1
|
Aguilar CJ, Sarwar M, Prabakar S, Zhang W, Harris PWR, Brimble MA, Kavianinia I. Harnessing the power of a photoinitiated thiol-ene "click" reaction for the efficient synthesis of S-lipidated collagen model peptide amphiphiles. Org Biomol Chem 2023; 21:9150-9158. [PMID: 37822146 DOI: 10.1039/d3ob01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A photoinitiated thiol-ene "click" reaction was used to synthesize S-lipidated collagen model peptide amphiphiles. Use of 2-iminothiolane provided an epimerization-free thiol handle required for thiol-ene based incorporation of lipid moieties onto collagen-based peptide sequences. This approach not only led to improvements in the triple helical characteristics of the resulting collagen model peptides but also increased the aqueous solubility of the peptide amphiphiles. As a result, this methodology holds significant potential for the design and advancement of functional peptide amphiphiles, offering enhanced capabilities across a wide range of applications.
Collapse
Affiliation(s)
- Clouie Justin Aguilar
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Makhdoom Sarwar
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011, New Zealand
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Wenkai Zhang
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, New Zealand
| |
Collapse
|
2
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
3
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
4
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
5
|
Kobayashi D, Kuraoka E, Hayashi J, Yasuda T, Kohmura Y, Denda M, Harada N, Inagaki N, Otaka A. S-Protected Cysteine Sulfoxide-Enabled Tryptophan-Selective Modification with Application to Peptide Lipidation. ACS Med Chem Lett 2022; 13:1125-1130. [DOI: 10.1021/acsmedchemlett.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Eisuke Kuraoka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Junya Hayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Takuma Yasuda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Kohmura
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
6
|
Jamaluddin A, Chuang CL, Williams ET, Siow A, Yang SH, Harris PWR, Petersen JSSM, Bower RL, Chand S, Brimble MA, Walker CS, Hay DL, Loomes KM. Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo. Front Pharmacol 2022; 13:832589. [PMID: 35341216 PMCID: PMC8942775 DOI: 10.3389/fphar.2022.832589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Elyse T Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Mishra AK, Tessier R, Hari DP, Waser J. Amphiphilic Iodine(III) Reagents for the Lipophilization of Peptides in Water. Angew Chem Int Ed Engl 2021; 60:17963-17968. [PMID: 34038604 PMCID: PMC8456932 DOI: 10.1002/anie.202106458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/31/2022]
Abstract
We report the functionalization of cysteine residues with lipophilic alkynes bearing a silyl group or an alkyl chain using amphiphilic ethynylbenziodoxolone reagents (EBXs). The reactions were carried out in buffer (pH 6 to 9), without organic co-solvent or removal of oxygen, either at 37 °C or room temperature. The transformation led to a significant increase of peptide lipophilicity and worked for aromatic thiols, homocysteine, cysteine, and peptides containing 4 to 18 amino acids. His6 -Cys-Ubiquitin was also alkynylated under physiological conditions. Under acidic conditions, the thioalkynes were converted into thioesters, which could be cleaved in the presence of hydroxylamine.
Collapse
Affiliation(s)
- Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Romain Tessier
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
- Present address: Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
8
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
9
|
Mishra AK, Tessier R, Hari DP, Waser J. Amphiphilic Iodine(III) Reagents for the Lipophilization of Peptides in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Romain Tessier
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
- Present address: Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Rani A, De Leon-Rodriguez LM, Kavianinia I, McGillivray DJ, Williams DE, Brimble MA. Synthesis and characterization of mono S-lipidated peptide hydrogels: a platform for the preparation of reactive oxygen species responsive materials. Org Biomol Chem 2021; 19:3665-3677. [PMID: 33908574 DOI: 10.1039/d1ob00355k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
11
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Shepperson OA, Cameron AJ, Wang CJ, Harris PWR, Taylor JA, Brimble MA. Thiol-ene enabled preparation of S-lipidated anti-HBV peptides. Org Biomol Chem 2021; 19:220-232. [PMID: 33185215 DOI: 10.1039/d0ob01997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite significant efforts made towards treatments for Hepatitis B virus (HBV), a long-term curative treatment has thus far eluded scientists. Recently, the Sodium Taurocholate Co-Transporting Polypeptide (NTCP) receptor has been identified as the entry pathway of HBV into hepatocytes. Myrcludex B, an N-terminally myristoylated 47-mer peptide mimic of the preS1 domain of the Hepatitis B virion, was identified as a potent protein-protein interaction (PPI) inhibitor blocking HBV fusion (IC50 = 140 pM). Herein we report an optimised chemical synthesis of Myrcludex B and a series of novel analogues. Employing a small modification to the Cysteine Lipidation of a Peptide or Amino acid (CLipPA) thiol-ene reaction, a library of S-lipidated Myrcludex B and truncated (21-mer) analogues were prepared, providing novel chemical space to probe for the discovery of novel anti-HBV peptides. The S-lipidated analogues showed an equivalent or a slight decrease (∼2-fold) in binding effectiveness to NTCP expressing hepatocytes compared to Myrcludex B. Three S-lipidated analogues were highly potent HBV inhibitors (IC50 0.97-3.32 nM). These results demonstrate that incorporation of heteroatoms into the lipid 'anchor' is tolerated by this antiviral scaffold and to the best of our knowledge constitutes the first report of potent S-lipidated antiviral peptides. Interestingly, despite only moderate reductions in binding effectiveness, truncated analogues possessed dramatically reduced inhibitory activity thus providing new insights into the structure activity relationship of these hitherto unreported antiviral S-lipopeptides.
Collapse
Affiliation(s)
- Oscar A Shepperson
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
| | | | | | | | | | | |
Collapse
|
13
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
14
|
Abstract
Lipidation of polypeptides with a fatty acid to form N-linked lipopeptides can be a time consuming process due to the need to mask other reactive function groups present on the side chains of amino acids. Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology enables the direct lipidation of unprotected peptides containing a free thiol group to afford S-lipidated lipopeptides. A generalized procedure for the synthesis of S-lipopeptides is described which facilities rapid preparation of tens of analogs of lipopeptides from a single thiolated polypeptide precursor.
Collapse
Affiliation(s)
- Victor Yim
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Pineda-Castañeda HM, Insuasty-Cepeda DS, Niño-Ramírez VA, Curtidor H, Rivera-Monroy ZJ. Designing Short Peptides: A Sisyphean Task? CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200910094034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the last few years, short peptides have become a powerful tool in basic and
applied research, with different uses like diagnostic, antimicrobial peptides, human health
promoters or bioactive peptides, therapeutic treatments, templates for peptidomimetic design,
and peptide-based vaccines. In this endeavor, different approaches and technologies
have been explored, such as bioinformatics, large-scale peptide synthesis, omics sciences,
structure-activity relationship studies, and a biophysical approach, among others, seeking to
obtain the shortest sequence with the best activity. The advantage of short peptides lies in
their stability, ease of production, safety, and low cost. There are many strategies for designing
short peptides with biomedical and industrial applications (targeting the structure, length,
charge, or polarity) or as a starting point for improving their properties (sequence data base,
de novo sequences, templates, or organic scaffolds). In peptide design, it is necessary to keep in mind factors
such as the application (peptidomimetic, immunogen, antimicrobial, bioactive, or protein-protein interaction
inhibitor), the expected target (membrane cell, nucleus, receptor proteins, or immune system), and particular
characteristics (shorter, conformationally constrained, cycled, charged, flexible, polymerized, or pseudopeptides).
This review summarizes the different synthetic approaches and strategies used to design new peptide analogs,
highlighting the achievements, constraints, and advantages of each.
Collapse
Affiliation(s)
| | | | - Víctor A. Niño-Ramírez
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Zuly J. Rivera-Monroy
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
16
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
17
|
Yim VV, Kavianinia I, Cameron AJ, Harris PWR, Brimble MA. Direct synthesis of cyclic lipopeptides using intramolecular native chemical ligation and thiol-ene CLipPA chemistry. Org Biomol Chem 2020; 18:2838-2844. [PMID: 32048704 DOI: 10.1039/d0ob00203h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Naturally occurring cyclic lipopeptides exhibit a diverse range of biological activities and possess several favourable properties. Chemically synthesising and modifying these natural compounds can alter their biological and physical properties. Cyclic lipopeptides are often difficult to synthesise, especially when the lipid moiety is directly attached to the cyclic scaffold. The construction of a series of cyclic lipopeptide analogues of the antifungal peptide iturin A is reported herein. The synthesis of the parent peptide macrocycle was achieved using native chemical ligation (NCL), whereupon the regenerated free thiol was used to attach a lipid moiety using Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology.
Collapse
Affiliation(s)
- Victor V Yim
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Alan J Cameron
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
18
|
Cameron AJ, Harris PWR, Brimble MA. On-Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool. Angew Chem Int Ed Engl 2020; 59:18054-18061. [PMID: 32700356 DOI: 10.1002/anie.202004656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/14/2022]
Abstract
The ability to modify peptides and proteins chemoselectively is of continued interest in medicinal chemistry, with peptide conjugation, lipidation, stapling, and disulfide engineering at the forefront of modern peptide chemistry. Herein we report a robust method for the on-resin preparation of allenamide-modified peptides, an unexplored functionality for peptides that provides a versatile chemical tool for chemoselective inter- or intramolecular bridging reactions with thiols. The bridging reaction is biocompatible, occurring spontaneously at pH 7.4 in catalyst-free aqueous media. By this "click" approach, a model peptide was successfully modified with a diverse range of alkyl and aryl thiols. Furthermore, this technique was demonstrated as a valuable tool to induce spontaneous intramolecular cyclisation by preparation of an oxytocin analogue, in which the native disulfide bridge was replaced with a vinyl sulfide moiety formed by thia-Michael addition of a cysteine thiol to the allenamide handle.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences and School of Biological Sciences, The University of Auckland, 23 Symonds St, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Cameron AJ, Harris PWR, Brimble MA. On‐Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alan J. Cameron
- School of Chemical Sciences and School of Biological Sciences The University of Auckland 23 Symonds St Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland Auckland 1142 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences and School of Biological Sciences The University of Auckland 23 Symonds St Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences and School of Biological Sciences The University of Auckland 23 Symonds St Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery The University of Auckland Auckland 1142 New Zealand
| |
Collapse
|
20
|
Paterson DL, Flanagan JU, Shepherd PR, Harris PWR, Brimble MA. Variable-Length Ester-Based Staples for α-Helical Peptides by Using A Double Thiol-ene Reaction. Chemistry 2020; 26:10826-10833. [PMID: 32232881 DOI: 10.1002/chem.202001478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/12/2022]
Abstract
A novel peptide stapling method effected by a double thiol-ene reaction between two cysteine residues and a divinyl diester to access stapled peptides with enhanced cell permeability is reported. This diverse chemical tool kit provides facile access to stapled peptides with varying bridge lengths. Stapled Axin mimetics were synthesised by using this stapling method resulting in improved α-helicity relative to the unstapled peptide. Cell penetrating stapled analogues of the SIGK peptide that targets the protein-protein interaction hotspot of Gβγ proteins were also synthesised that exhibited a moderate increase in α-helicity and were cell permeable. This chemoselective peptide stapling method is highly amenable as a facile method to easily modify synthetic α-helical peptides to target intracellular proteins.
Collapse
Affiliation(s)
- Danielle L Paterson
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Jack U Flanagan
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand.,Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1042, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, The University of Auckland, Auckland, 1042, New Zealand
| | - Peter R Shepherd
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand.,Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1042, New Zealand.,School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland, 1042, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1142, New Zealand.,School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
21
|
Yim V, Kavianinia I, Knottenbelt MK, Ferguson SA, Cook GM, Swift S, Chakraborty A, Allison JR, Cameron AJ, Harris PWR, Brimble MA. "CLipP"ing on lipids to generate antibacterial lipopeptides. Chem Sci 2020; 11:5759-5765. [PMID: 34094080 PMCID: PMC8159387 DOI: 10.1039/d0sc01814g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
We herein report the synthesis and biological and computational evaluation of 12 linear analogues of the cyclic lipopeptide battacin, enabled by Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) technology. Several of the novel "CLipP"ed lipopeptides exhibited low micromolar MICs and MBCs against both Gram-negative and Gram-positive bacteria. The mechanism of action was then simulated with the MIC data using computational methods.
Collapse
Affiliation(s)
- Victor Yim
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Melanie K Knottenbelt
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland 85 Park Road, Grafton Auckland 1023 New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Jane R Allison
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Alan J Cameron
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| |
Collapse
|
22
|
Lu BL, Loomes KM, Hay DL, Harris PWR, Brimble MA. Synthesis of isotopically labelled αCGRP 8-37 and its lipidated analogue. J Labelled Comp Radiopharm 2020; 63:325-332. [PMID: 32212343 DOI: 10.1002/jlcr.3838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
α-Calcitonin gene related peptide (αCGRP) inhibitors are important medicinal targets due to their ability to produce antimigraine effects, thus, the discovery of long-acting αCGRP inhibitors is of significant interest. Herein we report the synthesis of an isotopically labelled version of the well-known CGRP receptor antagonist, αCGRP8-37 , as well as lipidated αCGRP8-37 with comparable antagonistic activity. These isotopically labelled peptides can be employed in assays to determine the metabolic stability of the lipidated αCGRP8-37 and compare this with the stability of known αCGRP8-37 .
Collapse
Affiliation(s)
- Benjamin L Lu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kerry M Loomes
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020; 59:5178-5184. [DOI: 10.1002/anie.201914836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
24
|
Replacement of the Acrid tert
-Butylthiol and an Improved Isolation Protocol for Cysteine Lipidation on a Peptide or Amino Acid (CLipPA). European J Org Chem 2020. [DOI: 10.1002/ejoc.201901696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Huang D, Montigny C, Zheng Y, Beswick V, Li Y, Cao X, Barbot T, Jaxel C, Liang J, Xue M, Tian C, Jamin N, Zheng J. Chemical Synthesis of Native S‐Palmitoylated Membrane Proteins through Removable‐Backbone‐Modification‐Assisted Ser/Thr Ligation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dong‐Liang Huang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Yong Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
- Department of PhysicsEvry-Val-d'Essonne University 91025 Evry France
| | - Ying Li
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Xiu‐Xiu Cao
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Jun Liang
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Min Xue
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris-SudUniversité Paris-Saclay 91198 Gif-sur-Yvette cedex France
| | - Ji‐Shen Zheng
- High Magnetic Field LaboratoryChinese Academy of Sciences and Hefei National Laboratory for Physical Sciences at the MicroscaleSchool of Life SciencesUniversity of Science and Technology of China Hefei 230027 China
| |
Collapse
|
26
|
Hermant YO, Cameron AJ, Harris PWR, Brimble MA. Synthesis of Antimicrobial Lipopeptides Using the "CLipPA" Thiol-Ene Reaction. Methods Mol Biol 2020; 2103:263-274. [PMID: 31879932 DOI: 10.1007/978-1-0716-0227-0_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cysteine Lipidation on a Peptide or Amino acid (CLipPA) technology provides a facile method for the lipidation of unprotected peptides containing a free thiol group by using a "click" radical-initiated thiol-ene reaction to effect addition to a vinyl ester. The methodology is highly versatile, leading to high conversion rates while maintaining excellent chemoselectivity and tolerance for a large variety of peptide substrates and functional groups. Herein we describe the simple general procedure for the synthesis of a focused library of bioactive S-lipidated antimicrobial peptides via late-stage derivatization using solution-phase CLipPA lipidation.
Collapse
Affiliation(s)
- Yann O Hermant
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Chang CL, Hsu SYT. Development of chimeric and bifunctional antagonists for CLR/RAMP receptors. PLoS One 2019; 14:e0216996. [PMID: 31150417 PMCID: PMC6544337 DOI: 10.1371/journal.pone.0216996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are
important neuropeptides and hormones for the regulation of neurotransmission,
vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental
development. These peptides signal through CLR/RAMP1, 2 and 3 receptor
complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the
treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or
ADM receptor, antagonists are being developed for the treatment of tumor
growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2
analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the
binding domain of this analog could have potent inhibitory activity on CLR/RAMP
receptors. Consistent with this hypothesis, we showed that acylated truncated
ADM/ADM2 analogs of 27–31 residues exhibit potent antagonistic activity toward
CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity.
Further truncation at the junctional region of these chimeric analogs led to the
generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog
(Antagonist 2–4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold
more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we
showed (1) a lysine residue in the Antagonist 2–4 is important for enhancing the
antagonistic activity, (2) an analog consisted of an ADM sequence motif and a
12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory
activity, and (3) a chimeric analog consisted of a somatostatin analog and an
ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors.
Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses
tumor growth/metastasis, further studies of these analogs, which presumably have
better access to the tumor microenvironment and nerve endings at the trigeminal
ganglion and synovial joints as compared to antibody-based therapies, may lead
to the development of better anti-CGRP therapy and alternative antiangiogenesis
therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs
could be a promising strategy for the treatment of high-grade neuroendocrine
tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor
microenvironment.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital
Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan,
Taiwan
| | | |
Collapse
|
28
|
Hu W, Chen M, Wang Q, Zhang L, Yuan X, Chen F, Yang H. Broadband Reflection in Polymer‐Stabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angew Chem Int Ed Engl 2019; 58:6698-6702. [DOI: 10.1002/anie.201902681] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Hu
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Mei Chen
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
| | - Qian Wang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
| | - Lanying Zhang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking University Beijing 100871 P. R. China
| | - Xiaotao Yuan
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Feiwu Chen
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Huai Yang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking University Beijing 100871 P. R. China
| |
Collapse
|
29
|
Hu W, Chen M, Wang Q, Zhang L, Yuan X, Chen F, Yang H. Broadband Reflection in Polymer‐Stabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wei Hu
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Mei Chen
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
| | - Qian Wang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
| | - Lanying Zhang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking University Beijing 100871 P. R. China
| | - Xiaotao Yuan
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Feiwu Chen
- Department of Chemistry and Chemical EngineeringSchool of Chemistry and Biological EngineeringUniversity of Science and Technology Beijing Beijing 100083 P. R. China
| | - Huai Yang
- Department of Materials Science and EngineeringCollege of EngineeringPeking University Beijing 100871 P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking University Beijing 100871 P. R. China
| |
Collapse
|