1
|
Zhao B, Hu X, Liao Y, Chen Y, Zhang Z, Xu Y, Li W, Xia S, Zhang J, Jiang Y. Electronic-ionic bi-functional conduction β-Li 3PS 4-coated graphene hollow spheres as a highly stable lithium metal anode skeleton. J Colloid Interface Sci 2024; 675:226-235. [PMID: 38968639 DOI: 10.1016/j.jcis.2024.06.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Although Li metal is considered the most potential anode for Li based batteries, the repeatedly large volume variation and low Coulombic efficiency (CE) are still serious challenges for commercial application. Herein, the interconnect closed hollow graphene spheres with electronic-ionic bi-functional conduction network containing Li4.4Sn nanoparticles loaded internally and β-Li3PS4 solid electrolyte layer coated externally (β-LPS/SG/Li4.4Sn) is proposed to achieve uniform and dense Li deposition. Density functional theory (DFT) calculation and experimental results show that Li4.4Sn owns larger Li binding energy and lower nucleation overpotential than spherical graphene (SG), thus being able to guide Li traversing and depositing inside the hollow spheres. The Tafel curves, Li+ diffusion activation energy and experimental results reveal that the β-Li3PS4 coating layer significantly improves the ionic conductivity of the negative skeleton, covers the defect sites on the SG surface, provides continuous ion transmission channels and accelerates Li+ migration rate. The synergy of both can inhibit the formation of dendritic Li and reduce side reaction between freshly deposited lithium and the organic electrolyte. It's found that Li is preferentially deposited within the SG, evenly deposited on the spherical shell surface until it's completely filled to obtain a dense lithium layer without tip effect. As a result, the β-LPS/SG/Li4.4Sn anode exhibits a long life of up to 2800 h, an extremely low overpotential (∼13 mV) and a high CE of 99.8 % after 470 cycles. The LiFePO4-based full cell runs stably with a high capacity retention of 86.93 % after 800 cycles at 1C. It is considered that the novel structure design of Li anode skeleton with electron-ionic bi-functional conduction is a promising direction to construct long-term stable lithium metal anodes.
Collapse
Affiliation(s)
- Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaofeng Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yalan Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zheng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenrong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Ariga K. Liquid-Liquid Interfacial Nanoarchitectonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305636. [PMID: 37641176 DOI: 10.1002/smll.202305636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha Kashiwa, Tokyo, 277-8561, Japan
| |
Collapse
|
3
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
4
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
5
|
Yamaguchi J, Sugita S, Otsuki Y, Tsukamoto T, Shibasaki Y, Fujimori A. Formation Behavior of Monolayers on the Water Surface of Water-Soluble Thermoplastic and Insoluble-Thermosetting Copolymers with Hyperbranched Units Containing s-Benzenetricarbamide Cores. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Maeda T, Mori T, Ikeshita M, Ma SC, Muller G, Ariga K, Naota T. Vortex Flow-controlled Circularly Polarized Luminescence of Achiral Pt(II) Complex Aggregates Assembled at the Air-Water Interface. SMALL METHODS 2022; 6:e2200936. [PMID: 36287093 DOI: 10.1002/smtd.202200936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Indexed: 05/27/2023]
Abstract
Circularly polarized luminescence (CPL) has been researched for various applications by control of characteristics such as chirality and magnitude. Supramolecular chirality has been prepared by vortex motion as a mechanical stimulus; however, CPL has yet to be controlled precisely and reproducibly. In this work, the first precise control of CPL under vortex flow conditions at an air-water interface is reported. The supramolecular chirality of aggregates consisting of an achiral trans-bis(salicylaldiminato)Pt(II) complex bearing hexadecyl chains is induced and controlled with vortex flow at the air-water interface, whereas the complex naturally forms an achiral amorphous solid with non-chiroptical properties under non-vortex conditions. The CPL direction and magnitude (glum value) of the Pt(II) complex aggregates can be adjusted precisely according to the vortex conditions, including the rotatory direction and flow rate. Vortex-flow-induced emission enhancement is also observed upon an increase in the rate of the vortex flow.
Collapse
Affiliation(s)
- Takatoshi Maeda
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Taizo Mori
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Shing Cho Ma
- Department of Chemistry, San José State University, San José, California, 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, California, 95192-0101, USA
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
8
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
10
|
Ishii M, Mori T, Nakanishi W, Hill JP, Sakai H, Ariga K. Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6481-6490. [PMID: 35549351 DOI: 10.1021/acs.langmuir.2c00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An air-water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air-water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir-Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air-water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure-molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air-water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air-water interface.
Collapse
Affiliation(s)
- Masaki Ishii
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Waka Nakanishi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jonathan P Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hideki Sakai
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Katsuhiko Ariga
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
11
|
Ariga K. Mechano-Nanoarchitectonics: Design and Function. SMALL METHODS 2022; 6:e2101577. [PMID: 35352500 DOI: 10.1002/smtd.202101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Indexed: 05/27/2023]
Abstract
Mechanical stimuli have rather ambiguous and less-specific features among various physical stimuli, but most materials exhibit a certain level of responses upon mechanical inputs. Unexplored sciences remain in mechanical responding systems as one of the frontiers of materials science. Nanoarchitectonics approaches for mechanically responding materials are discussed as mechano-nanoarchitectonics in this review article. Recent approaches on molecular and materials systems with mechanical response capabilities are first exemplified with two viewpoints: i) mechanical control of supramolecular assemblies and materials and ii) mechanical control and evaluation of atom/molecular level structures. In the following sections, special attentions on interfacial environments for mechano-nanoarchitectonics are emphasized. The section entitled iii) Mechanical Control of Molecular System at Dynamic Interface describes coupling of macroscopic mechanical forces and molecular-level phenomena. Delicate mechanical forces can be applied to functional molecules embedded at the air-water interface where operation of molecular machines and tuning of molecular receptors upon macroscopic mechanical actions are discussed. Finally, the important role of the interfacial media are further extended to the control of living cells as described in the section entitled iv) Mechanical Control of Biosystems. Pioneering approaches on cell fate regulations at liquid-liquid interfaces are discussed in addition to well-known mechanobiology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
12
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
13
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
14
|
Ariga K. Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. ANAL SCI 2021; 37:1331-1348. [PMID: 33967184 DOI: 10.2116/analsci.21r003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For materials development with high-level structural regulations, the emerging concept of nanoarchitectonics has been proposed. Analytical sciences, including sensing/detection, sensors, and related device construction, are active targets of the nanoarchitectonics approach. This review article focuses on the two features of interface and nanostructures are especially focused to discuss nanoarchitectonics for analytical science. Especially, two selected topics, (i) analyses on molecular sensing at interfaces and (ii) sensors using self-assembled supramolecular nanostructures, are exemplified in this review article. In addition to recent general examples, specific molecular recognition at the air-water interface and fabrication of sensing materials upon self-assembly of fullerene units are discussed. Descriptions of these examples indicate that nanoarchitectonics and analytical science share common benefits, and therefore, developments in both research fields should lead to synergies.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS).,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
15
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
16
|
Maruyama H, Maeda M, Fujimori A. Interfacial film conformation and its molecular arrangement of s-triazine derivatives containing three fluorocarbons without hydrophilic groups. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Chen G, Shrestha LK, Ariga K. Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules 2021; 26:molecules26154636. [PMID: 34361787 PMCID: PMC8348140 DOI: 10.3390/molecules26154636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoarchitectonics of two-dimensional materials from zero-dimensional fullerenes is mainly introduced in this short review. Fullerenes are simple objects with mono-elemental (carbon) composition and zero-dimensional structure. However, fullerenes and their derivatives can create various types of two-dimensional materials. The exemplified approaches demonstrated fabrications of various two-dimensional materials including size-tunable hexagonal fullerene nanosheet, two-dimensional fullerene nano-mesh, van der Waals two-dimensional fullerene solid, fullerene/ferrocene hybrid hexagonal nanosheet, fullerene/cobalt porphyrin hybrid nanosheet, two-dimensional fullerene array in the supramolecular template, two-dimensional van der Waals supramolecular framework, supramolecular fullerene liquid crystal, frustrated layered self-assembly from two-dimensional nanosheet, and hierarchical zero-to-one-to-two dimensional fullerene assembly for cell culture.
Collapse
Affiliation(s)
- Guoping Chen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
- Correspondence:
| |
Collapse
|
18
|
Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv 2021; 11:18898-18914. [PMID: 35478610 PMCID: PMC9033578 DOI: 10.1039/d1ra03424c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed. In most cases, basic functions of the cells are preserved and their resistances against external assaults are much enhanced. The possibilities of nanoarchitectonics on living cells would be high, equal to functional modifications with conventional materials. Living cells can be regarded as highly functionalized objects and have indispensable contributions to future materials nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kreml uramı 18 Kazan 42000 Republic of Tatarstan Russian Federation
| |
Collapse
|
19
|
Abstract
In science and technology today, the crucial importance of the regulation of nanoscale objects and structures is well recognized. The production of functional material systems using nanoscale units can be achieved via the fusion of nanotechnology with the other research disciplines. This task is a part of the emerging concept of nanoarchitectonics, which is a concept moving beyond the area of nanotechnology. The concept of nanoarchitectonics is supposed to involve the architecting of functional materials using nanoscale units based on the principles of nanotechnology. In this focus article, the essences of nanotechnology and nanoarchitectonics are first explained, together with their historical backgrounds. Then, several examples of material production based on the concept of nanoarchitectonics are introduced via several approaches: (i) from atomic switches to neuromorphic networks; (ii) from atomic nanostructure control to environmental and energy applications; (iii) from interfacial processes to devices; and (iv) from biomolecular assemblies to life science. Finally, perspectives relating to the final goals of the nanoarchitectonics approach are discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
20
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021; 26:1621. [PMID: 33804013 PMCID: PMC7998694 DOI: 10.3390/molecules26061621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
22
|
Xu S, Li W, Wang C, Tang L, Hao G, Lu A. Self‐Pillared Ultramicroporous Carbon Nanoplates for Selective Separation of CH
4
/N
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuang Xu
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Wen‐Cui Li
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Cheng‐Tong Wang
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Lei Tang
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Guang‐Ping Hao
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - An‐Hui Lu
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
23
|
Xu S, Li W, Wang C, Tang L, Hao G, Lu A. Self‐Pillared Ultramicroporous Carbon Nanoplates for Selective Separation of CH
4
/N
2. Angew Chem Int Ed Engl 2021; 60:6339-6343. [DOI: 10.1002/anie.202014231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Shuang Xu
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Wen‐Cui Li
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Cheng‐Tong Wang
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Lei Tang
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Guang‐Ping Hao
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - An‐Hui Lu
- State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
24
|
Ito M, Yamashita Y, Tsuneda Y, Mori T, Takeya J, Watanabe S, Ariga K. 100 °C-Langmuir-Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56522-56529. [PMID: 33264001 DOI: 10.1021/acsami.0c18349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Langmuir-Blodgett (LB) and Langmuir-Schaefer techniques facilitate thermodynamic favorability at an air-water interface, at which nanoscale molecular aggregations can be manipulated by micrometer- or millimeter-scale mechanics. The customary use of an aqueous subphase has limitations in the available temperature and spread materials. We present a general strategy to replace the aqueous subphase with an inert, low-vapor-pressure liquid, ethylene glycol. As a representative spread material that requires high-temperature processes, a semicrystalline polymeric semiconductor was investigated. We successfully demonstrated that the polymeric semiconductor spreads homogeneously across the entire surface of ethylene glycol heated to 100 °C using an LB trough, and spontaneously forms multilayers. Comprehensive studies such as X-ray diffraction, optical spectroscopy, and charge transport measurements revealed that barrier compression of solid-state polymer thin films during a high-temperature LB process produced uniaxial alignment of the polymer main chain with an averaged dichroic ratio of about 8, by which the electron transport concomitantly became highly anisotropic. The LB method presented in this work could be used to deposit thin films under ultimate environments, e.g., below 0 °C or above 100 °C, minimizing the effects of the vapor pressure of the subphase.
Collapse
Affiliation(s)
- Masato Ito
- Material Innovation Research Center (MIRC), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yu Yamashita
- Material Innovation Research Center (MIRC), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yukina Tsuneda
- Material Innovation Research Center (MIRC), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Taizo Mori
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- AIST-Utokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shun Watanabe
- Material Innovation Research Center (MIRC), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- AIST-Utokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
25
|
Ariga K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000032] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|
26
|
Ariga K, Mori T, Kitao T, Uemura T. Supramolecular Chiral Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905657. [PMID: 32191374 DOI: 10.1002/adma.201905657] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Indexed: 05/06/2023]
Abstract
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
27
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
28
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
29
|
Ariga K. Don't Forget Langmuir-Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7158-7180. [PMID: 32501699 DOI: 10.1021/acs.langmuir.0c01044] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Designing interfacial structures with nanoscale (or molecular) components is one of the important tasks in the nanoarchitectonics concept. In particular, the Langmuir-Blodgett (LB) method can become a promising and powerful strategy in interfacial nanoarchitectonics. From this viewpoint, the status of LB films in 2020 will be discussed in this feature article. After one section on the basics of interfacial nanoarchitectonics with the LB technique, various recent research examples of LB films are introduced according to classifications of (i) growing research, (ii) emerging research, and (iii) future research. In recent LB research, various materials other than traditional lipids and typical amphiphiles can be used as film components of the LB techniques. Two-dimensional materials, supramolecular structures such as metal organic frameworks, and biomaterials such as DNA origami pieces are capable of working as functional components in the LB assemblies. Possible working areas of the LB methods would cover emerging demands, including energy, environmental, and biomedical applications with a wide range of functional materials. In addition, forefront research such as molecular manipulation and cell fate control is conducted in LB-related interfacial science. The LB technique is a traditional and well-develop methodology for molecular films with a ca. 100 year history. However, there is plenty of room at the interfaces, as shown in LB research examples described in this feature article. It is hoped that the continuous development of the science and technology of the LB method make this technique an unforgettable methodology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
30
|
El-Mahdy AFM, Liu TE, Kuo SW. Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO 2 uptake and highly efficient removal of dyes. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122163. [PMID: 32062344 DOI: 10.1016/j.jhazmat.2020.122163] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
In this study we synthesized a triazine-formaldehyde phenolic resin as a nitrogen-containing resol (N-resol) through the condensation of 2,4,6-tris(4-hydroxyphenyl)triazine and formaldehyde. We then used this N-resol as a carbon and nitrogen atom source, mixing it with a diblock copolymer of PEO-b-PCL as the soft template, for the direct synthesis of N-doped mesoporous carbons. Interestingly, the self-assembled N-resol/PEO-b-PCL blends underwent a mesophase transition from cylinder to gyroid and back again to cylinder structures upon increasing the N-resol concentration (i.e., cylinder at 50/50; gyroid at 60/40; cylinder at 70/30). After removing the soft template at 700 °C, the resultant N-doped mesoporous carbons possessed high N atom contents (up to 13 wt%) and displayed gyroid and cylinder nanostructures. The synthesized N-doped mesoporous carbons exhibited excellent CO2 uptake capacities (up to 72 and 150 mg g-1 at 298 and 273 K, respectively). Furthermore, the N-doped mesoporous gyroid carbon structure displayed high adsorption capacities toward organic dyes in water. The maximum adsorption capacities of rhodamine B and methylene blue in water reached as high as 204.08 and 308.64 mg g-1, respectively; furthermore, these N-doped mesoporous carbons also maintained up to 98 % of their maximum adsorption capacities within 45 min.
Collapse
Affiliation(s)
- Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-En Liu
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
31
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
32
|
Ariga K, Ishii M, Mori T. 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry 2020; 26:6461-6472. [PMID: 32159246 DOI: 10.1002/chem.202000789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Soft and flexible two-dimensional (2D) systems, such as liquid interfaces, would have much more potentials in dynamic regulation on nano-macro connected functions. In this Minireview article, we focus especially on dynamic motional functions at liquid dynamic interfaces as 2D material systems. Several recent examples are selected to be explained for overviewing features and importance of dynamic soft interfaces in a wide range of action systems. The exemplified research systems are mainly classified into three categories: (i) control of microobjects with motional regulations; (ii) control of molecular machines with functions of target discrimination and optical outputs; (iii) control of living cells including molecular machine functions at cell membranes and cell/biomolecular behaviors at liquid interface. Sciences on soft 2D media with motional freedom and their nanoarchitectonics constructions will have increased importance in future technology in addition to popular rigid solid 2D materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Ishii
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Pure and Applied Chemistry, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
33
|
Ariga K, Yamauchi Y. Nanoarchitectonics from Atom to Life. Chem Asian J 2020; 15:718-728. [PMID: 32017354 DOI: 10.1002/asia.202000106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Functional materials with rational organization cannot be directly created only by nanotechnology-related top-down approaches. For this purpose, a novel research paradigm next to nanotechnology has to be established to create functional materials on the basis of deep nanotechnology knowledge. This task can be assigned to an emerging concept, nanoarchitectonics. In the nanoarchitectonics approaches, functional materials were architected through combination of atom/molecular manipulation, organic chemical synthesis, self-assembly and related spontaneous processes, field-applied assembly, micro/nano fabrications, and bio-related processes. In this short review article, nanoarchitectonics-related approaches on materials fabrications and functions are exemplified from atom-scale to living creature level. Based on their features, unsolved problems for future developments of the nanoarchitectonics concept are finally discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics MANA, National Institute for Materials Science NIMS, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, JAPAN
| | - Yusuke Yamauchi
- University of Queensland, School of Chemical Engineering, AUSTRALIA
| |
Collapse
|
34
|
Tang H, Gu Z, Ding H, Li Z, Xiao S, Wu W, Jiang X. Nanoscale Crystalline Sheets and Vesicles Assembled from Nonplanar Cyclic π-Conjugated Molecules. RESEARCH 2019; 2019:1953926. [PMID: 31549048 PMCID: PMC6750094 DOI: 10.34133/2019/1953926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 11/06/2022]
Abstract
A fundamental challenge in chemistry and materials science is to create new carbon nanomaterials by assembling structurally unique carbon building blocks, such as nonplanar π-conjugated cyclic molecules. However, self-assembly of such cyclic π-molecules to form organized nanostructures has been rarely explored despite intensive studies on their chemical synthesis. Here we synthesized a family of new cycloparaphenylenes and found that these fully hydrophobic and nonplanar cyclic π-molecules could self-assemble into structurally distinct two-dimensional crystalline multilayer nanosheets. Moreover, these crystalline multilayer nanosheets could overcome inherent rigidity to curve into closed crystalline vesicles in solution. These supramolecular assemblies show that the cyclic molecular scaffolds are homogeneously arranged on the surface of nanosheets and vesicles with their molecular isotropic x-y plane standing obliquely on the surface. These supramolecular architectures that combined exact crystalline order, orientation-specific arrangement of π-conjugated cycles, controllable morphology, uniform molecular pore, superior florescence quench ability, and photoluminescence are expected to give rise to a new class of functional materials displaying unique photonic, electronic, and biological functions.
Collapse
Affiliation(s)
- Huang Tang
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhewei Gu
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haifeng Ding
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technolog, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
35
|
Sheng W, Li W, Yu B, Li B, Jordan R, Jia X, Zhou F. Mussel‐Inspired Two‐Dimensional Freestanding Alkyl‐Polydopamine Janus Nanosheets. Angew Chem Int Ed Engl 2019; 58:12018-12022. [DOI: 10.1002/anie.201903527] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/12/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Wenbo Sheng
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Bo Yu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| | - Bin Li
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Current address: Physik Department, TUM—Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Xin Jia
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| |
Collapse
|
36
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Nanocarbon Assembly and Composite. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Sheng W, Li W, Yu B, Li B, Jordan R, Jia X, Zhou F. Mussel‐Inspired Two‐Dimensional Freestanding Alkyl‐Polydopamine Janus Nanosheets. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenbo Sheng
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Bo Yu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| | - Bin Li
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
- Current address: Physik Department, TUM—Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Xin Jia
- School of Chemistry and Chemical EngineeringShihezi University 832003 Shihezi China
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Tianshui middle road 18 Lanzhou 730000 China
| |
Collapse
|
38
|
Qin G, Hao KR, Yan QB, Hu M, Su G. Exploring T-carbon for energy applications. NANOSCALE 2019; 11:5798-5806. [PMID: 30888359 DOI: 10.1039/c8nr09557d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Seeking for next-generation energy sources that are economic, sustainable (renewable), clean (environment-friendly), and earth-abundant, is crucial when facing the challenges of the energy crisis. There have been numerous studies exploring the possibility of carbon-based materials to be utilized in future energy applications. In this paper, we introduce T-carbon, which is a theoretically predicted but also a recently experimentally synthesized carbon allotrope, as a promising material for next-generation energy applications. It is shown that T-carbon can be potentially used in thermoelectrics, hydrogen storage, lithium ion batteries, etc. The challenges, opportunities, and possible directions for future studies of energy applications of T-carbon are also addressed. With the development of more environment-friendly technologies, the promising applications of T-carbon in energy fields would not only produce scientifically significant impact in related fields, but also lead to a number of industrial and technical applications.
Collapse
Affiliation(s)
- Guangzhao Qin
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
39
|
Li H, Zhang Z, Iyoda T, Dou M, Wang F. Ice/Salt‐Assisted Synthesis of Ultrathin Two‐Dimensional Micro/Mesoporous Iron and Nitrogen Co‐Doped Carbon as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry 2019; 25:5768-5776. [DOI: 10.1002/chem.201900306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Hanyu Li
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science, and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science, and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Tomokazu Iyoda
- Harris Science Research InstituteDoshisha University 1–3 Miyakodani Tatara Kyotanabe Kyoto 611-0394 Japan
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science, and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science, and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
40
|
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP. Self-assembly as a key player for materials nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:51-95. [PMID: 30787960 PMCID: PMC6374972 DOI: 10.1080/14686996.2018.1553108] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 05/07/2023]
Abstract
The development of science and technology of advanced materials using nanoscale units can be conducted by a novel concept involving combination of nanotechnology methodology with various research disciplines, especially supramolecular chemistry. The novel concept is called 'nanoarchitectonics' where self-assembly processes are crucial in many cases involving a wide range of component materials. This review of self-assembly processes re-examines recent progress in materials nanoarchitectonics. It is composed of three main sections: (1) the first short section describes typical examples of self-assembly research to outline the matters discussed in this review; (2) the second section summarizes self-assemblies at interfaces from general viewpoints; and (3) the final section is focused on self-assembly processes at interfaces. The examples presented demonstrate the strikingly wide range of possibilities and future potential of self-assembly processes and their important contribution to materials nanoarchitectonics. The research examples described in this review cover variously structured objects including molecular machines, molecular receptors, molecular pliers, molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nanoflakes, nanocubes, nanodisks, nanoring, block copolymers, hyperbranched polymers, supramolecular polymers, supramolecular gels, liquid crystals, Langmuir monolayers, Langmuir-Blodgett films, self-assembled monolayers, thin films, layer-by-layer structures, breath figure motif structures, two-dimensional molecular patterns, fullerene crystals, metal-organic frameworks, coordination polymers, coordination capsules, porous carbon spheres, mesoporous materials, polynuclear catalysts, DNA origamis, transmembrane channels, peptide conjugates, and vesicles, as well as functional materials for sensing, surface-enhanced Raman spectroscopy, photovoltaics, charge transport, excitation energy transfer, light-harvesting, photocatalysts, field effect transistors, logic gates, organic semiconductors, thin-film-based devices, drug delivery, cell culture, supramolecular differentiation, molecular recognition, molecular tuning, and hand-operating (hand-operated) nanotechnology.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taizo Mori
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Lok Kumar Shrestha
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jonathan P. Hill
- WPI-MANA, National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
41
|
Zhao L, Zou Q, Yan X. Self-Assembling Peptide-Based Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180248] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
42
|
Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J. Review of advanced sensor devices employing nanoarchitectonics concepts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2014-2030. [PMID: 31667049 PMCID: PMC6808193 DOI: 10.3762/bjnano.10.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Many recent advances in sensor technology have been possible due to nanotechnological advancements together with contributions from other research fields. Such interdisciplinary collaborations fit well with the emerging concept of nanoarchitectonics, which is a novel conceptual methodology to engineer functional materials and systems from nanoscale units through the fusion of nanotechnology with other research fields, including organic chemistry, supramolecular chemistry, materials science and biology. In this review article, we discuss recent advancements in sensor devices and sensor materials that take advantage of advanced nanoarchitectonics concepts for improved performance. In the first part, recent progress on sensor systems are roughly classified according to the sensor targets, such as chemical substances, physical conditions, and biological phenomena. In the following sections, advancements in various nanoarchitectonic motifs, including nanoporous structures, ultrathin films, and interfacial effects for improved sensor function are discussed to realize the importance of nanoarchitectonic structures. Many of these examples show that advancements in sensor technology are no longer limited by progress in microfabrication and nanofabrication of device structures - opening a new avenue for highly engineered, high performing sensor systems through the application of nanoarchitectonics concepts.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Tatsuyuki Makita
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masato Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Jun Takeya
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
43
|
Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1559-1587. [PMID: 31467820 PMCID: PMC6693411 DOI: 10.3762/bjnano.10.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/16/2019] [Indexed: 05/06/2023]
Abstract
Much attention has been paid to the synthesis of low-dimensional materials from small units such as functional molecules. Bottom-up approaches to create new low-dimensional materials with various functional units can be realized with the emerging concept of nanoarchitectonics. In this review article, we overview recent research progresses on materials nanoarchitectonics at two-dimensional liquid interfaces, which are dimensionally restricted media with some freedoms of molecular motion. Specific characteristics of molecular interactions and functions at liquid interfaces are briefly explained in the first parts. The following sections overview several topics on materials nanoarchitectonics at liquid interfaces, such as the preparation of two-dimensional metal-organic frameworks and covalent organic frameworks, and the fabrication of low-dimensional and specifically structured nanocarbons and their assemblies at liquid-liquid interfaces. Finally, interfacial nanoarchitectonics of biomaterials including the regulation of orientation and differentiation of living cells are explained. In the recent examples described in this review, various materials such as molecular machines, molecular receptors, block-copolymer, DNA origami, nanocarbon, phages, and stem cells were assembled at liquid interfaces by using various useful techniques. This review overviews techniques such as conventional Langmuir-Blodgett method, vortex Langmuir-Blodgett method, liquid-liquid interfacial precipitation, instructed assembly, and layer-by-layer assembly to give low-dimensional materials including nanowires, nanowhiskers, nanosheets, cubic objects, molecular patterns, supramolecular polymers, metal-organic frameworks and covalent organic frameworks. The nanoarchitecture materials can be used for various applications such as molecular recognition, sensors, photodetectors, supercapacitors, supramolecular differentiation, enzyme reactors, cell differentiation control, and hemodialysis.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michio Matsumoto
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
44
|
Ju S, Ding Y, Yin Y, Cheng S, Wang X, Mao H, Zhou Z, Song M, Chang Q, Ban C, Liu Z, Liu J. Preparation of large-area ultrathin carbon semiconductors converted from conjugated microporous polymer films. RSC Adv 2019; 9:17399-17404. [PMID: 35519850 PMCID: PMC9064592 DOI: 10.1039/c9ra03052b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 11/23/2022] Open
Abstract
Two-dimensional carbon semiconductors have aroused great attention due to their unique structures and novel properties, showing potential applications in emerging electronic and optoelectronic devices. In this work, we reported an effective strategy to controllable prepare ultrathin carbon nanofilms (CNFs) by combining in situ-growth and stepwise thermal annealing, with the features of large-area, tunable properties and nanoscale thickness. The structures, morphologies and electrical properties of these as-prepared CNFs were characterized systematically. Impressively, tunable electrical properties from low to semi- and high conductivity could be precisely achieved through stepwise annealing of conjugated microporous polymer films. By introducing CNF-750 as the active channel layer, the transistor exhibited a typical p-type semiconductor property. Moreover, by further coupling CNF-750 with carbon dots (CDs) as a photoresponse layer, the as-fabricated all-carbon diode based on CDs/CNF-750 heterostructure film showed high ultraviolet (UV) light response. Large-area carbon semiconductors were prepared by combining the in situ polymerization with thermal annealing process. Moreover, a photodetector based on carbon dots decorated carbon semiconductors was fabricated.![]()
Collapse
|
45
|
Leonhardt EJ, Van Raden JM, Miller D, Zakharov LN, Alemán B, Jasti R. A Bottom-Up Approach to Solution-Processed, Atomically Precise Graphitic Cylinders on Graphite. NANO LETTERS 2018; 18:7991-7997. [PMID: 30480454 DOI: 10.1021/acs.nanolett.8b03979] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical "forests" of these arrays on a highly ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.
Collapse
Affiliation(s)
- Erik J Leonhardt
- Department of Chemistry & Biochemistry, Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , United States
| | - Jeff M Van Raden
- Department of Chemistry & Biochemistry, Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , United States
| | - David Miller
- Department of Physics, Materials Science Institute, Center for Optical, Molecular, and Quantum Science , University of Oregon , Eugene , Oregon 97403 , United States
| | - Lev N Zakharov
- CAMCOR - Center for Advanced Materials Characterization in Oregon , University of Oregon , Eugene , Oregon 97403 , United States
| | - Benjamín Alemán
- Department of Physics, Materials Science Institute, Center for Optical, Molecular, and Quantum Science , University of Oregon , Eugene , Oregon 97403 , United States
| | - Ramesh Jasti
- Department of Chemistry & Biochemistry, Materials Science Institute , University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
46
|
Kim IY, Kim S, Jin X, Premkumar S, Chandra G, Lee N, Mane GP, Hwang S, Umapathy S, Vinu A. Ordered Mesoporous C
3
N
5
with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2018; 57:17135-17140. [DOI: 10.1002/anie.201811061] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 11/06/2022]
Affiliation(s)
- In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Sungho Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Xiaoyan Jin
- Department of Chemistry and Nanoscience College of Natural Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Selvarajan Premkumar
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Goutam Chandra
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Nam‐Suk Lee
- National Institute for Nanomaterials Technology (NINT) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Gurudas P. Mane
- Sunandan Divatia School of Science, SVKM'S NMIMS Mumbai 400056 India
| | - Seong‐Ju Hwang
- Department of Chemistry and Nanoscience College of Natural Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
47
|
Kim IY, Kim S, Jin X, Premkumar S, Chandra G, Lee N, Mane GP, Hwang S, Umapathy S, Vinu A. Ordered Mesoporous C
3
N
5
with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811061] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- In Young Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Sungho Kim
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| | - Xiaoyan Jin
- Department of Chemistry and Nanoscience College of Natural Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Selvarajan Premkumar
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Goutam Chandra
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Nam‐Suk Lee
- National Institute for Nanomaterials Technology (NINT) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Gurudas P. Mane
- Sunandan Divatia School of Science, SVKM'S NMIMS Mumbai 400056 India
| | - Seong‐Ju Hwang
- Department of Chemistry and Nanoscience College of Natural Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
48
|
Bahuguna A, Choudhary P, Chhabra T, Krishnan V. Ammonia-Doped Polyaniline-Graphitic Carbon Nitride Nanocomposite as a Heterogeneous Green Catalyst for Synthesis of Indole-Substituted 4 H-Chromenes. ACS OMEGA 2018; 3:12163-12178. [PMID: 31459291 PMCID: PMC6645668 DOI: 10.1021/acsomega.8b01687] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 05/21/2023]
Abstract
A nanocomposite of polyaniline with graphitic carbon nitride (GCN) nanosheets has been synthesized by a facile oxidative polymerization of an aniline monomer and GCN to demonstrate its potential to catalyze the synthesis of various indole-substituted 4H-chromenes. The synthesized nanocomposite was thoroughly characterized using different spectroscopic techniques to confirm the morphology and composition. Subsequently, the fabricated nanocomposite was used as a heterogeneous catalyst to synthesize several bioactive indole-substituted 4H-chromenes in an aqueous medium. Organic transformation under benign and environmentally sustainable conditions is of paramount importance in the view of growing environmental pollution. Water is the universal Green solvent and has been a preferred choice of nature to perform various reactions. The catalyst developed in this work showed very good recyclability and adaptability for the synthesis of various medicinally significant indole-substituted 4H-chromenes. This multicomponent reaction imparts very high atom economy (94%) and low environmental factor (0.13).
Collapse
Affiliation(s)
- Ashish Bahuguna
- School of Basic Sciences
and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Priyanka Choudhary
- School of Basic Sciences
and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Tripti Chhabra
- School of Basic Sciences
and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Venkata Krishnan
- School of Basic Sciences
and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| |
Collapse
|
49
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|