1
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
2
|
Li J, Wang L, Zhang C, Wang H, Pan Y, Li S, Chen XK, Jia T, Wang K. Manipulation of the Self-Assembly Morphology by Side-Chain Engineering of Quinoxaline-Substituted Organic Photothermal Molecules for Highly Efficient Solar-Thermal Conversion and Applications. Angew Chem Int Ed Engl 2024; 63:e202402726. [PMID: 38494458 DOI: 10.1002/anie.202402726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Organic photothermal materials have attracted increasing attention because of their structural diversity, flexibility, and compatibility. However, their energy conversion efficiency is limited owing to the narrow absorption spectrum, strong reflection/transmittance, and insufficient nonradiative decay. In this study, two quinoxaline-based D-A-D-A-D-type molecules with ethyl (BQE) or carboxylate (BQC) substituents were synthesized. Strong intramolecular charge transfer provided both molecules with a broad absorption range of 350-1000 nm. In addition, the high reorganization energy and weak molecular packing of BQE resulted in efficient nonradiative decay. More importantly, the self-assembly of BQE leads to a textured surface and enhances the light-trapping efficiency with significantly reduced light reflection/transmittance. Consequently, BQE achieved an impressive solar-thermal conversion efficiency of 18.16 % under 1.0 kW m-2 irradiation with good photobleaching resistance. Based on this knowledge, the water evaporation rate of 1.2 kg m-2 h-1 was attained for the BQE-based interfacial evaporation device with an efficiency of 83 % under 1.0 kW m-2 simulated sunlight. Finally, the synergetic integration of solar-steam and thermoelectric co-generation devices based on BQE was realized without significantly sacrificing solar-steam efficiency. This underscores the practical applications of BQE-based technology in effectively harnessing photothermal energy. This study provides new insights into the molecular design for enhancing light-trapping management by molecular self-assembly, paving the way for photothermal-driven applications of organic photothermal materials.
Collapse
Affiliation(s)
- Jing Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Luoqing Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chenyang Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Han Wang
- School of Management, Xián Polytechnic University, Xián, 710600, China
| | - Yuyu Pan
- School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang, 111003, P. R. China
| | - Shizhang Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
3
|
Zhou D, Wang Y, Yang S, Quan J, Deng J, Wang J, Li Y, Tong Y, Wang Q, Chen L. Recent Advances of Benzodithiophene-Based Donor Materials for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306854. [PMID: 37828639 DOI: 10.1002/smll.202306854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yanyan Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jiawei Deng
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Qian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
4
|
Guo HX, Higashida R, Aota H. Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification. Polymers (Basel) 2023; 15:2738. [PMID: 37376384 PMCID: PMC10304089 DOI: 10.3390/polym15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Bandgap and energy levels are crucial for developing new electronic and photonic devices because photoabsorption is highly dependent on the bandgap. Moreover, the transfer of electrons and holes between different materials depends on their respective bandgaps and energy levels. In this study, we demonstrate the preparation of a series of water-soluble discontinuously π-conjugated polymers through the addition-condensation polymerization of pyrrole (Pyr), 1,2,3-trihydroxybenzene (THB) or 2,6-dihydroxytoluene (DHT), and aldehydes, including benzaldehyde-2-sulfonic acid sodium salt (BS) and 2,4,6-trihydroxybenzaldehyde (THBA). To control the energy levels of the polymers, varying amounts of phenols (THB or DHT) were introduced to alter the electronic properties of the polymer structure. The introduction of THB or DHT into the main chain results in discontinuous conjugation and enables the control of both the energy level and bandgap. Chemical modification (acetoxylation of phenols) of the polymers was employed to further tune the energy levels. The optical and electrochemical properties of the polymers were also investigated. The bandgaps of the polymers were controlled in the range of 0.5-1.95 eV, and their energy levels could also be effectively tuned.
Collapse
Affiliation(s)
- Hao-Xuan Guo
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Japan;
| | | | - Hiroyuki Aota
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Japan;
| |
Collapse
|
5
|
Bin H, Li J, Caiazzo A, Wienk MM, Li Y, Janssen RAJ. Preparation of Efficient Organic Solar Cells Based on Terpolymer Donors via a Monomer-Ratio Insensitive Side-Chain Hybridization Strategy. CHEMSUSCHEM 2023; 16:e202300006. [PMID: 36601966 DOI: 10.1002/cssc.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Creating new donor materials is crucial for further advancing organic solar cells. Random terpolymers have been adopted to overcome shortcomings of regular alternating donor-acceptor (D-A) polymers of which the performance is often susceptible to batch-to-batch variations. In general, the properties and performance of efficient D1 -A-D2 -A and D-A1 -D-A2 terpolymers are sensitive to the D1 /D2 or A1 /A2 monomer ratios. Side-chain hybridization is a strategy to address this problem. Here, six D1 -A-D2 -A-type random terpolymers comprising D1 and D2 monomers with the same π-conjugated D unit but with different side chains were synthesized. The side chains, containing either fluorine or trialkylsilyl substituents were chosen to provide near-identical optoelectronic properties but provide a tool to create a better-optimized film morphology when blended with a non-fullerene acceptor. This strategy allows improving the device performance to over 18 %, higher than that obtained with the corresponding D1 -A or D2 -A bipolymers (around 17 %). Hence, side-chain hybridization is a promising strategy to design efficient D1 -A-D2 -A terpolymer donors that are insensitive to the D1 /D2 monomer ratio, which is beneficial for the scaled-up synthesis of high-performance materials.
Collapse
Affiliation(s)
- Haijun Bin
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R China
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Alessandro Caiazzo
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - René A J Janssen
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB (The, Netherlands
- Dutch Institute for Fundamental Energy Research, Eindhoven, 5612 AJ (The, Netherlands
| |
Collapse
|
6
|
Shao Y, Gao Y, Sun R, Zhang M, Min J. A Versatile and Low-Cost Polymer Donor Based on 4-Chlorothiazole for Highly Efficient Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208750. [PMID: 36414612 DOI: 10.1002/adma.202208750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Benefiting from the emergence of narrow-band-gap small-molecule acceptors (SMAs), especially "Y" series, the power conversion efficiency (PCE) of polymer solar cells (PSCs) is rapidly improved. However, polymer donors with high efficiency, easy synthesis, and good universality are relatively scarce except PBDB-TF and D18. Herein, two polymer donors are designed and synthesized based on 4-chlorothiazole derivatives with simple structures, namely PTz3Cl and PBTTz3Cl. The OSCs based on PBTTz3Cl with slightly weaker intermolecular forces in comparison to PTz3Cl exhibits a decent PCE of 18.38% in blending with SMA L8-BO, owing to its strong donor/acceptor interaction with L8-BO, which shapes suitable phase separation morphology. Further research finds that PBTTz3Cl can exhibit excellent photovoltaic performances with various SMA materials, highlighting its universality. Based on this, ternary PSCs are designed where BTP-eC9 is introduced as a guest into the PBTTz3Cl:L8-BO host system. Thanks to further optimal blend morphology and more balanced charge transport, the PCE is improved up to 19.12%, which is among the highest values for PSCs. This work provides a new design of low-cost electron-deficient units for constructing highly versatile, high-performance polymer donors.
Collapse
Affiliation(s)
- Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Meimei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double-Cable Conjugated Polymers with Pendent Near-Infrared Electron Acceptors for Single-Component Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209316. [PMID: 35785422 DOI: 10.1002/anie.202209316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Double-cable conjugated polymers with near-infrared (NIR) electron acceptors are synthesized for use in single-component organic solar cells (SCOSCs). Through the development of a judicious synthetic pathway, the highly sensitive nature of the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC)-based electron acceptors in basic and protonic solvents is overcome. In addition, an asymmetric design motif is adopted to optimize the packing of donor and acceptor segments, enhancing charge separation efficiency. As such, the new double-cable polymers are successfully applied in SCOSCs, providing an efficiency of over 10 % with a broad photo response from 300 to 850 nm and exhibiting excellent thermal/light stability. These results demonstrate the powerful design of NIR-acceptor-based double-cable polymers and will enable SCOSCs to enter a new stage.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunhua Xu
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.,State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Jeon SJ, Yang NG, Kim YH, Yun JH, Moon DK. Bihalogenated Thiophene-Based Terpolymers for High-Performance Semitransparent Organic Solar Cells Processed by an Eco-Friendly Solvent and Layer-by-Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38031-38047. [PMID: 35960878 DOI: 10.1021/acsami.2c10286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of photoactive materials simultaneously satisfying high performance, low cost, and eco-friendly processability remains challenging in organic solar cells (OSCs). Herein, a synergistic strategy is proposed to design three terpolymers (PM7(ClCl = 0.2), PM7(ClBr = 0.2), and PM7(BrBr = 0.2)) based on bihalogenated thiophenes with relatively low cost, for improving the optical and electrochemical properties, solubility in nontoxic solvents, and crystallinity and miscibility balance. In summary, a bulk-heterojunction (BHJ)-processed device based on PM7(ClCl = 0.2) with 20% dichlorinated thiophene achieves the highest power conversion efficiency (PCE) of 15.2% using toluene (best PCE ≈ 15.8% on the ternary blend). Moreover, high-performance semitransparent OSCs (ST-OSCs) were fabricated by a combination of layer-by-layer (LBL) and sequential dynamic and static spin-coating techniques according to the molecular weight of PM7(ClCl = 0.2). Using this unique LBL strategy, the PM7(ClCl = 0.2)-MW (H; high molecular weight)-processed ST-OSCs yield a high PCE of 11.5% and an average visible transmittance (AVT) of 27.1% with outstanding tolerance to device reproducibility. By optimizing ST-OSCs with tungsten trioxide as a distributed Bragg reflector, a light utilization efficiency (LUE) of 3.61% is realized with a PCE of 10.8% and an AVT of 33.4% (certified PCE ≈ 11.157%; LUE ≈ 3.73%). This study provides a novel perspective for designing and developing actual photoactive materials for OSC commercialization.
Collapse
Affiliation(s)
- Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Nam Gyu Yang
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Young Hoon Kim
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Ji Hee Yun
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
9
|
Shen X, Lai X, Lai H, Zhao T, Zhu Y, Pu M, Wang H, Tan P, He F. Isomerism Strategy to Optimize Aggregation and Morphology for Superior Polymer Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangyu Shen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tingxing Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pu Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Double‐Cable Conjugated Polymers with Pendent Near‐Infrared Electron Acceptors for Single‐Component Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shijie Liang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Baiqiao Liu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites CHINA
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | - Jing Wang
- Donghua University College of Materials Science and Engineering CHINA
| | - Yakun He
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Wen Liang Tan
- Monash University Department of Materials Science and Engineering AUSTRALIA
| | - Hao Li
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Yunhua Xu
- Beijing Jiaotong University College of Materials Science and Engineering CHINA
| | - Ning Li
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Zheng Tang
- Donghua University College of Materials Science and Engineering CHINA
| | - Frédéric Laquai
- King Abdullah University of Science and Technology KAUST solar center SAUDI ARABIA
| | | | - Christoph J. Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Materials for Electronics and Energy Technology GERMANY
| | - Weiwei Li
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing 100029 100190 Beijing CHINA
| |
Collapse
|
11
|
Impact of pendent naphthalenedimide content in random double-cable conjugated polymers on their microstructures and photovoltaic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yan L, Liang Z, Si J, Gong P, Wang Y, Liu X, Tong J, Li J, Hou X. Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6945-6957. [PMID: 35081710 DOI: 10.1021/acsami.1c24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.
Collapse
Affiliation(s)
- Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Gong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yufei Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
|
14
|
Huang B, Cheng Y, Jin H, Liu J, Huang X, Cui Y, Liao X, Yang C, Ma Z, Chen L. Alkylsilyl Fused Ring-Based Polymer Donor for Non-Fullerene Solar Cells with Record Open Circuit Voltage and Energy Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104451. [PMID: 34643026 DOI: 10.1002/smll.202104451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The energy loss (Eloss ), especially the nonradiative recombination loss and energetic disorder, needs to be minimized to improve the device performance with a small voltage (VOC ) loss. Urbach energy (EU ) of organic photovoltaic materials is related to energetic disorder, which can predict the Eloss of the corresponding device. Herein, a polymer donor (PBDS-TCl) with Si and Cl functional atoms for organic solar cells (OSCs) is synthesized. It can be found that the VOC and Eloss can be well manipulated by regulation of the energy level of the polymer donor and EU , which is dominated by the morphology. A low energetic disorder with an EU of 23.7 meV, a low driving force of 0.08 eV, and a low Eloss of 0.41 eV are achieved for the PBDS-TCl:Y6-based OSCs. Consequently, an impressive open circuit voltage (VOC ) of 0.92 V is obtained. To the best of knowledge, the VOC value and Eloss are both the record values for the Y6-based device. These results demonstrate that fine-tuning the polymer donor by functional atom modification on the side chain is a promising way to reduce EU and energy loss, as well as obtain small driving force and high VOC for highly efficient OSCs.
Collapse
Affiliation(s)
- Bin Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Ke Jia Avenue, Ganzhou, 341000, China
| | - Yujun Cheng
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Hui Jin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiabin Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Xuexiang Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yongjie Cui
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
15
|
Liu M, Liu L, Zhang Z, Wan M, Guo H, Li D. An Active Catalyst System Based on Pd (0) and a Phosphine-Based Bulky Ligand for the Synthesis of Thiophene-Containing Conjugated Polymers. Front Chem 2021; 9:743091. [PMID: 34557476 PMCID: PMC8452923 DOI: 10.3389/fchem.2021.743091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
To address the limitations of conventional Pd catalysts in the polymerization of thiophene-containing conjugated polymers, an active catalyst system based on Pd (0) and a phosphine-based bulky ligand, L1, is explored systematically in Suzuki–Miyaura polymerizations using thiophene boronic acid pinacol ester as one of the monomers. This active catalyst is found very efficient in synthesizing a series of thiophene-containing linear and hyperbranched conjugated polymers. First, as a model example, coupling reactions between electron-rich/moderately hindered aryl or thienyl halides and thiophene boronic acid pinacol ester give excellent yields with lower catalyst loading and can be completed in a shorter reaction time relative to Pd(PPh3)4. Notably, high molecular weight thiophene-containing polymers are successfully synthesized by Suzuki–Miyaura polycondensation of 2,5-thiophene bis(boronic acid) derivatives with different dibromo- and triple bromo-substituted aromatics in 5–15 min.
Collapse
Affiliation(s)
- Meifang Liu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang, China
| | - Li Liu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang, China
| | - Zhihui Zhang
- Department of Continuing Education, Weifang Nursing Vocational College, Weifang, China
| | - Meixiu Wan
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Huanmei Guo
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang, China
| | - Dan Li
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang, China
| |
Collapse
|
16
|
Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat Commun 2021; 12:5093. [PMID: 34429435 PMCID: PMC8384863 DOI: 10.1038/s41467-021-25394-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Non-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control. Non-fullerene acceptors based on non-fused conjugated structures have potential for realizing low-cost organic photovoltaic cells, owing to its synthetic simplicity. Here, the authors develop a non-fused molecule with a three-dimensional interpenetrating network and compact π-π stacking, which is highly suitable for PV applications.
Collapse
|
17
|
Lv Q, An C, Zhang T, Zhou P, Hou J. Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Li ZW, Yang JJ, Liu XY, Fang WH, Wang H, Cui G. Chemical Bonding as a New Avenue for Controlling Excited-State Properties and Excitation Energy-Transfer Processes in Zinc Phthalocyanine-Fullerene Dyads. Chemistry 2021; 27:4159-4167. [PMID: 33372312 DOI: 10.1002/chem.202004850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/08/2022]
Abstract
Whether chemical bonding can regulate the excited-state and optoelectronic properties of donor-acceptor dyads has been largely elusive. In this work, we used electronic structure and nonadiabatic dynamics methods to explore the excited-state properties of covalently bonded zinc phthalocyanine (ZnPc)-fullerene (C60 ) dyads with a 6-6 (or 5-6) bonding configuration in which ZnPc is bonded to two carbon atoms shared by the two hexagonal rings (or a pentagonal and a hexagonal ring) in C60 . In both cases, the locally excited (LE) states on ZnPc are spectroscopically bright. However, their different chemical bonding differentiates the electronic interactions between ZnPc and C60 . In the 5-6 bonding configuration, the LE states on ZnPc are much higher in energy than the LE states on C60 . Thus, the excitation energy transfer from ZnPc to C60 is thermodynamically favorable. On the other hand, in the 6-6 bonding configuration, such a process is inhibited because the LE states on ZnPc are the lowest ones. More detailed mechanisms are elucidated from nonadiabatic dynamics simulations. In the 6-6 bonding configuration, no excitation energy transfer was observed. In contrast, in the 5-6 bonding configuration, several LE and charge-transfer (CT) excitons were shown to participate in the energy-transfer process. Further analysis reveals that the photoinduced energy transfer is mediated by a CT exciton, such that electron- and hole-transfer processes take place in a concerted but asynchronous manner in the excitation energy transfer. It is also found that high-level electronic structure methods including exciton effects are indispensable to accurately describe photoinduced energy- and electron-transfer processes. Furthermore, this work opens up new avenues for regulating the excited-state properties of molecular donor-acceptor dyads by means of chemical bonding.
Collapse
Affiliation(s)
- Zi-Wen Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jia-Jia Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, 80217-3364, USA
| | - Ganglong Cui
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
19
|
Chao P, Chen H, Pu M, Zhu Y, Han L, Zheng N, Zhou J, Chang X, Mo D, Xie Z, Meng H, He F. Chlorinated Benzo[1,2-b:4,5-c']dithiophene-4,8-dione Polymer Donor: A Small Atom Makes a Big Difference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003641. [PMID: 33643808 PMCID: PMC7887605 DOI: 10.1002/advs.202003641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The position of a chlorine atom in a charge carrier of polymer solar cells (PSCs) is important to boost their photovoltaic performance. Herein, two chlorinated D-A conjugated polymers PBBD-Cl-α and PBBD-Cl-β are synthesized based on two new building blocks (TTO-Cl-α and TTO-Cl-β) respectively by introducing the chlorine atom into α or β position of the upper thiophene of the highly electron-deficient benzo[1,2-b:4,5-c']dithiophene-4,8-dione moiety. Single-crystal analysis demonstrates that the chlorine-free TTO shows a π-π stacking distance (d π-π) of 3.55 Å. When H atom at the α position of thiophene of TTO is replaced by Cl, both π-π stacking distance (d π-π = 3.48 Å) and Cl···S distance (d Cl-S = 4.4 Å) are simultaneously reduced for TTO-Cl-α compared with TTO. TTO-Cl-β then showed the Cl···S non-covalent interaction can further shorten the intermolecular π-π stacking separation to 3.23 Å, much smaller than that of TTO-Cl-α and TTO. After blending with BTP-eC9, PBBD-Cl-β:BTP-eC9-based PSCs achieved an outstanding power conversion efficiency (PCE) of 16.20%, much higher than PBBD:BTP-eC9 (10.06%) and PBBD-Cl-α:BTP-eC9 (13.35%) based devices. These results provide an effective strategy for design and synthesis of highly efficient donor polymers by precise positioning of the chlorine substitution.
Collapse
Affiliation(s)
- Pengjie Chao
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Academy for Advanced Interdisciplinary Studies and Department of chemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Hong Meng
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feng He
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
20
|
Xie Q, Liu Y, Liao X, Cui Y, Huang S, Hu L, He Q, Chen L, Chen Y. Isomeric Effect of Wide Bandgap Polymer Donors with High Crystallinity to Achieve Efficient Polymer Solar Cells. Macromol Rapid Commun 2020; 41:e2000454. [PMID: 33089590 DOI: 10.1002/marc.202000454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Indexed: 11/06/2022]
Abstract
Two highly crystalline polymer donors (PBTz4T2C-a, PBTz4T2C-b) with isomers (4T2C-a, 4T2C-b) are synthesized and applied in polymer solar cells. The developed polymers possess proper energy levels and complementary absorption with an efficient electron acceptor IT2F. It is interesting that the photophysical properties, crystallinity, and active layer morphology characteristic can be significantly changed by just slightly regulating the substitution position of the carboxylate groups. A series of simulation calculations of the two isomers are conducted in the geometry and electronic properties to explore the difference induced by the position adjustment of carboxylate groups. The results decipher that 4T2C-b moiety features much stronger intramolecular noncovalent S⋯O interactions compared to that of 4T2C-a, implying a higher coplanarity and much stronger crystallinity, and leading to excessive phase separation in PBTz4T2C-b:IT2F blend film. In contrast, PBTz4T2C-a with 4T2C-a moiety exhibits suitable crystallinity with a lower the highest occupied molecular orbital level, higher film absorption coefficient, and charge mobilities, resulting in a much higher power conversion efficiency of 11.02%. This research demonstrates that the molecular conformation is of great importance to be considered for developing high-performance polymer donors.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Shaorong Huang
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lei Hu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qiannan He
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
21
|
Zhao Q, Qu J, He F. Chlorination: An Effective Strategy for High-Performance Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000509. [PMID: 32714759 PMCID: PMC7375252 DOI: 10.1002/advs.202000509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Indexed: 05/26/2023]
Abstract
This work summarizes recent developments in polymer solar cells (PSCs) prepared by a chlorination strategy. The intrinsic property of chlorine atoms, the progress of chlorinated polymers and small molecules, and the synergistic effect of chlorination with other methods to elevate solar conversions are discussed. Halogenation of donor-acceptor (D-A) materials is an effective method to improve the performance of PSCs, which mainly affects the push-pull of electrons between donor and acceptor units due to their strong electron-withdrawing capabilities. Although chlorine is less electronegative than fluorine, it can form very strong noncovalent interactions, such as Cl···S and Cl···π interactions, because its empty 3d orbits can help to accept the electron pairs or π electrons. This synergistic effect of electronegativity together with the empty 3d orbits of chlorine atoms leads to increased intramolecular and intermolecular interactions and a much stronger capability to down-shift the molecular energy levels. This work is intended to support a better understanding of the chlorination strategy to modify the material properties, and thus improve the performance of solar devices. Eventually, it will provide the research community with a clearer pathway to choose proper substitution methods according to different situations for high and stable solar energy conversion.
Collapse
Affiliation(s)
- Qiaoqiao Zhao
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Jianfei Qu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Feng He
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
22
|
Yao H, Wang J, Xu Y, Zhang S, Hou J. Recent Progress in Chlorinated Organic Photovoltaic Materials. Acc Chem Res 2020; 53:822-832. [PMID: 32216329 DOI: 10.1021/acs.accounts.0c00009] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusOver the past few years, the development of new materials has contributed to rapid increases in the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells to over 17%, showing great potential for the commercialization of this technology in the near future. At this stage, designing new materials with superior performance and low cost simultaneously is of crucial importance. Chlorinated materials are emerging as new stars with very high PCEs, creating a molecular design trend to replace the most popular fluorinated materials. For example, by using chlorinated non-fullerene acceptors, we recently got a record PCE of 17% for single-junction OPV cells. Firmly based on recent advances, herein we focus on the topic of chlorinated OPV materials, aiming to provide a guideline for further molecular design.In this Account, first, on the basis of most fundamental features of the Cl atom, we highlight the features of chlorinated materials compared with their fluorinated counterparts: (1) Chlorination is more efficient than fluorination in modulating the optical and electrical properties of OPV materials. In many cases, chlorinated materials show lower energy levels and broader absorption spectra than their fluorinated counterparts, which contribute higher output voltages and current densities in the resulting photovoltaic devices. (2) Cl has a large atomic size than F. On one hand, enhanced overlap of π electrons is beneficial for enhancing the intermolecular packing and crystalline property and thus improving the charge transport. On the other hand, if Cl is introduced inappropriately in the backbone or side chain, this feature will cause a more twisted π plane and larger steric hindrance, having negative impacts on the photovoltaic performance of the corresponding materials. (3) Importantly, chlorination is usually chemically cheaper in synthesis, which has the potential to decrease the material cost of OPV cells. Then, we provide a concise review of chlorinated OPV materials, including polymeric and small-molecule donors and non-fullerene acceptors. The photovoltaic performance in various types of OPV cells using chlorinated materials, such as single-junction, tandem, semitransparent, and indoor-light photovoltaic cells is also discussed. For instance, ultranarrow-band-gap chlorinated acceptors can be used to construct highly efficient color-semitransparent OPV cells, and the wide-band-gap chlorinated materials show great potential for fabricating indoor-light photovoltaic devices. Finally, we briefly discuss current questions related to chlorinated OPV materials and highlight the significance of chlorination in future development.
Collapse
Affiliation(s)
- Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingwen Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology, Beijing 100083, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Chao P, Chen H, Zhu Y, Lai H, Mo D, Zheng N, Chang X, Meng H, He F. A Benzo[1,2-b:4,5-c']Dithiophene-4,8-Dione-Based Polymer Donor Achieving an Efficiency Over 16. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907059. [PMID: 31995263 DOI: 10.1002/adma.201907059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Indexed: 06/10/2023]
Abstract
It is of great significance to develop efficient donor polymers during the rapid development of acceptor materials for nonfullerene bulk-heterojunction (BHJ) polymer solar cells. Herein, a new donor polymer, named PBTT-F, based on a strongly electron-deficient core (5,7-dibromo-2,3-bis(2-ethylhexyl)benzo[1,2-b:4,5-c']dithiophene-4,8-dione, TTDO), is developed through the design of cyclohexane-1,4-dione embedded into a thieno[3,4-b]thiophene (TT) unit. When blended with the acceptor Y6, the PBTT-F-based photovoltaic device exhibits an outstanding power conversion efficiency (PCE) of 16.1% with a very high fill factor (FF) of 77.1%. This polymer also shows high efficiency for a thick-film device, with a PCE of ≈14.2% being realized for an active layer thickness of 190 nm. In addition, the PBTT-F-based polymer solar cells also show good stability after storage for ≈700 h in a glove box, with a high PCE of ≈14.8%, which obviously shows that this kind of polymer is very promising for future commercial applications. This work provides a unique strategy for the molecular synthesis of donor polymers, and these results demonstrate that PBTT-F is a very promising donor polymer for use in polymer solar cells, providing an alternative choice for a variety of fullerene-free acceptor materials for the research community.
Collapse
Affiliation(s)
- Pengjie Chao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daize Mo
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
24
|
Kini GP, Jeon SJ, Moon DK. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906175. [PMID: 32020712 DOI: 10.1002/adma.201906175] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Indexed: 05/20/2023]
Abstract
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
25
|
An C, Zheng Z, Hou J. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chem Commun (Camb) 2020; 56:4750-4760. [DOI: 10.1039/d0cc01038c] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This feature article summarizes our recent achievements in the development of wide bandgap polymer donors as high-performance organic photovoltaics.
Collapse
Affiliation(s)
- Cunbin An
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhong Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
26
|
Wan P, An C, Zhang T, Ma K, Liang N, Xu Y, Zhang S, Xu B, Zhang J, Hou J. The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Polym Chem 2020. [DOI: 10.1039/c9py01438a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two thiazolothiazole-based polymers were designed and synthesized, which exhibited significantly different aggregation and photovoltaic properties.
Collapse
|
27
|
Zhang T, An C, Ma K, Xian K, Xue C, Zhang S, Xu B, Hou J. Increased conjugated backbone twisting to improve carbonylated-functionalized polymer photovoltaic performance. Org Chem Front 2020. [DOI: 10.1039/c9qo01251f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated polymers containing different linkers were synthesized to study their photovoltaic performances.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Cunbin An
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kangqiao Ma
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kaihu Xian
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Changguo Xue
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Huainan 232001
- China
| | - Shaoqing Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Bowei Xu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
28
|
Xue C, Tang Y, Liu S, Feng H, Li S, Xia D. Achieving efficient polymer solar cells based on benzodithiophene–thiazole-containing wide band gap polymer donors by changing the linkage patterns of two thiazoles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02483j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated polymers with different combinations of two thiazoles were synthesized to study their photovoltaic performances.
Collapse
Affiliation(s)
- Changguo Xue
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Yu Tang
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shihui Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - He Feng
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shiqin Li
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
29
|
Kang X, Zhou D, Wang Q, Zhu D, Bao X, Yuan X, Liu F, Li Y, Qiao S, Yang R. Rational Design of Low Band Gap Polymers for Efficient Solar Cells with High Open-Circuit Voltage: The Profound Effect of Me and Cl Substituents with a Similar van Der Waals Radius. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48155-48161. [PMID: 31777242 DOI: 10.1021/acsami.9b18278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Generally, low band gap material-based photovoltaic devices have reduced open circuit voltage (VOC), and realizing the trade-off between the low band gap (Eg < 1.6 eV) and high VOC (>0.9 V) could be critical to give efficient polymer solar cells, especially for high-performance semitransparent PSCs and tandem solar cells. Although lots of efforts have been made to address the issue, most results have not been gratifying. In this work, the polymer PTBTz-Cl based on the chlorination method and efficient thiazole-induced strategy was designed and synthesized, aiming at the deep HOMO energy level, and the enhanced backbone planarity caused by the weak noncovalent Cl···S interaction. In addition, the methyl-substituted polymer PTBTz-Me was constructed as the reference due to the similar van der Waals radius of the side chain (CH3: 0.20 nm vs Cl: 0.18 nm). Encouragingly, in comparison with that of PTBTz-2, the newly synthesized polymers exhibit the red-shifted absorption spectra ranging from 300 to 770 nm, with an obviously reduced Eg of ∼1.6 eV. However, the function of Cl and Me substituents is different. Compared to the polymer PTBTz-Me, PTBTz-Cl exhibits a lower HOMO value, stronger crystallinity, and more compact intramolecular interactions. Consequently, the polymer PTBTz-Cl exhibits excellent photovoltaic performance with a notable VOC of 0.94 V and a power conversion efficiency of 10.35%, which is ∼11% higher than the 9.12% efficiency based on PTBTz-Me, and is also one of the highest values among polymer/fullerene solar cells. Moreover, a smaller photo energy loss (Eloss) of 0.64 eV is achieved, which is rare among the current high-performance polymer systems.
Collapse
Affiliation(s)
- Xiao Kang
- College of Chemistry and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang 050018 , China
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Di Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Dangqiang Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| | - Xiyue Yuan
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Fushuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang 050018 , China
| | - Renqiang Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| |
Collapse
|
30
|
Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101175] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Xue C, Zhang T, Ma K, Wan P, Hong L, Xu B, An C. A Carbonylated Terthiophene–Based Twisted Polymer for Efficient Ternary Polymer Solar Cells. Macromol Rapid Commun 2019; 40:e1900246. [DOI: 10.1002/marc.201900246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/29/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Changguo Xue
- School of Material Science and EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Tao Zhang
- School of Material Science and EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Kangqiao Ma
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Pan Wan
- School of Material Science and EngineeringAnhui University of Science and Technology Huainan 232001 China
| | - Ling Hong
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Bowei Xu
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Cunbin An
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Wang Q, Li M, Zhang X, Qin Y, Wang J, Zhang J, Hou J, Janssen RAJ, Geng Y. Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00793] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xiaowei Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yunpeng Qin
- Beijing National Laboratory for Molecular Science and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junke Wang
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Science and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - René A. J. Janssen
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
33
|
Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner ELK, Kilbride RC, Li D, Du B, Gurney RS, Liu D, Tang W, Lidzey DG, Wang T. Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9484-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Xu X, Zhang G, Li Y, Peng Q. The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Zhong X, Chen H, Wang M, Gan S, He Q, Chen W, He F. Synergistic Effect of Chlorination and Selenophene: Achieving Elevated Solar Conversion in Highly Aggregated Systems. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaowei Zhong
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hui Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Meijing Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Shenglong Gan
- Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Qiming He
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Wei Chen
- Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Feng He
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
36
|
Huang S, Gu W, Chen L, Liao Z, An Y, An C, Chen Y, Hou J. Asymmetric Wide‐Bandgap Polymers Simultaneously Improve the Open‐Circuit Voltage and Short‐Circuit Current for Organic Photovoltaics. Macromol Rapid Commun 2019; 40:e1800906. [DOI: 10.1002/marc.201800906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Shaorong Huang
- College of Chemistry/Institute of Polymers and Energy ChemistryNanchang University Nanchang 330031 P. R. China
| | - Wanying Gu
- Beijing National Laboratory for Molecular ScienceCAS State Key Laboratory of Polymer Physics and ChemistryInstitute of Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy ChemistryNanchang University Nanchang 330031 P. R. China
| | - Zhihui Liao
- College of Chemistry/Institute of Polymers and Energy ChemistryNanchang University Nanchang 330031 P. R. China
| | - Yongkang An
- College of Chemistry/Institute of Polymers and Energy ChemistryNanchang University Nanchang 330031 P. R. China
| | - Cunbin An
- Beijing National Laboratory for Molecular ScienceCAS State Key Laboratory of Polymer Physics and ChemistryInstitute of Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy ChemistryNanchang University Nanchang 330031 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular ScienceCAS State Key Laboratory of Polymer Physics and ChemistryInstitute of Chemistry Chinese Academy of Science Beijing 100190 P. R. China
| |
Collapse
|