1
|
Shen Y, Zhang Y, Zhang C, Li H, Hu C, Yu Z, Zheng K, Su Z. Elucidating Mechanism and Selectivity in Pyridine Functionalization Through Silylium Catalysis. Chemistry 2024; 30:e202402078. [PMID: 38976314 DOI: 10.1002/chem.202402078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Handjaya JP, Patankar N, Reid JP. The Diversity and Evolution of Chiral Brønsted Acid Structures. Chemistry 2024; 30:e202400921. [PMID: 38706381 DOI: 10.1002/chem.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.
Collapse
Affiliation(s)
- Jasemine P Handjaya
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Niraja Patankar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
3
|
Barallat-Pérez C, Pedrotti M, Oliviero T, Martins S, Fogliano V, de Jong C. Drivers of the In-Mouth Interaction between Lupin Protein Isolate and Selected Aroma Compounds: A Proton Transfer Reaction-Mass Spectrometry and Dynamic Time Intensity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8731-8741. [PMID: 38579129 PMCID: PMC11036385 DOI: 10.1021/acs.jafc.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.
Collapse
Affiliation(s)
- Cristina Barallat-Pérez
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | | | - Teresa Oliviero
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Sara Martins
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
- AFB
International EU, Oss, LZ 5342, The Netherlands
| | - Vincenzo Fogliano
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Catrienus de Jong
- Wageningen
Food and Biobased Research, Wageningen University
& Research, Wageningen, WG 6708, The Netherlands
| |
Collapse
|
4
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
5
|
Zhou H, Properzi R, Leutzsch M, Belanzoni P, Bistoni G, Tsuji N, Han JT, Zhu C, List B. Organocatalytic DYKAT of Si-Stereogenic Silanes. J Am Chem Soc 2023; 145:4994-5000. [PMID: 36826435 PMCID: PMC9999423 DOI: 10.1021/jacs.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 02/25/2023]
Abstract
Chiral organosilanes do not exist in nature and are therefore absent from the "chiral pool". As a consequence, synthetic approaches toward enantiopure silanes, stereogenic at silicon, are rather limited. While catalytic asymmetric desymmetrization reactions of symmetric organosilicon compounds have been developed, the utilization of racemic silanes in a dynamic kinetic asymmetric transformation (DYKAT) or dynamic kinetic resolution (DKR) would significantly expand the breadth of accessible Si-stereogenic compounds. We now report a DYKAT of racemic allyl silanes enabled by strong and confined imidodiphosphorimidate (IDPi) catalysts, providing access to Si-stereogenic silyl ethers. The products of this reaction are easily converted into useful enantiopure monohydrosilanes. We propose a spectroscopically and experimentally supported mechanism involving the epimerization of a catalyst-bound intermediate.
Collapse
Affiliation(s)
- Hui Zhou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Roberta Properzi
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Paola Belanzoni
- University
of Perugia, Department of Chemistry,
Biology and Biotechnology, 06122 Perugia, Italy
| | - Giovanni Bistoni
- University
of Perugia, Department of Chemistry,
Biology and Biotechnology, 06122 Perugia, Italy
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jung Tae Han
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Chendan Zhu
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
6
|
Lee S, Chung W. Enantioselective halogenation via asymmetric
phase‐transfer
catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu Republic of Korea
| | - Won‐jin Chung
- Department of Chemistry GIST Gwangju Republic of Korea
| |
Collapse
|
7
|
Ke M, Qiao B, Yu Y, Li X, Xiao X, Li SJ, Lan Y, Chen F. Palladium-Catalyzed Asymmetric [3 + 2] Annulation of Vinylethylene Carbonates with Alkenes Installed on Cyclic N-Sulfonyl Imines: Highly Enantio- and Diastereoselective Construction of Chiral Tetrahydrofuran Scaffolds Bearing Three Vicinal and Quaternary Stereocenters. J Org Chem 2022; 87:5166-5177. [PMID: 35377155 DOI: 10.1021/acs.joc.1c03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multisubstituted tetrahydrofuran building block bearing three vicinal chiral carbon centers widely exists in a broad spectrum of bioactive natural products, and the development of efficient and convenient methods to establish this skeleton remains a challenging task. Herein, we have developed an efficient method for the construction of significant tetrahydrofuran scaffolds bearing three vicinal and α-quaternary chiral carbon stereocenters through Pd-catalyzed asymmetric [3 + 2] annulation of vinylethylene carbonates with alkenes installed on cyclic N-sulfonyl imines. A series of multisubstituted tetrahydrofuran derivatives are obtained in high efficiencies with excellent enantioselectivities and diastereoselectivities. Density functional theory (DFT) studies are accomplished to rationalize the stereocontrol of the annulation process and disclose that methanol could be applied to stabilize the reactive zwitterionic π-allylpalladium via the H-bond interaction.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bolin Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Catalytic Asymmetric Additions of Enol Silanes to In Situ Generated Cyclic, Aliphatic N-Acyliminium Ions. Angew Chem Int Ed Engl 2022; 61:e202115036. [PMID: 34897932 PMCID: PMC9303265 DOI: 10.1002/anie.202115036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/02/2022]
Abstract
Strong and confined imidodiphosphorimidate (IDPi) catalysts enable highly enantioselective substitutions of cyclic, aliphatic hemiaminal ethers with enol silanes. 2-Substituted pyrrolidines, piperidines, and azepanes are obtained with high enantioselectivities, and the method displays a broad tolerance of various enol silane nucleophiles. Several natural products can be accessed using this methodology. Mechanistic studies support the intermediacy of non-stabilized, cyclic N-(exo-acyl)iminium ions, paired with the confined chiral counteranion. Computational studies suggest transition states that explain the observed enantioselectivity.
Collapse
Affiliation(s)
- Oleg Grossmann
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Rajat Maji
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Miles H. Aukland
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| | - Sunggi Lee
- Department of Emerging Materials ScienceDaegu Gyeongbuk Institute of Science and Technology (DGIST)333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gunDaegu (Republik ofKorea
| | - Benjamin List
- Homogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido UniversitySapporo001-0021Japan
| |
Collapse
|
9
|
Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen WW, Ding K, Zhao B. A Powerful Chiral Super Brønsted C-H Acid for Asymmetric Catalysis. J Am Chem Soc 2022; 144:2853-2860. [PMID: 35143204 DOI: 10.1021/jacs.1c12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.
Collapse
Affiliation(s)
- Bingfei Peng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yating Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ronghao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinlong Zeng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
10
|
Grossmann O, Maji R, Aukland MH, Lee S, List B. Katalytische asymmetrische Additionen von Enolsilanen an in situ erzeugte zyklische, aliphatische
N
‐Acyliminiumionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleg Grossmann
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Rajat Maji
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Miles H. Aukland
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Sunggi Lee
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun Daegu (Republik Korea
| | - Benjamin List
- Homogene Katalyse Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr (Germany)
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
11
|
Wearing ER, Blackmun DE, Becker MR, Schindler CS. 1- and 2-Azetines via Visible Light-Mediated [2 + 2]-Cycloadditions of Alkynes and Oximes. J Am Chem Soc 2021; 143:16235-16242. [PMID: 34570970 DOI: 10.1021/jacs.1c07523] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azetines, four-membered unsaturated nitrogen-containing heterocycles, hold great potential for drug design and development but remain underexplored due to challenges associated with their synthesis. We report an efficient, visible light-mediated approach toward 1- and 2-azetines relying on alkynes and the unique triplet state reactivity of oximes, specifically 2-isoxazolines. While 2-azetine products are accessible upon intermolecular [2 + 2]-cycloaddition via triplet energy transfer from a commercially available iridium photocatalyst, the selective formation of 1-azetines proceeds upon a second, consecutive, energy transfer process. Mechanistic studies are consistent with a stepwise reaction mechanism via N-O bond homolysis following the second energy transfer event to result in the formation of 1-azetine products. Characteristic for this method is its operational simplicity, mild conditions, and modular approach that allow for the synthesis of functionalized azetines and tetrahydrofurans (via in situ hydrolysis) from readily available precursors.
Collapse
Affiliation(s)
- Emily R Wearing
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Dominique E Blackmun
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Marc R Becker
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Corinna S Schindler
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Lei CW, Mu BS, Zhou F, Yu JS, Zhou Y, Zhou J. Organocatalytic enantioselective reactions involving prochiral carbocationic intermediates. Chem Commun (Camb) 2021; 57:9178-9191. [PMID: 34519317 DOI: 10.1039/d1cc03506a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the discovery of carbocations in 1901, the past 120 years have witnessed many marvelous advances in the chemistry of carbocations. The state-of-the-art research in this field is to overcome the intrinsic instability and high reactivity of the prochiral carbocationic intermediates to develop catalytic asymmetric reactions. Such transformations enable the facile synthesis of structurally diverse value-added products from readily available starting materials such as alkenes, alcohols, and carbonyl derivatives, and enjoy high and even perfect atom-economy in most cases. Notably, such allows catalytic stereoconvergent synthesis from racemic substrates and can realize regioselectivity in olefin functionalization reactions complementary to radical processes. With the rapid developments in modern asymmetric organocatalysis, a variety of highly enantioselective protocols evolving prochiral carbocationic intermediates have been achieved by employing three strategies, namely chiral ion-pairing, chiral nucleophile, or chiral carbenium ion strategy. This feature article aims to summarize the exciting advances in this emerging area and briefly showcase the possible mechanisms. The advantages and limitations of each strategy are presented as well as their synthetic applications in the synthesis of natural products or bioactive compounds.
Collapse
Affiliation(s)
- Chuan-Wen Lei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China.
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China.
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
13
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
14
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
15
|
Zhang CH, Gao Q, Li M, Wang JF, Yu CM, Mao B. Kinetic Resolution of Tertiary Allylic Alcohols: Highly Enantioselective Access to Cyclic Ethers Bearing an α-Tetrasubstituted Stereocenter. Org Lett 2021; 23:3949-3954. [DOI: 10.1021/acs.orglett.1c01110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao-Huan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qing Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meng Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian-Fei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuan-Ming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
16
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
17
|
Zhu C, Mandrelli F, Zhou H, Maji R, List B. Catalytic Asymmetric Synthesis of Unprotected β 2-Amino Acids. J Am Chem Soc 2021; 143:3312-3317. [PMID: 33645969 PMCID: PMC7953379 DOI: 10.1021/jacs.1c00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We report here a
scalable, catalytic one-pot approach to enantiopure
and unmodified β2-amino acids. A newly developed
confined imidodiphosphorimidate (IDPi) catalyzes a broadly applicable
reaction of diverse bis-silyl ketene acetals with a silylated aminomethyl
ether, followed by hydrolytic workup, to give free β2-amino acids in high yields, purity, and enantioselectivity. Importantly,
both aromatic and aliphatic β2-amino acids can be
obtained using this method. Mechanistic studies are consistent with
the aminomethylation to proceed via silylium-based asymmetric counteranion-directed
catalysis (Si-ACDC) and a transition state to explain the enantioselectivity
is suggested on the basis of density functional theory calculation.
Collapse
Affiliation(s)
- Chendan Zhu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Francesca Mandrelli
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
18
|
Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Asymmetric synthesis of dihydro-1,3-dioxepines by Rh(ii)/Sm(iii) relay catalytic three-component tandem [4 + 3]-cycloaddition. Chem Sci 2021; 12:5458-5463. [PMID: 34168787 PMCID: PMC8179659 DOI: 10.1039/d1sc01019k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N'-dioxide-Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.
Collapse
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
19
|
Pan YL, Zheng HL, Wang J, Yang C, Li X, Cheng JP. Enantioselective Allylation of Oxocarbenium Ions Catalyzed by Bi(OAc)3/Chiral Phosphoric Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu-Liang Pan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Liang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Yepes D, Neese F, List B, Bistoni G. Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. J Am Chem Soc 2020; 142:3613-3625. [PMID: 31984734 PMCID: PMC7307905 DOI: 10.1021/jacs.9b13725] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
High-level quantum electronic structure
calculations are used to
provide a deep insight into the mechanism and stereocontrolling factors
of two recently developed catalytic asymmetric Diels–Alder
(DA) reactions of cinnamate esters with cyclopentadiene. The reactions
employ two structurally and electronically very different in situ
silylated enantiopure Lewis acid organocatalysts: i.e., binaphthyl-allyl-tetrasulfone
(BALT) and imidodiphosphorimidate (IDPi). Each of these catalysts
activates only specific substrates in an enantioselective fashion.
Emphasis is placed on identifying and quantifying the key noncovalent
interactions responsible for the selectivity of these transformations,
with the final aim of aiding in the development of designing principles
for catalysts with a broader scope. Our results shed light into the
mechanism through which the catalyst architecture determines the selectivity
of these transformations via a delicate balance of dispersion and
steric interactions.
Collapse
Affiliation(s)
- Diana Yepes
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
21
|
Lu Q, Harmalkar DS, Choi Y, Lee K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules 2019; 24:molecules24203778. [PMID: 31640154 PMCID: PMC6833478 DOI: 10.3390/molecules24203778] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022] Open
Abstract
Saturated oxygen heterocycles are widely found in a broad array of natural products and other biologically active molecules. In medicinal chemistry, small and medium rings are also important synthetic intermediates since they can undergo ring-opening and -expansion reactions. These applications have driven numerous studies on the synthesis of oxygen-containing heterocycles and considerable effort has been devoted toward the development of methods for the construction of saturated oxygen heterocycles. This paper provides an overview of the biological roles and synthetic strategies of saturated cyclic ethers, covering some of the most studied and newly discovered related natural products in recent years. This paper also reports several promising and newly developed synthetic methods, emphasizing 3-7 membered rings.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| |
Collapse
|
22
|
Chavan LN, Mainkar PS, Chandrasekhar S. Organocatalytic Asymmetric Synthesis of Tetrahydrofuran and 1,2-Dihydrobenzofuran Scaffolds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lahu N. Chavan
- Department of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR); 201 002 Uttar Pradesh Ghaziabad India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR); 201 002 Uttar Pradesh Ghaziabad India
| | - S. Chandrasekhar
- Department of Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR); 201 002 Uttar Pradesh Ghaziabad India
| |
Collapse
|
23
|
Affiliation(s)
- Lucas Schreyer
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Roberta Properzi
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
24
|
Abstract
High acidity and structural confinement are pivotal elements in asymmetric acid catalysis. The recently introduced imidodiphosphorimidate (IDPi) Brønsted acids have met with remarkable success in combining those features, acting as powerful Brønsted acid catalysts and "silylium" Lewis acid precatalysts in numerous thus far inaccessible transformations. Substrates as challenging to activate as simple olefins were readily transformed, ketones were employed as acceptors in aldolizations allowing sub-ppm level catalysis, whereas enolates of the smallest donor aldehyde, acetaldehyde, did not polymerize but selectively added a single time to a variety of acceptor aldehydes.
Collapse
Affiliation(s)
- Lucas Schreyer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Roberta Properzi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Monasterolo C, Müller-Bunz H, Gilheany DG. Very short highly enantioselective Grignard synthesis of 2,2-disubstituted tetrahydrofurans and tetrahydropyrans. Chem Sci 2019; 10:6531-6538. [PMID: 31341606 PMCID: PMC6611064 DOI: 10.1039/c9sc00978g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/25/2019] [Indexed: 12/17/2022] Open
Abstract
Phenones with elongated chains are shown to be excellent substrates for ligand-promoted asymmetric Grignard synthesis of tertiary alcohols. In turn this enables the simple, short and highly enantioselective (up to 96% ee) preparation of chiral 2,2-disubstituted THFs and THPs. Thus, asymmetric addition of Grignard reagents to γ-chlorobutyrophenones and δ-chlorovalerophenones takes place in the presence of a chiral diaminocyclohexyl-derived tridentate ligand and subsequent base-promoted intramolecular cyclisation occurs with complete retention of asymmetry. As examples of the methodology, we report the shortest syntheses of gossonorol, γ-ethyl-γ-phenylbutyrolactone and δ-methyl-δ-tolylvalerolactone, the joint-shortest and flexible synthesis of boivinianin A and the shortest formal syntheses of boivinianin B and yingzhaosu C.
Collapse
Affiliation(s)
- Claudio Monasterolo
- Centre for Synthesis and Chemical Biology , School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland . ;
| | - Helge Müller-Bunz
- Centre for Synthesis and Chemical Biology , School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland . ;
| | - Declan G Gilheany
- Centre for Synthesis and Chemical Biology , School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland . ;
| |
Collapse
|
26
|
DeRatt LG, Pappoppula M, Aponick A. A Facile Enantioselective Alkynylation of Chromones. Angew Chem Int Ed Engl 2019; 58:8416-8420. [PMID: 31016846 DOI: 10.1002/anie.201902405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Indexed: 11/06/2022]
Abstract
The first catalytic enantioselective alkynylation of chromones is reported. In this process, chromones are silylated to form silyloxybenzopyrylium ions that lead to silyl enol ethers after Cu-catalyzed alkyne addition using StackPhos as a ligand. The outcome of the reaction is impacted by distal ligand substituents with differing electronic character and it was found that successful reactions could be achieved with different ligand congeners by using different solvents. This sequence enables access to different products by protonation or further functionalization, thus increasing complexity in a divergent manner. The transformation is high yielding over a broad scope to provide a variety of useful chromanones in high enantioselectivity.
Collapse
Affiliation(s)
- Lindsey G DeRatt
- Florida Center for Heterocyclic Compounds & Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32607, USA
| | - Mukesh Pappoppula
- Florida Center for Heterocyclic Compounds & Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32607, USA
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds & Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32607, USA
| |
Collapse
|
27
|
DeRatt LG, Pappoppula M, Aponick A. A Facile Enantioselective Alkynylation of Chromones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lindsey G. DeRatt
- Florida Center for Heterocyclic Compounds & Department of ChemistryUniversity of Florida P.O. Box 117200 Gainesville FL 32607 USA
| | - Mukesh Pappoppula
- Florida Center for Heterocyclic Compounds & Department of ChemistryUniversity of Florida P.O. Box 117200 Gainesville FL 32607 USA
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds & Department of ChemistryUniversity of Florida P.O. Box 117200 Gainesville FL 32607 USA
| |
Collapse
|
28
|
Hubbell AK, LaPointe AM, Lamb JR, Coates GW. Regioselective Carbonylation of 2,2-Disubstituted Epoxides: An Alternative Route to Ketone-Based Aldol Products. J Am Chem Soc 2019; 141:2474-2480. [DOI: 10.1021/jacs.8b12286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aran K. Hubbell
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M. LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jessica R. Lamb
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
29
|
Gan XC, Yin L. Asymmetric Borylative Propargylation of Ketones Catalyzed by a Copper(I) Complex. Org Lett 2019; 21:931-936. [DOI: 10.1021/acs.orglett.8b03912] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xu-Cheng Gan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|