1
|
Blahut J, Tošner Z. Optimal control: From sensitivity improvement to alternative pulse-sequence design in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 135:101984. [PMID: 39742734 DOI: 10.1016/j.ssnmr.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Exciting developments in new experimental methods for multidimensional solid-state NMR spectroscopy have recently been achieved using optimal-control theory. These results, in turn, have triggered the development of new pulse sequences based on traditional analytical theories. This trend article summarises the key steps leading to these advancements. It also describes additional applications of optimal control beyond structural biology and envisions similar progress in the NMR of solid materials. Despite attractive features of optimal-control pulse sequences demonstrated in the proof-of-concept studies, their experimental utilization remains sparse, probably due to the lack of awareness among experimentalists. We hope this mini-review helps to spread optimal-control methods into routine experimental workflows. Furthermore, we offer a personal outlook on how numerical optimisations could in general enhance the experimental capabilities of solid-state NMR in the near future, with optimal control serving as a pioneer exploring new possibilities.
Collapse
Affiliation(s)
- Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic.
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842, Prague, Czech Republic
| |
Collapse
|
2
|
Rodina N, Sarkar R, Tsakalos D, Suladze S, Niu Z, Reif B. Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:201-212. [PMID: 39120652 PMCID: PMC11511749 DOI: 10.1007/s12104-024-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Amyloid fibrils from Alzheimer's amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer's disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on 13C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.
Collapse
Affiliation(s)
- Natalia Rodina
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany
| | - Riddhiman Sarkar
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany
| | - Dimitrios Tsakalos
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Saba Suladze
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Zheng Niu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Bernd Reif
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany.
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
3
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Suladze S, Sarkar R, Rodina N, Bokvist K, Krewinkel M, Scheps D, Nagel N, Bardiaux B, Reif B. Atomic resolution structure of full-length human insulin fibrils. Proc Natl Acad Sci U S A 2024; 121:e2401458121. [PMID: 38809711 PMCID: PMC11161806 DOI: 10.1073/pnas.2401458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
Collapse
Affiliation(s)
- Saba Suladze
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Riddhiman Sarkar
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Natalia Rodina
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
| | - Krister Bokvist
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt65926, Germany
| | - Manuel Krewinkel
- Sanofi-Aventis Deutschland GmbH, Manufacturing Science and Technology, Industriepark Höchst, Frankfurt65926, Germany
| | - Daniel Scheps
- Chemistry Manufacturing & Controls Microbial Platform, Sanofi-Aventis Deutschland GmbH, Microbial Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Tides Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Department of Structural Biology and Chemistry, Structural Bioinformatics Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
- Institut Pasteur, Department of Structural Biology and Chemistry, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
| | - Bernd Reif
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| |
Collapse
|
5
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
6
|
Nimerovsky E, Varkey AC, Kim M, Becker S, Andreas LB. Simplified Preservation of Equivalent Pathways Spectroscopy. JACS AU 2023; 3:2763-2771. [PMID: 37885577 PMCID: PMC10598565 DOI: 10.1021/jacsau.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Inspired by the recently proposed transverse mixing optimal control pulses (TROP) approach for improving signal in multidimensional magic-angle spinning (MAS) NMR experiments, we present simplified preservation of equivalent pathways spectroscopy (SPEPS). It transfers both transverse components of magnetization that occur during indirect evolutions, theoretically enabling a √2 improvement in sensitivity for each such dimension. We compare SPEPS transfer with TROP and cross-polarization (CP) using membrane protein and fibril samples at MAS of 55 and 100 kHz. In three-dimensional (3D) (H)CANH spectra, SPEPS outperformed TROP and CP by factors of on average 1.16 and 1.69, respectively, for the membrane protein, but only a marginal improvement of 1.09 was observed for the fibril. These differences are discussed, making note of the longer transfer time used for CP, 14 ms, as compared with 2.9 and 3.6 ms for SPEPS and TROP, respectively. Using SPEPS for two transfers in the 3D (H)CANCO experiment resulted in an even larger benefit in signal intensity, with an average improvement of 1.82 as compared with CP. This results in multifold time savings, in particular considering the weaker peaks that are observed to benefit the most from SPEPS.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Abel Cherian Varkey
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Myeongkyu Kim
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
7
|
Šmelko A, Blahut J, Reif B, Tošner Z. Performance of the cross-polarization experiment in conditions of radiofrequency field inhomogeneity and slow to ultrafast magic angle spinning (MAS). MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:199-215. [PMID: 37904859 PMCID: PMC10539755 DOI: 10.5194/mr-4-199-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/01/2023] [Indexed: 11/01/2023]
Abstract
In this paper, we provide an analytical description of the performance of the cross-polarization (CP) experiment, including linear ramps and adiabatic tangential sweeps, using effective Hamiltonians and simple rotations in 3D space. It is shown that radiofrequency field inhomogeneity induces a reduction in the transfer efficiency at increasing magic angle spinning (MAS) frequencies for both the ramp and the adiabatic CP experiments. The effect depends on the ratio of the dipolar coupling constant and the sample rotation frequency. In particular, our simulations show that for small dipolar couplings (1 kHz ) and ultrafast MAS (above 100 kHz ) the transfer efficiency is below 40 % when extended contact times up to 20 ms are used and relaxation losses are ignored. New recoupling and magnetization transfer techniques that are designed explicitly to account for inhomogeneous radiofrequency fields are needed.
Collapse
Affiliation(s)
- Andrej Šmelko
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at School of Natural Sciences, Department of Bioscience, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| |
Collapse
|
8
|
Rasulov U, Acharya A, Carravetta M, Mathies G, Kuprov I. Simulation and design of shaped pulses beyond the piecewise-constant approximation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107478. [PMID: 37343394 DOI: 10.1016/j.jmr.2023.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Response functions of resonant circuits create ringing artefacts if their input changes rapidly. When physical limits of electromagnetic spectroscopies are explored, this creates two types of problems. Firstly, simulation: the system must be propagated accurately through every response transient, this may be computationally expensive. Secondly, optimal control: circuit response must be taken into account; it may be advantageous to design pulses that are resilient to such distortions. At the root of both problems is the popular piecewise-constant approximation for control sequences in the rotating frame; in magnetic resonance it has persisted since the earliest days and has become entrenched in the commercially available hardware. In this paper, we report an implementation and benchmarks of recent Lie-group methods that can efficiently simulate and optimise smooth control sequences.
Collapse
Affiliation(s)
- Uluk Rasulov
- School of Chemistry, University of Southampton, United Kingdom
| | - Anupama Acharya
- School of Chemistry, University of Southampton, United Kingdom
| | | | | | - Ilya Kuprov
- School of Chemistry, University of Southampton, United Kingdom.
| |
Collapse
|
9
|
Aebischer K, Ernst M. Residual proton line width under refocused frequency-switched Lee-Goldburg decoupling in MAS NMR. Phys Chem Chem Phys 2023; 25:11959-11970. [PMID: 36987593 PMCID: PMC10155489 DOI: 10.1039/d3cp00414g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Despite many decades of research, homonuclear decoupling in solid-state NMR under magic-angle spinning (MAS) has yet to reach a point where the achievable proton line widths become comparable to the resolution obtained in solution-state NMR. This makes the precise determination of isotropic chemical shifts difficult and thus presents a limiting factor in the application of proton solid-state NMR to biomolecules and small molecules. In this publication we analyze the sources of the residual line width in refocused homonuclear-decoupled spectra in detail by comparing numerical simulations and experimental data. Using a hybrid analytical/numerical approach based on Floquet theory, we find that third-order effective Hamiltonian terms are required to realistically characterize the line shape and line width under frequency-switched Lee-Goldburg (FSLG) decoupling under MAS. Increasing the radio-frequency field amplitude enhances the influence of experimental rf imperfections such as pulse transients and the MAS-modulated radial rf-field inhomogeneity. While second- and third-order terms are, as expected, reduced in size at higher rf-field amplitudes, the line width becomes dominated by first-order terms which severely limits the achievable line width. We expect, therefore, that significant improvements in the line width of FSLG-decoupled spectra can only be achieved by reducing the influence of MAS-modulated rf-field inhomogeneity and pulse transients.
Collapse
Affiliation(s)
- Kathrin Aebischer
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
10
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Blahut J, Brandl MJ, Pradhan T, Reif B, Tošner Z. Sensitivity-Enhanced Multidimensional Solid-State NMR Spectroscopy by Optimal-Control-Based Transverse Mixing Sequences. J Am Chem Soc 2022; 144:17336-17340. [PMID: 36074981 DOI: 10.1021/jacs.2c06568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, proton-detected magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy has become an attractive tool to study the structure and dynamics of insoluble proteins at atomic resolution. The sensitivity of the employed multidimensional experiments can be systematically improved when both transversal components of the magnetization are transferred simultaneously after an evolution period. The method of preservation of equivalent pathways has been explored in solution-state NMR; however, it does not find widespread application due to relaxation issues connected with increased molecular size. We present here for the first time heteronuclear transverse mixing sequences for correlation experiments at moderate and fast MAS frequencies. Optimal control allows to boost the signal-to-noise ratio (SNR) beyond the expected factor of 2 for each indirect dimension. In addition to the carbon-detected sensitivity-enhanced 2D NCA experiment, we present a novel proton-detected, doubly sensitivity-enhanced 3D hCANH pulse sequence for which we observe a 3-fold improvement in SNR compared to the conventional experimental implementation. The sensitivity gain turned out to be essential to unambiguously characterize a minor fibril polymorph of a human lambda-III immunoglobulin light chain protein that escaped detection so far.
Collapse
Affiliation(s)
- Jan Blahut
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Matthias J Brandl
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Tejaswini Pradhan
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| |
Collapse
|
12
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
13
|
Paluch P, Augustyniak R, Org ML, Vanatalu K, Kaldma A, Samoson A, Stanek J. NMR Assignment of Methyl Groups in Immobilized Proteins Using Multiple-Bond 13C Homonuclear Transfers, Proton Detection, and Very Fast MAS. Front Mol Biosci 2022; 9:828785. [PMID: 35425812 PMCID: PMC9002630 DOI: 10.3389/fmolb.2022.828785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
In nuclear magnetic resonance spectroscopy of proteins, methyl protons play a particular role as extremely sensitive reporters on dynamics, allosteric effects, and protein–protein interactions, accessible even in high-molecular-weight systems approaching 1 MDa. The notorious issue of their chemical shift assignment is addressed here by a joint use of solid-state 1H-detected methods at very fast (nearly 100 kHz) magic-angle spinning, partial deuteration, and high-magnetic fields. The suitability of a series of RF schemes is evaluated for the efficient coherence transfer across entire 13C side chains of methyl-containing residues, which is key for establishing connection between methyl and backbone 1H resonances. The performance of ten methods for recoupling of either isotropic 13C–13C scalar or anisotropic dipolar interactions (five variants of TOBSY, FLOPSY, DIPSI, WALTZ, RFDR, and DREAM) is evaluated experimentally at two state-of-the-art magic-angle spinning (55 and 94.5 kHz) and static magnetic field conditions (18.8 and 23.5 T). Model isotopically labeled compounds (alanine and Met-Leu-Phe tripeptide) and ILV-methyl and amide-selectively protonated, and otherwise deuterated chicken α-spectrin SH3 protein are used as convenient reference systems. Spin dynamics simulations in SIMPSON are performed to determine optimal parameters of these RF schemes, up to recently experimentally attained spinning frequencies (200 kHz) and B0 field strengths (28.2 T). The concept of linearization of 13C side chain by appropriate isotope labeling is revisited and showed to significantly increase sensitivity of methyl-to-backbone correlations. A resolution enhancement provided by 4D spectroscopy with non-uniform (sparse) sampling is demonstrated to remove ambiguities in simultaneous resonance assignment of methyl proton and carbon chemical shifts.
Collapse
Affiliation(s)
- Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | | | - Mai-Liis Org
- Tallin University of Technology, Tallinn, Estonia
| | | | - Ats Kaldma
- Tallin University of Technology, Tallinn, Estonia
| | - Ago Samoson
- Tallin University of Technology, Tallinn, Estonia
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Jan Stanek,
| |
Collapse
|
14
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
15
|
Xue K, Nimerovsky E, Tekwani Movellan KA, Becker S, Andreas LB. Backbone Torsion Angle Determination Using Proton Detected Magic-Angle Spinning Nuclear Magnetic Resonance. J Phys Chem Lett 2022; 13:18-24. [PMID: 34957837 PMCID: PMC8762656 DOI: 10.1021/acs.jpclett.1c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Protein torsion angles define the backbone secondary structure of proteins. Magic-angle spinning (MAS) NMR methods using carbon detection have been developed to measure torsion angles by determining the relative orientation between two anisotropic interactions─dipolar coupling or chemical shift anisotropy. Here we report a new proton-detection based method to determine the backbone torsion angle by recoupling NH and CH dipolar couplings within the HCANH pulse sequence, for protonated or partly deuterated samples. We demonstrate the efficiency and precision of the method with microcrystalline chicken α spectrin SH3 protein and the influenza A matrix 2 (M2) membrane protein, using 55 or 90 kHz MAS. For M2, pseudo-4D data detect a turn between transmembrane and amphipathic helices.
Collapse
|
16
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
17
|
Sundaria A, Liberta F, Savran D, Sarkar R, Rodina N, Peters C, Schwierz N, Haupt C, Schmidt M, Reif B. SAA fibrils involved in AA amyloidosis are similar in bulk and by single particle reconstitution: A MAS solid-state NMR study. J Struct Biol X 2022; 6:100069. [PMID: 35924280 PMCID: PMC9340516 DOI: 10.1016/j.yjsbx.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the β-sheets identified in the NMR experiments are similar to the β-sheets found in the cryo-EM study, with the exception of amino acids 33–42. These residues cannot be assigned by solid-state NMR, while they adopt a stable β-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33–42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.
Collapse
|
18
|
Tošner Z, Brandl MJ, Blahut J, Glaser SJ, Reif B. Maximizing efficiency of dipolar recoupling in solid-state NMR using optimal control sequences. SCIENCE ADVANCES 2021; 7:eabj5913. [PMID: 34644121 PMCID: PMC8514097 DOI: 10.1126/sciadv.abj5913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control–derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.
Collapse
Affiliation(s)
- Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Matthias J. Brandl
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
| | - Jan Blahut
- Department of Chemistry, Faculty of Science, Charles University, Albertov 6, 12842 Prague, Czech Republic
| | - Steffen J. Glaser
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at Department Chemie, Technische Universität München (TUM), 85747 Garching, Germany
- Helmholtz Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| |
Collapse
|
19
|
Zhang H, Kuang Z, Puri S, Miller OD. Conservation-Law-Based Global Bounds to Quantum Optimal Control. PHYSICAL REVIEW LETTERS 2021; 127:110506. [PMID: 34558952 DOI: 10.1103/physrevlett.127.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Active control of quantum systems enables diverse applications ranging from quantum computation to manipulation of molecular processes. Maximum speeds and related bounds have been identified from uncertainty principles and related inequalities, but such bounds utilize only coarse system information and loosen significantly in the presence of constraints and complex interaction dynamics. We show that an integral-equation-based formulation of conservation laws in quantum dynamics leads to a systematic framework for identifying fundamental limits to any quantum control scenario. We demonstrate the utility of our bounds in three scenarios-three-level driving, decoherence suppression, and maximum-fidelity gate implementations-and show that in each case our bounds are tight or nearly so. Global bounds complement local-optimization-based designs, illuminating performance levels that may be possible, as well as those that cannot be surpassed.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Energy Sciences Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Zeyu Kuang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Energy Sciences Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Shruti Puri
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Owen D Miller
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- Energy Sciences Institute, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
20
|
Aebischer K, Tošner Z, Ernst M. Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:523-543. [PMID: 37904774 PMCID: PMC10539735 DOI: 10.5194/mr-2-523-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 11/01/2023]
Abstract
Radio-frequency field inhomogeneity is one of the most common imperfections in NMR experiments. They can lead to imperfect flip angles of applied radio-frequency (rf) pulses or to a mismatch of resonance conditions, resulting in artefacts or degraded performance of experiments. In solid-state NMR under magic angle spinning (MAS), the radial component becomes time-dependent because the rf irradiation amplitude and phase is modulated with integer multiples of the spinning frequency. We analyse the influence of such time-dependent MAS-modulated rf fields on the performance of some commonly used building blocks of solid-state NMR experiments. This analysis is based on analytical Floquet calculations and numerical simulations, taking into account the time dependence of the rf field. We find that, compared to the static part of the rf field inhomogeneity, such time-dependent modulations play a very minor role in the performance degradation of the investigated typical solid-state NMR experiments.
Collapse
Affiliation(s)
- Kathrin Aebischer
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Prague 2, Czech Republic
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
22
|
Pradhan T, Annamalai K, Sarkar R, Hegenbart U, Schönland S, Fändrich M, Reif B. Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:9-16. [PMID: 32946005 PMCID: PMC7973639 DOI: 10.1007/s12104-020-09975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Karthikeyan Annamalai
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit Und Umwelt, Institute of Structural Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Department of Chemistry, Munich Center for Integrated Protein Science (CIPS-M), Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
23
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
24
|
Pradhan T, Annamalai K, Sarkar R, Huhn S, Hegenbart U, Schönland S, Fändrich M, Reif B. Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability. J Biol Chem 2020; 295:18474-18484. [PMID: 33093170 PMCID: PMC7939468 DOI: 10.1074/jbc.ra120.016006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Indexed: 11/26/2022] Open
Abstract
Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.
Collapse
Affiliation(s)
- Tejaswini Pradhan
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany
| | | | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany
| | - Stefanie Huhn
- Medical Department V, Multiple Myeloma Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und UmweltInstitute of Structural Biology (STB), Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at the Dept. of Chemistry, Technische Universität München (TUM), Garching, Germany.
| |
Collapse
|
25
|
Aebischer K, Wili N, Tošner Z, Ernst M. Using nutation-frequency-selective pulses to reduce radio-frequency field inhomogeneity in solid-state NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:187-195. [PMID: 37904817 PMCID: PMC10500731 DOI: 10.5194/mr-1-187-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/27/2020] [Indexed: 11/01/2023]
Abstract
Radio-frequency (rf) field inhomogeneity is a common problem in NMR which leads to non-ideal rotations of spins in parts of the sample. Often, a physical volume restriction of the sample is used to reduce the effects of rf-field inhomogeneity, especially in solid-state NMR where spacers are inserted to reduce the sample volume to the centre of the coil. We show that band-selective pulses in the spin-lock frame can be used to apply B 1 -field selective inversions to spins that experience selected parts of the rf-field distribution. Any frequency band-selective pulse can be used for this purpose, but we chose the family of I-BURP pulses (Geen and Freeman, 1991) for the measurements demonstrated here. As an example, we show that the implementation of such pulses improves homonuclear frequency-switched Lee-Goldburg decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kathrin Aebischer
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093
Zürich, Switzerland
| | - Nino Wili
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093
Zürich, Switzerland
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University,
Hlavova 8, 12842 Prague 2, Czech Republic
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093
Zürich, Switzerland
| |
Collapse
|
26
|
Niu Z, Sarkar R, Aichler M, Wester H, Yousefi BH, Reif B. Mapping the Binding Interface of PET Tracer Molecules and Alzheimer Disease Aβ Fibrils by Using MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:2495-2502. [PMID: 32291951 PMCID: PMC7496087 DOI: 10.1002/cbic.202000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aβ-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aβ(1-40) fibrillar aggregates. The same Aβ(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aβ tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting β-sheets β1 and β2 in Aβ fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.
Collapse
Affiliation(s)
- Zheng Niu
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Michaela Aichler
- Helmholtz Zentrum MünchenResearch Unit Analytical Pathology (AAP)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Hans‐Jürgen Wester
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
| | - Behrooz Hooshyar Yousefi
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
- Philipps University of MarburgDepartment of Nuclear MedicineBaldingerstrasse. 135043MarburgGermany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| |
Collapse
|
27
|
Zhang Z, Liu H, Deng J, Tycko R, Yang J. Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search. J Chem Phys 2019; 150:154201. [PMID: 31005077 DOI: 10.1063/1.5092986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spin polarization transfers among aliphatic 13C nuclei, especially 13Cα-13Cβ transfers, permit correlations of their nuclear magnetic resonance (NMR) frequencies that are essential for signal assignments in multidimensional solid-state NMR of proteins. We derive and demonstrate a new radio-frequency (RF) excitation sequence for homonuclear dipolar recoupling that enhances spin polarization transfers among aliphatic 13C nuclei at moderate magic-angle spinning (MAS) frequencies. The phase-optimized recoupling sequence with five π pulses per MAS rotation period (denoted as PR5) is derived initially from systematic numerical simulations in which only the RF phases are varied. Subsequent theoretical analysis by average Hamiltonian theory explains the favorable properties of numerically optimized phase schemes. The high efficiency of spin polarization transfers in simulations is preserved in experiments, in part because the RF field amplitude in PR5 is only 2.5 times the MAS frequency so that relatively low 1H decoupling powers are required. Experiments on a microcrystalline sample of the β1 immunoglobulin binding domain of protein G demonstrate an average enhancement factor of 1.6 for 13Cα → 13Cβ polarization transfers, compared to the standard 13C-13C spin-diffusion method, implying a two-fold time saving in relevant 2D and 3D experiments.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Hui Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Jing Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
28
|
Gopinath T, Wang S, Lee J, Aihara H, Veglia G. Hybridization of TEDOR and NCX MAS solid-state NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements. JOURNAL OF BIOMOLECULAR NMR 2019; 73:141-153. [PMID: 30805819 PMCID: PMC6526076 DOI: 10.1007/s10858-019-00237-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is a major technique for the characterization of the structural dynamics of biopolymers at atomic resolution. However, the intrinsic low sensitivity of this technique poses significant limitations to its routine application in structural biology. Here we achieve substantial savings in experimental time using a new subclass of Polarization Optimized Experiments (POEs) that concatenate TEDOR and SPECIFIC-CP transfers into a single pulse sequence. Specifically, we designed new 2D and 3D experiments (2D TEDOR-NCX, 3D TEDOR-NCOCX, and 3D TEDOR-NCACX) to obtain distance measurements and heteronuclear chemical shift correlations for resonance assignments using only one experiment. We successfully tested these experiments on N-Acetyl-Val-Leu dipeptide, microcrystalline U-13C,15N ubiquitin, and single- and multi-span membrane proteins reconstituted in lipid membranes. These pulse sequences can be implemented on any ssNMR spectrometer equipped with standard solid-state hardware using only one receiver. Since these new POEs speed up data acquisition considerably, we anticipate their broad application to fibrillar, microcrystalline, and membrane-bound proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - John Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
Perras FA, Goh TW, Wang LL, Huang W, Pruski M. Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 98:12-18. [PMID: 30669006 DOI: 10.1016/j.ssnmr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The sensitivity of solid-state NMR experiments that utilize 1H zero-quantum heteronuclear dipolar recoupling, such as D-HMQC, is compromised by poor homonuclear decoupling. This leads to a rapid decay of recoupled magnetization and an inefficient recoupling of long-range dipolar interactions, especially for nuclides with low gyromagnetic ratios. We investigated the use, in symmetry-based 1H heteronuclear recoupling sequences, of a basic R element that was principally designed for efficient homonuclear decoupling. By shortening the time required to suppress the effects of homonuclear dipolar interactions to the duration of a single inversion pulse, spin diffusion was effectively quenched and long-lived recoupled coherence lifetimes could be obtained. We show, both theoretically and experimentally, that these modified sequences can yield considerable sensitivity improvements over the current state-of-the-art methods and applied them to the indirect detection of 89Y in a metal-organic framework.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Lin-Lin Wang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA
| | - Wenyu Huang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Marek Pruski
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
30
|
Global response of diacylglycerol kinase towards substrate binding observed by 2D and 3D MAS NMR. Sci Rep 2019; 9:3995. [PMID: 30850624 PMCID: PMC6408475 DOI: 10.1038/s41598-019-40264-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli diacylglycerol kinase (DGK) is an integral membrane protein, which catalyses the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). It is a unique trimeric enzyme, which does not share sequence homology with typical kinases. It exhibits a notable complexity in structure and function despite of its small size. Here, chemical shift assignment of wild-type DGK within lipid bilayers was carried out based on 3D MAS NMR, utilizing manual and automatic analysis protocols. Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, we could detect that the nucleotide substrate induces a substantial conformational change, most likely directing DGK into its catalytic active form. Furthermore, functionally relevant interprotomer interactions are identified by DNP-enhanced MAS NMR in combination with site-directed mutagenesis and functional assays.
Collapse
|