solvent-free, and metal-free method for peptide synthesis via C-N bond cleavage using lactams has been developed. The method not only eliminates the need for condensation agents and their auxiliaries, which are essential for conventional peptide synthesis, but also exhibits high atom economy. The reaction is versatile because it can tolerate side chains bearing a range of functional groups, affording up to >99% yields of the corresponding peptides without racemisation or polymerisation. Moreover, the developed strategy enables peptide segment coupling, providing access to a hexapeptide that occurs as a repeat sequence in spider silk proteins.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
23
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
24
|
Okabe R, Sugisawa N, Fuse S. A micro-flow rapid dual activation approach for urethane-protected α-amino acid N-carboxyanhydride synthesis. Org Biomol Chem 2022; 20:3303-3310. [PMID: 35229099 DOI: 10.1039/d2ob00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study demonstrated the rapid dual activation (10 s, 20 °C) of a combination of an α-amino acid N-carboxyanhydride and alkyl chloroformate in the synthesis of a urethane-protected α-amino acid N-carboxyanhydride in a micro-flow reactor. The key to success was the combined use of two amines that activated both substrates with proper timing. Three amines, i-Pr2NEt, Me2NBn, or N-ethylmorpholine, were used with pyridine in accordance with the steric bulkiness of a side chain in the α-amino acid N-carboxyanhydride. A variety of 16 urethane-protected α-amino acid N-carboxyanhydrides were synthesized in high yields. The role of amines was investigated based on the measurement of the time-dependent (0.5 to 10 s) decrease of α-amino acid N-carboxyanhydrides and alkyl chloroformates in the presence of amines via flash mixing technology using a micro-flow reactor. It was suggested that the in situ generated acylpyridinium cation was highly active and less prone to causing undesired decomposition compared with the acylammonium cation examined in this study. Thus, even at a very low concentration, the acylpyridinium cation facilitated the desired coupling reaction.
Collapse
Affiliation(s)
- Ren Okabe
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
25
|
Deleray AC, Kramer JR. Biomimetic Glycosylated Polythreonines by N-Carboxyanhydride Polymerization. Biomacromolecules 2022; 23:1453-1461. [PMID: 35104406 DOI: 10.1021/acs.biomac.2c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylated threonine (Thr) is a structural motif found in seemingly disparate natural proteins from deep-sea collagen to mucins. Synthetic mimics of these important proteins are of great interest in biomedicine. Such materials also provide ready access to probe the contributions of individual amino acids to protein structure in a controlled and tunable manner. N-Carboxyanhydride (NCA) polymerization is one major route to such biomimetic polypeptides. However, challenges in the preparation and polymerization of Thr NCAs have impeded obtaining such structures. Here, we present optimized routes to several glycosylated and acetylated Thr NCAs of high analytical purity. Transition metal catalysis produced tunable homo-, statistical, and block-polypeptides with predictable chain lengths and low dispersities. We conducted structural work to examine their aqueous conformations and found that a high content of free OH Thr induces the formation of water-insoluble β-sheets. However, glycosylation appears to induce a polyproline II-type helical conformation, which sheds light on the role of glyco-Thr in rigid proteins such as mucins and collagen.
Collapse
Affiliation(s)
- Anna C Deleray
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021; 60:26063-26071. [PMID: 34569145 DOI: 10.1002/anie.202103540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/23/2021] [Indexed: 01/16/2023]
Abstract
We design the tetraalkylammonium carboxylate-initiated superfast polymerization on α-amino acid N-carboxyanhydrides (NCA) for efficient synthesis of polypeptides. Carboxylates, as a new class of initiator for NCA polymerization, can initiate the superfast NCA polymerization without the need of extra catalysts and the polymerization can be operated in open vessels at ambient condition without the use of glove box. Tetraalkylammonium carboxylate-initiated polymerization on NCA easily affords block copolymers with at least 15 blocks. Moreover, this method avoids tedious purification steps and enables direct polymerization on crude NCAs in aqueous environments to prepare polypeptides and one-pot synthesis of polypeptide nanoparticles. These advantages and the mild polymerization condition of tetraalkylammonium carboxylate-initiated NCA polymerization imply its great potential in functional exploration and application of polypeptides.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiacheng Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
27
|
Wu Y, Chen K, Wu X, Liu L, Zhang W, Ding Y, Liu S, Zhou M, Shao N, Ji Z, Chen J, Zhu M, Liu R. Superfast and Water‐Insensitive Polymerization on α‐Amino Acid
N
‐Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Xue Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Weiwei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shiqi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| | - Jiacheng Chen
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Minghui Zhu
- School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
28
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
29
|
Tian ZY, Zhang Z, Wang S, Lu H. A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat Commun 2021; 12:5810. [PMID: 34608139 PMCID: PMC8490447 DOI: 10.1038/s41467-021-25689-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/20/2021] [Indexed: 01/04/2023] Open
Abstract
A great hurdle in the production of synthetic polypeptides lies in the access of N-carboxyanhydrides (NCA) monomers, which requires dry solvents, Schlenk line/gloveboxe, and protection of side-chain functional groups. Here we report a robust method for preparing unprotected NCA monomers in air and under moisture. The method employs epoxy compounds as ultra-fast scavengers of hydrogen chloride to allow assisted ring-closure and prevent NCA from acid-catalyzed decomposition under moist conditions. The broad scope and functional group tolerance of the method are demonstrated by the facile synthesis of over 30 different α/β-amino acid NCAs, including many otherwise inaccessible compounds with reactive functional groups, at high yield, high purity, and up to decagram scales. The utility of the method and the unprotected NCAs is demonstrated by the facile synthesis of two water-soluble polypeptides that are promising candidates for drug delivery and protein modification. Overall, our strategy holds great potential for facilitating the synthesis of NCA and expanding the industrial application of synthetic polypeptides.
Collapse
Affiliation(s)
- Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhengchu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
30
|
Abstract
A simple phosgene- and halogen-free method for synthesizing α-amino acid N-carboxyanhydrides (NCAs) is described. The reaction between Boc-protected α-amino acids and T3P reagent gave the corresponding NCA derivatives in good yield and purity with no detectable epimerization. The process is safe, is easy-to-operate, and does not require any specific installation. It generates nontoxic, easy to remove byproducts. It can apply to the preparation of NCAs for the on-demand on-site production of either little or large quantities.
Collapse
Affiliation(s)
- Guillaume Laconde
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, IBMM UMR 5247 CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, 15 Av. C. Flahault, 34093 Montpellier, France
| |
Collapse
|
31
|
Fuse S, Komuro K, Otake Y, Masui H, Nakamura H. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry 2021; 27:7525-7532. [PMID: 33496974 DOI: 10.1002/chem.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/23/2022]
Abstract
Lactams are cyclic amides that are indispensable as drugs and as drug candidates. Conventional lactamization includes acid-mediated and coupling-agent-mediated approaches that suffer from narrow substrate scope, much waste, and/or high cost. Inexpensive, less-wasteful approaches mediated by highly electrophilic reagents are attractive, but there is an imminent risk of side reactions. Herein, a methods using highly electrophilic triphosgene in a microflow reactor that accomplishes rapid (0.5-10 s), mild, inexpensive, and less-wasteful lactamization are described. Methods A and B, which use N-methylmorpholine and N-methylimidazole, respectively, were developed. Various lactams and a cyclic peptide containing acid- and/or heat-labile functional groups were synthesized in good to high yields without the need for tedious purification. Undesired reactions were successfully suppressed, and the risk of handling triphosgene was minimized by the use of microflow technology.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keiji Komuro
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
32
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
33
|
Abstract
Developments that result in high-yielding, low-cost, safe, scalable, and less-wasteful processes are the most important goals in synthetic organic chemistry. Continuous-flow reactions have garnered much attention due to many advantages over conventional batch reactions that include precise control of short reaction times and temperatures, low risk in handling dangerous compounds, and ease in scaling up synthesis. Combinations of continuous-flow reactions with homogeneous, metal-free catalysts further enhances advantages that include low-cost and ready availability, low toxicity, higher stability in air and water, and increased synthetic efficiency due to the avoidance of the time-consuming removal of toxic metal traces. This review summarizes recently reported continuous-flow reactions using metal-free homogeneous catalysts and classifies them either as acidic catalysts, basic catalysts, or miscellaneous catalysts. In addition, we compare the results between continuous-flow conditions and conventional batch conditions to reveal the advantages of using flow reactions with metal-free homogeneous catalysts.
Collapse
|
34
|
Synthesis of poly(Asparagine-co-phenylalanine) copolymers, analogy with thermosensitive poly(acrylamide-co-styrene) copolymers and formation of PEGylated nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Smith SN, Craig R, Connon SJ. Divergent Synthesis of γ-Amino Acid and γ-Lactam Derivatives from meso-Glutaric Anhydrides. Chemistry 2020; 26:13378-13382. [PMID: 32996163 DOI: 10.1002/chem.202003280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/18/2022]
Abstract
The first divergent synthesis of both γ-amino acid and γ-lactam derivatives from meso-glutaric anhydrides is described. The organocatalytic desymmetrisation with TMSN3 relies on controlled generation of a nucleophilic ammonium azide species mediated by a polystyrene-bound base to promote efficient silylazidation. After Curtius rearrangement of the acyl azide intermediate to access the corresponding isocyanate, hydrolysis/alcoholysis provided uniformly high yields of γ-amino acids and their N-protected counterparts. The same intermediates were shown to undergo an unprecedented decarboxylation-cyclisation cascade in situ to provide synthetically useful yields of γ-lactam derivatives without using any further activating agents. Mechanistic insights invoke the intermediacy of an unconventional γ-N-carboxyanhydride (γ-NCA) in the latter process. Among the examples prepared using this transformation are 8 APIs/molecules of considerable medicinal interest.
Collapse
Affiliation(s)
- Simon N Smith
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Ryan Craig
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
36
|
Xue T, Song Z, Wang Y, Zhu B, Zhao Z, Tan Z, Wang X, Xia Y, Cheng J. Streamlined Synthesis of PEG-Polypeptides Directly from Amino Acids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Vrijsen JH, Rasines Mazo A, Junkers T, Qiao GG. Accelerated Polypeptide Synthesis via
N
‐Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromol Rapid Commun 2020; 41:e2000071. [DOI: 10.1002/marc.202000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen Hendrik Vrijsen
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
| | - Alicia Rasines Mazo
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Tanja Junkers
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
- Polymer Reaction Design Group School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Greg Guanghua Qiao
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
38
|
Kawamura J, Kitamura H, Otake Y, Fuse S, Nakamura H. Size-Controllable and Scalable Production of Liposomes Using a V-Shaped Mixer Micro-Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Kawamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Kitamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinichiro Fuse
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
39
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
40
|
Sugisawa N, Nakamura H, Fuse S. Micro-flow synthesis of β-amino acid derivatives via a rapid dual activation approach. Chem Commun (Camb) 2020; 56:4527-4530. [PMID: 32242563 DOI: 10.1039/d0cc01403f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid dual activation (≤3.3 s) of both β-amino acid N-carboxy anhydride and alkyl chloroformate for the synthesis of a β-amino acid-derived scaffold was demonstrated. The key to success was the use of rapid mixing enabled by using a micro-flow reactor. The one-flow synthesis of 22 β-amino acid derivatives was achieved.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | | | | |
Collapse
|
41
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020; 59:10924-10928. [DOI: 10.1002/anie.202003831] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
42
|
Sugisawa N, Otake Y, Nakamura H, Fuse S. Single-Step, Rapid, and Mild Synthesis of β-Amino Acid N-Carboxy Anhydrides Using Micro-Flow Technology. Chem Asian J 2020; 15:79-84. [PMID: 31778028 DOI: 10.1002/asia.201901429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Indexed: 01/25/2023]
Abstract
β-Amino acid N-carboxy anhydrides (β-NCAs) are rarely used in the synthesis of β-peptides, which is due mainly to the poor availability of these potentially useful substrates. Herein, we describe the heretofore challenging synthesis of β-NCAs via a single-step, rapid, and mild formation using pH flash switching and flash dilution, which are aspects of micro-flow technology. We synthesized 15 β-NCAs in good to excellent yields that included acid-labile β-NCAs that cannot be readily synthesized using the conventional Leuchs approach. Scaled-up synthesis using this process can be readily achieved via continuous operation.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Present address: Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
43
|
Breen CP, Jamison TF. Continuous Flow Synthesis of ACE Inhibitors From N-Substituted l-Alanine Derivatives. Chemistry 2019; 25:14527-14531. [PMID: 31625640 DOI: 10.1002/chem.201904400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/25/2022]
Abstract
A strategy for the continuous flow synthesis of angiotensin converting enzyme (ACE) inhibitors is described. An optimization effort guided by in situ IR analysis resulted in a general amide coupling approach facilitated by N-carboxyanhydride (NCA) activation that was further characterized by reaction kinetics analysis in batch. The three-step continuous process was demonstrated by synthesizing 8 different ACE inhibitors in up to 88 % yield with throughputs in the range of ≈0.5 g h-1 , all while avoiding both isolation of reactive intermediates and process intensive reaction conditions. The process was further developed by preparing enalapril, a World Health Organization (WHO) essential medicine, in an industrially relevant flow platform that scaled throughput to ≈1 g h-1 .
Collapse
Affiliation(s)
- Christopher P Breen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Timothy F Jamison
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
Fuse S, Masuda K, Otake Y, Nakamura H. Peptide‐Chain Elongation Using Unprotected Amino Acids in a Micro‐Flow Reactor. Chemistry 2019; 25:15091-15097. [DOI: 10.1002/chem.201903531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Koshiro Masuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
45
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Zhong Y, Tong R. Living Ring-Opening Polymerization of O-Carboxyanhydrides: The Search for Catalysts. Front Chem 2018; 6:641. [PMID: 30622943 PMCID: PMC6308324 DOI: 10.3389/fchem.2018.00641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Biodegradable poly(α-hydroxy acids) can be synthesized by means of ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs). Numerous catalysts have been developed to control the living polymerization of OCAs. Here we review the rationale for the use of OCA, the desirable features for and important attributes of catalysts for the ROP of OCAs, and specific examples that have been developed.
Collapse
Affiliation(s)
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
47
|
|