1
|
Zhang RZ, Niu KK, Bi YS, Liu H, Han N, Xing LB. Artificial Light-Harvesting Systems with a Three-Step Sequential Energy Transfer Mechanism for Efficient Photocatalytic Minisci-Type Late-Stage Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405564. [PMID: 39498721 DOI: 10.1002/smll.202405564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Indexed: 11/07/2024]
Abstract
The natural process of photosynthesis involves a series of consecutive energy transfers, but achieving more steps of efficient energy transfer and photocatalytic organic conversion in artificial light-harvesting systems (ALHSs) continues to pose a significant challenge. In the present investigation, a range of ALHSs showcasing a sophisticated three-step energy transfer mechanism is designed, which are meticulously crafted using pillar[5]arene (WP[5]) and p-phenylenevinylene derivative (PPTPy), utilizing host-guest interactions as energy donors. Three distinct types of fluorescent dyes, namely Rhodamine B (RhB), Sulforhodamine 101 (SR101), and Cyanine 5 (Cy5), are employed as acceptors of energy. Starting from PPTPy-2WP[5], energy is sequentially transferred to RhB, SR101, and Cy5, successfully constructing a multi-step continuous energy transfer system with high energy transfer efficiency. More interestingly, as energy is progressively transferred, the efficiency of superoxide anion radical (O2 •-) generation gradually increased, while the efficiency of singlet oxygen (1O2) generation decreased, achieving the transformation from type II photosensitizer to type I photosensitizer. Furthermore, in order to fully utilize the energy harvested and reactive oxygen species (ROS) obtained, the ALHSs employ a multi-step sequential energy transfer process to enhance Minisci-type alkylation reactions with aldehydes through photocatalysis for late-stage functionalization in an aqueous environment, achieving a 91% yield.
Collapse
Affiliation(s)
- Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
2
|
Chen M, Miao S, Zhang Y, Chang X, Dai J, Chen C, Li S, Li H, Xia F. Precise Preparation of Supramolecular Spherical Nucleic Acids for Nucleolin-Targeted Gene Delivery. Angew Chem Int Ed Engl 2024:e202410744. [PMID: 39177424 DOI: 10.1002/anie.202410744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Molecular spherical nucleic acids (m-SNAs) are a second generation of spherical nucleic acids (SNAs), which are of significance in potential application of targeted delivery of nucleic acids or gene regulation due to their defined molecular structures. Nevertheless, m-SNAs typically involve a single DNA sequence which greatly limits its functions as either targeting purpose or gene regulation. In response, we proposed here a third generation, supramolecular spherical nucleic acids (Supra-SNAs) with two different sequences to achieve both above-mentioned functions. Specifically, we constructed a series of supramolecular self-assembly structures by coupling a cell membrane receptor (i.e., nucleolin)-recognizing aptamer (AS1411)-modified adamantine as targeting probe and human epithelial growth factor receptor 2 (HER2) antisense-functionalized β-cyclodextrin to specifically inhibit the overexpression of HER2 proteins for gene regulations. In comparison to the m-SNA precursors, such Supra-SNA structures exhibited enhanced levels of resistance to nuclease degradation, cellular uptake, gene regulation capabilities and tumor retention capacity. We demonstrated that Supra-SNAs exhibited optimal cell suppression rates and cell apoptosis via a phosphatidylinositol 3-kinase/protein kinase B signaling pathway. The well-defined molecular structures provide an attractive platform for investigating interrelationship between structure and property at the molecular level.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yaqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xueman Chang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuxin Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
3
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
4
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
5
|
Zhou X, Satyabola D, Liu H, Jiang S, Qi X, Yu L, Lin S, Liu Y, Woodbury NW, Yan H. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System. Angew Chem Int Ed Engl 2022; 61:e202211200. [PMID: 36288100 DOI: 10.1002/anie.202211200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Photosynthetic organisms organize discrete light-harvesting complexes into large-scale networks to facilitate efficient light collection and utilization. Inspired by nature, herein, synthetic DNA templates were used to direct the formation of dye aggregates with a cyanine dye, K21, into discrete branched photonic complexes, and two-dimensional (2D) excitonic networks. The DNA templates ranged from four-arm DNA tiles, ≈10 nm in each arm, to 2D wireframe DNA origami nanostructures with different geometries and varying dimensions up to 100×100 nm. These DNA-templated dye aggregates presented strongly coupled spectral features and delocalized exciton characteristics, enabling efficient photon collection and energy transfer. Compared to the discrete branched photonic systems templated on individual DNA tiles, the interconnected excitonic networks showed approximately a 2-fold increase in energy transfer efficiency. This bottom-up assembly strategy paves the way to create 2D excitonic systems with complex geometries and engineered energy pathways.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Deeksha Satyabola
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaodong Qi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Lu Yu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Neal W Woodbury
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
6
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐Based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206763. [DOI: 10.1002/anie.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau 999078 China
| |
Collapse
|
7
|
Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril‐based Supramolecular Polymers for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Wang
- University of Macau School of Pharmacy MACAU
| | - Chen Sun
- University of Macau School of Pharmacy MACAU
| | - Kuikun Yang
- University of Macau School of Pharmacy MACAU
| | - Xiaoyuan Chen
- National University of Singapore School of Medicine and Faculty of Engineering 10 Medical Dr 117597 Singapore SINGAPORE
| | | |
Collapse
|
8
|
Sani U, Alatawi OM, Halawani NM, Gould JA, Knight JG, Cucinotta F. Hybridising inorganic materials with fluorescent BOPHY dyes: A structural and optical comparative study. Front Chem 2022; 10:921112. [PMID: 35836675 PMCID: PMC9274302 DOI: 10.3389/fchem.2022.921112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study presents the design and characterization of new monochromatic light-harvesting systems based on inorganic porous materials hybridized with organic dye molecules within their structure. A new fluorescent BOPHY dye was prepared, characterized optically and used as both reference and synthetic precursor for two alkoxysilane derivatives that were incorporated separately within a silica structure. The dyes, one bearing one alkoxysilane group and the other one two, were co-condensed with tetraethyl orthosilicate to form a hybrid organo-silica framework, where they are found at specific locations. The structure of the new materials was analysed by powder XRD and TEM, which confirmed the presence of the hexagonal pore arrangement typical of mesoporous MCM-41 silica particles. The steady-state and time-resolved analysis showed that the particles where the dyes are most dispersed within the framework retain the highest fluorescence quantum yield, up to 0.63, in the green-yellow region of the visible spectrum. On the other hand, increasing the content of BOPHY units in the solid matrix seem to favour non-radiative deactivation pathways and aggregation phenomena, which lower the efficiency of light emission. The materials also exhibit interesting properties, such as a dual excited-state decay and fluorescence anisotropy. The short fluorescence lifetime, about 2 ns, matches the typical singlet lifetime of BOPHY dyes, whereas the long component, up to 20 ns, is attributed to delayed fluorescence, which could take place via charge recombination. Optical anisotropy experiments revealed that all materials show polarised light emission to a significant extent and, for most samples, it was also possible to determine a polarisation transfer decay trace, from 400 to 800 ps This is ascribed to the occurrence of energy migration between neighbouring dye units within the silica structure.
Collapse
Affiliation(s)
- Umar Sani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Omar M. Alatawi
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nuha M. Halawani
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jamie A. Gould
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Julian G. Knight
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fabio Cucinotta
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Kumar S, Jana A, Bhowmick S, Das N. Topical progress in medicinal applications of self‐assembled organoplatinum complexes using diverse Pt (II)– and N–based tectons. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Achintya Jana
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Sourav Bhowmick
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Neeladri Das
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| |
Collapse
|
10
|
Takada T, Shimobaki N, Naruo M, Nakamura M, Yamana K. Photoresponsive porphyrin‐DNA complexes constructed through intercalation‐like binding. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadao Takada
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry 2167 Shosha 671-2280 Himeji, Hyogo JAPAN
| | - Nao Shimobaki
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Moe Naruo
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Mitsunobu Nakamura
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Kazushige Yamana
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| |
Collapse
|
11
|
Guo H, Liu L, Hu Q, Dou H. Monodisperse ZIF-8@dextran nanoparticles co-loaded with hydrophilic and hydrophobic functional cargos for combined near-infrared fluorescence imaging and photothermal therapy. Acta Biomater 2022; 137:290-304. [PMID: 34637934 DOI: 10.1016/j.actbio.2021.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Impressive developments have been achieved with the use of zeolitic imidazolate framework-8 (ZIF-8) as nanocarriers for tumor theranostics in recent decades by incorporating imaging agents and therapeutic drugs within ZIF-8. However, the simultaneous immobilization of hydrophilic and hydrophobic functional molecules into ZIF-8 nanoparticles in water or organic solvents still presents a daunting challenge. Herein, we developed a new synthesis/encapsulation two-in-one (denoted as one-pot) approach to synthesize uniform dextran-modified Cy5.5&ICG@ZIF-8-Dex nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) during the same step. It was confirmed that the one-pot approach in this mixed solvents facilitated the loading of ICG and Cy5.5 molecules. Moreover, the encapsulation of Cy5.5 and ICG within ZIF-8 nanoparticles endowed them with fluorescence imaging capability and photothermal conversion capacity, respectively. The in vivo near-infrared (NIR) fluorescent images of A549-bearing mice injected with Cy5.5&ICG@ZIF-8-Dex demonstrated sufficient accumulations of Cy5.5 at tumor sites due to the enhanced permeability and retention effect. Most impressively, the fluorescent intensity of Cy5.5&ICG@ZIF-8-Dex at tumor site was approximately 40-fold higher than that of free Cy5.5. Additionally, the results of in vivo infrared imaging and photothermal therapy of Cy5.5&ICG@ZIF-8-Dex showed enhanced therapeutic efficiency in comparison with free ICG, further confirming its tumor-targeting capability and photothermal capacity. Therefore, this multifunctional system based on ZIF-8 nanocarriers offered a potential nanoplatform for tumor-targeting theranostics, thus broadening the synthesis and applications of ZIF-8 composite nanoparticles for NIR fluorescence imaging and photothermal therapy in the biomedical field. STATEMENT OF SIGNIFICANCE: Simultaneous immobilization of hydrophilic and hydrophobic molecules into ZIF-8 nanoparticles still remains a daunting challenge. Therefore, we have developed a new synthesis/encapsulation two-in-one approach to synthesize uniform Cy5.5&ICG@ZIF-8-Dex composite nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) functional molecules during a single step. The results showed that the co-loading of Cy5.5 and ICG within the ZIF-8 nanoparticles endowed them with a remarkable fluorescence imaging capability and photothermal conversion capacity. Based on their enhanced convenience and efficacy to simultaneously encapsulate hydrophilic and hydrophobic molecules, the multifunctional nanocarriers that were prepared in the DMSO/H2O mixed solvents provide a potential nanoplatform toward fluorescence imaging and photothermal therapy for tumor theranostics.
Collapse
Affiliation(s)
- Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Qiangqiang Hu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
12
|
Jiao J, Sun G, Zhang J, Lin C, Jiang J, Wang L. The Preparation of a Water-Soluble Phospholate-Based Macrocycle for Constructing Artificial Light-Harvesting Systems. Chemistry 2021; 27:16601-16605. [PMID: 34596928 DOI: 10.1002/chem.202102758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 01/14/2023]
Abstract
On the basis of cyclotrixylohydroquinoylene (CTX), a novel water-soluble phospholate-based CTX derivative (WPCTX) was prepared with facile synthetic procedure and satisfying yield. Several model guest molecules were selected to investigate WPCTX's host-guest properties. Based on the study of the host and model guest complexation, a tetraphenylethylene derivative from model guest was employed as a guest molecule (G) to form WPCTX⊃G nanoparticles (NPs) with WPCTX through further supramolecular self-assembly in water. Moreover, a hydrophobic fluorescent dye, Eosin Y(ESY) or Nile red (NiR), was encapsulated in WPCTX⊃G NPs to construct two types of artificial light-harvesting systems. Their high antenna effect demonstrated such NPs successfully mimicked light-harvesting systems in nature.
Collapse
Affiliation(s)
- Jianmin Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jikun Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chen Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
|
14
|
Jevric J, Langenegger SM, Häner R. Layered assembly of cationic and anionic supramolecular polymers. Chem Commun (Camb) 2021; 57:6648-6651. [PMID: 34128018 PMCID: PMC8259570 DOI: 10.1039/d1cc01466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022]
Abstract
The chemical synthesis and the supramolecular assembly of an aromatic oligoamine are described. The self-assembly of the cationic oligomers in aqueous solution leads to the formation of vesicular objects. The assembly process of the oligomers is monitored by absorption and fluorescence spectroscopy and the formed vesicles are characterized by atomic force and transmission electron microscopy. The electrostatic complementarity of anionic supramolecular polymers sheets and the cationic vesicles is used for a layered assembly process.
Collapse
Affiliation(s)
- Jovana Jevric
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmacy, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
| |
Collapse
|
15
|
Madsen M, Bakke MR, Gudnason DA, Sandahl AF, Hansen RA, Knudsen JB, Kodal ALB, Birkedal V, Gothelf KV. A Single Molecule Polyphenylene-Vinylene Photonic Wire. ACS NANO 2021; 15:9404-9411. [PMID: 33938214 DOI: 10.1021/acsnano.0c10922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale transport of light through single molecule systems is of fundamental importance for light harvesting, nanophotonic circuits, and for understanding photosynthesis. Studies on organization of molecular entities for directional transfer of excitation energy have focused on energy transfer cascades via multiple small molecule dyes. Here, we investigate a single molecule conjugated polymer as a photonic wire. The phenylene-vinylene-based polymer is functionalized with multiple DNA strands and immobilized on DNA origami by hybridization to a track of single-stranded staples extending from the origami structure. Donor and acceptor fluorophores are placed at specific positions along the polymer which enables energy transfer from donor to polymer, through the polymer, and from polymer to acceptor. The structure is characterized by atomic force microscopy, and the energy transfer is studied by ensemble fluorescence spectroscopy and single molecule TIRF microscopy. It is found that the polymer photonic wire is capable of transferring light over distances of 24 nm. This demonstrates the potential residing in the use of conjugated polymers for nanophotonics.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette R Bakke
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Daniel A Gudnason
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander F Sandahl
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rikke A Hansen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jakob B Knudsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anne Louise B Kodal
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Green CM, Hastman DA, Mathur D, Susumu K, Oh E, Medintz IL, Díaz SA. Direct and Efficient Conjugation of Quantum Dots to DNA Nanostructures with Peptide-PNA. ACS NANO 2021; 15:9101-9110. [PMID: 33955735 DOI: 10.1021/acsnano.1c02296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed. As an alternative, the conjugation of nanoparticle-binding peptides and peptide nucleic acids (PNA) can produce peptide-PNA with distinct NP-binding and DNA-binding domains. Here, we demonstrate a simple application of this method to conjugate semiconductor quantum dots (QDs) directly to DNA nanostructures by means of a peptide-PNA with a six-histidine peptide motif that binds to the QD surface. With this method, we achieved greater than 90% capture efficiency for multiple QDs on a single DNA nanostructure while preserving both site specificity and precise spatial control of QD placement. Additionally, we investigated the effects of peptide-PNA charge on the efficacy of QD immobilization in suboptimal conditions. The results validate peptide-PNA as a viable alternative to ssDNA conjugation of NPs and warrant studies of other NP-binding peptides for peptide-PNA conjugation.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States
- National Research Council, 500 Fifth St NW, Washington, DC 20001, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC 20375, United States
| |
Collapse
|
17
|
Nikolaou V, Charalambidis G, Coutsolelos AG. Photocatalytic hydrogen production of porphyrin nanostructures: spheres vs. fibrils, a case study. Chem Commun (Camb) 2021; 57:4055-4058. [PMID: 33885635 DOI: 10.1039/d0cc08359c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we illustrate the preparation of a covalent connected peptide-porphyrin hybrid (Fmoc-FF-(Zn)Por). The thorough investigation of its self-organization features demonstrated that Fmoc-FF-(Zn)Por self-assembles into either spheres or fibrils by altering the solvent mixture. Interestingly, photocatalytic hydrogen (H2) evolution experiments revealed that fibrils were more efficient towards H2 production compared to spheres.
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
18
|
Mizuta T, Sueyoshi K, Endo T, Hisamoto H. Lipophilic Fluorescent Dye Liquids: Förster Resonance Energy Transfer-Based Fluorescence Amplification for Ion Selective Optical Sensors Based on a Solvent Polymeric Membrane. Anal Chem 2021; 93:4143-4148. [PMID: 33586961 DOI: 10.1021/acs.analchem.0c05007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical sensors based on solvent polymeric membranes have the potential to measure analytes present in an aqueous solution through the development of a tailored method for a specific target. However, limits in the concentrations of the component dyes have prevented improvements in sensitivity. We propose a Förster resonance energy transfer (FRET)-based fluorescence amplification system for ion-selective optical sensors using a highly fluorescent liquid material composed of a lipophilic phosphonium cation and a pyrene modifying sulfonate anion ([P66614][HP-SO3]), as both the plasticizer and donor, in addition to a combination of the lipophilic phosphonium cation and the fluorescein dodecyl ester anion ([P66614][12-FL]) as the fluorescent sensing dye acceptor. For ion extraction-based sensing, the donor and acceptor were retained in the plasticized PVC membrane with negligible leaching upon exposure to acidic and basic aqueous solutions. Systematic investigation of the donor and acceptor ratios clarified the effect of the amplification factor and the sensitivity of the sensor. At an acceptor doping level of 0.5 mol % (vs donor), an approximately 22-fold higher sensitivity was obtained compared to that of a conventional PVC membrane optical sensor. During ion measurement based on the coextraction of protons and anions, selectivity following the Hofmeister order was observed, which was controlled by the addition of ionophores. The proposed FRET system based on a lipophilic fluorescent liquid material has the potential to significantly improve the sensitivities of optical sensors using solvent polymeric membranes with high selectivities for various target analytes.
Collapse
Affiliation(s)
- Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
19
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
20
|
The search for panchromatic light-harvesting systems: Ternary and binary antennae based on self-organised materials. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Jia PP, Xu L, Hu YX, Li WJ, Wang XQ, Ling QH, Shi X, Yin GQ, Li X, Sun H, Jiang Y, Yang HB. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J Am Chem Soc 2020; 143:399-408. [DOI: 10.1021/jacs.0c11370] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
22
|
Markova L, Probst M, Häner R. Assembly and functionalization of supramolecular polymers from DNA-conjugated squaraine oligomers. RSC Adv 2020; 10:44841-44845. [PMID: 35516236 PMCID: PMC9058661 DOI: 10.1039/d0ra10117f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
DNA conjugated oligomers of organic molecules are candidates for applications in the materials and medical sciences, in diagnostics, in optical devices, for delivery or for the design of complex molecular architectures. Herein, we describe the synthesis and properties of DNA-conjugated squaraine (Sq) oligomers. The oligomers self-assemble into supramolecular polymers that are amenable to further functionalization via DNA hybridization, as shown by the attachment of gold nanoparticles (AuNPs). The assembly of supramolecular polymers of DNA-linked squaraine oligomers and their subsequent derivatization is described.![]()
Collapse
Affiliation(s)
- Larysa Markova
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
23
|
Albert SK, Golla M, Krishnan N, Perumal D, Varghese R. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures. Acc Chem Res 2020; 53:2668-2679. [PMID: 33052654 DOI: 10.1021/acs.accounts.0c00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.
Collapse
Affiliation(s)
- Shine K. Albert
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Nthiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum, 695551 Kerala, India
| |
Collapse
|
24
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Supramolecular assembly of DNA-constructed vesicles. NANOSCALE 2020; 12:21118-21123. [PMID: 32614024 DOI: 10.1039/d0nr04103c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of DNA hybrids possessing tetraphenylethylene sticky ends at both sides into vesicular architectures in aqueous medium is demonstrated. Cryo-electron microscopy reveals the formation of different types of morphologies from the amphiphilic DNA-hybrids. Depending on the conditions, either an extended (sheet-like) or a compact (columnar) alignment of the DNA hybrids is observed. The different modes of DNA arrangement lead to the formation of vesicles appearing either as prolate ellipsoids (type I) or as spheres (type II). The type of packing has a significant effect on the accessibility of the DNA, as evidenced by intercalation and light-harvesting experiments. Only the vesicles exhibiting the sheet-like DNA alignment are accessible for intercalation by ethidium bromide or for the integration of chromophore-labelled DNA via a strand exchange process. The dynamic nature of type I vesicles enables their elaboration into artificial light-harvesting complexes by DNA-guided introduction of Cy3-acceptor chromophores. DNA-constructed vesicles of the kind shown here represent versatile intermediates that are amenable to further modification for tailored nanotechnology applications.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH - 3012 Bern, Switzerland.
| | - Simon M Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH - 3012 Bern, Switzerland.
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| |
Collapse
|
25
|
Cunningham PD, Díaz SA, Yurke B, Medintz IL, Melinger JS. Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers. J Phys Chem B 2020; 124:8042-8049. [PMID: 32706583 DOI: 10.1021/acs.jpcb.0c06732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineering and manipulation of delocalized molecular exciton states is a key component for artificial biomimetic light harvesting complexes as well as alternative circuitry platforms based on exciton propagation. Here we examine the consequences of strong electronic coupling in cyanine homodimers on DNA duplex scaffolds. The most closely spaced dyes, attached to positions directly across the double-helix from one another, exhibit pronounced Davydov splitting due to strong electronic coupling. We demonstrate that the DNA scaffold is sufficiently robust to support observation of the transition from the lowest energy (J-like) one-exciton state to the nonlocal two-exciton state, where each cyanine dye is in the excited state. This transition proceeds via sequential photon absorption and persists for the lifetime of the exciton, establishing this as a controlled method for creating two-exciton states. Our observations suggest that DNA-organized dye networks have potential as platforms for molecular logic gates and entangled photon emission based on delocalized two-exciton states.
Collapse
Affiliation(s)
- Paul D Cunningham
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Sebastián A Díaz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Bernard Yurke
- Boise State University, Boise, Idaho 83725, United States
| | - Igor L Medintz
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
26
|
Jevric J, Langenegger SM, Häner R. Light-Harvesting Supramolecular Polymers: Energy Transfer to Various Polyaromatic Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jovana Jevric
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
27
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
28
|
Münich PW, Pfäffli M, Volland M, Liu SX, Häner R, Guldi DM. Amphiphilic anthanthrene trimers that exfoliate graphite and individualize single wall carbon nanotubes. NANOSCALE 2020; 12:956-966. [PMID: 31840702 DOI: 10.1039/c9nr08062g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phosphodiester-linked dialkynyl substituted anthanthrene trimer (1) has been designed and synthesized. Its graphene ribbon like structure is expected to facilitate interactions with nanographene (NG) and single wall carbon nanotubes (SWCNT) to yield novel and stable carbon-based nanomaterials. Interactions with trimer 1 lead to exfoliation of NG and to the individualization of SWCNTs. Phosphate groups, in general, and their negative charges, in particular, render the resulting nanomaterials soluble in ethanol, which is ecologically favourable over DMF required for the processing of pristine NG or SWCNTs. The newly formed nanomaterials were probed by complementary spectroscopic and microscopic techniques. Of particular importance were transient absorption and fluorescence excitation measurements, which revealed an efficient energy transfer within the carbon-based nanomaterials.
Collapse
Affiliation(s)
- Peter W Münich
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Kulyk O, Rocard L, Maggini L, Bonifazi D. Synthetic strategies tailoring colours in multichromophoric organic nanostructures. Chem Soc Rev 2020; 49:8400-8424. [PMID: 33107504 DOI: 10.1039/c9cs00555b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mimicking nature to develop light-harvesting materials is a timely challenge. This tutorial review examines the chemical strategies to engineer and customise innovative multi-coloured architectures with specific light-absorbing and emitting properties.
Collapse
Affiliation(s)
- Olesia Kulyk
- School of Chemistry
- Cardiff University
- Main Building
- Park Place
- Cardiff
| | - Lou Rocard
- School of Chemistry
- Cardiff University
- Main Building
- Park Place
- Cardiff
| | - Laura Maggini
- Institute of Organic Chemistry
- Faculty of Chemistry, University of Vienna, Währinger Strasse 38
- Vienna
- Austria
| | - Davide Bonifazi
- School of Chemistry
- Cardiff University
- Main Building
- Park Place
- Cardiff
| |
Collapse
|
30
|
Magdalena Estirado E, Aleman Garcia MA, Schill J, Brunsveld L. Multivalent Ultrasensitive Interfacing of Supramolecular 1D Nanoplatforms. J Am Chem Soc 2019; 141:18030-18037. [PMID: 31622094 PMCID: PMC6856958 DOI: 10.1021/jacs.9b05629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multivalent display on linear platforms is used by many biomolecular systems to effectively interact with their corresponding binding partners in a dose-responsive and ultrasensitive manner appropriate to the biological system at hand. Synthetic supramolecular multivalent displays offer a matching approach for the modular and bottom-up construction and systematic study of dynamic 1D materials. Fundamental studies into multivalent interactions between such linear, 1D materials have been lacking because of the absence of appropriate modular nanoplatforms. In this work we interfaced two synthetic multivalent linear nanoplatforms based on a dynamic supramolecular polymer, formed by hybrid discotic-oligonucleotide monomers, and a series of complementary DNA-duplex-based multivalent ligands, also with appended short oligonucleotides. The combination of these two multivalent nanoplatforms provides for the first time entry to study multivalent effects in dynamic 1D systems, of relevance for the conceptual understanding of multivalency in biology and for the generation of novel multivalent biomaterials. Together the two nanoscaffolds provide easy access to libraries of multivalent ligands with tunable affinities. The DNA scaffold allows for exact control over valency and spatial ligand distribution, and the discotic supramolecular polymer allows for dynamic adaptation and control over receptor density. The interaction between the two nanoplatforms was studied as a function of ligand interaction strength, valency, and density. Usage of the enhancement parameter β allowed quantification of the effects of ligand valency and affinity. The results reveal a generalized principle of additive binding increments. Receptor density is shown to be crucially and nonlinearly correlated to complex formation, leading to ultrasensitive responses. The results reveal that, not unlike biomolecular signaling, high density multivalent display of receptors is crucial for functionally increased affinities.
Collapse
Affiliation(s)
- Eva Magdalena Estirado
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Miguel Angel Aleman Garcia
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Jurgen Schill
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| |
Collapse
|
31
|
Hölz K, Schaudy E, Lietard J, Somoza MM. Multi-level patterning nucleic acid photolithography. Nat Commun 2019; 10:3805. [PMID: 31444344 PMCID: PMC6707258 DOI: 10.1038/s41467-019-11670-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
32
|
Pathak P, Yao W, Hook KD, Vik R, Winnerdy FR, Brown JQ, Gibb BC, Pursell ZF, Phan AT, Jayawickramarajah J. Bright G-Quadruplex Nanostructures Functionalized with Porphyrin Lanterns. J Am Chem Soc 2019; 141:12582-12591. [PMID: 31322869 DOI: 10.1021/jacs.9b03250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intricate arrangement of numerous and closely placed chromophores on nanoscale scaffolds can lead to key photonic applications ranging from optical waveguides and antennas to signal-enhanced fluorescent sensors. In this regard, the self-assembly of dye-appended DNA sequences into programmed photonic architectures is promising. However, the dense packing of dyes can result in not only compromised DNA assembly (leading to ill-defined structures and precipitates) but also to essentially nonfluorescent systems (due to π-π aggregation). Here, we introduce a two-step "tether and mask" strategy wherein large porphyrin dyes are first attached to short G-quadruplex-forming sequences and then reacted with per-O-methylated β-cyclodextrin (PMβCD) caps, to form supramolecular synthons featuring the porphyrin fluor fixed into a masked porphyrin lantern (PL) state, due to intramolecular host-guest interactions in water. The PL-DNA sequences can then be self-assembled into cyclic architectures or unprecedented G-wires tethered with hundreds of porphyrin dyes. Importantly, despite the closely arrayed PL units (∼2 nm), the dyes behave as bright chromophores (up to 180-fold brighter than the analogues lacking the PMβCD masks). Since other self-assembling scaffolds, dyes, and host molecules can be used in this modular approach, this work lays out a general strategy for the bottom-up aqueous self-assembly of bright nanomaterials containing densely packed dyes.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Wei Yao
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Katherine Delaney Hook
- Department of Biochemistry and Molecular Biology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Ryan Vik
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Jonathon Quincy Brown
- Department of Biomedical Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Bruce C Gibb
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Janarthanan Jayawickramarajah
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| |
Collapse
|
33
|
Wijnands SPW, Meijer EW, Merkx M. DNA-Functionalized Supramolecular Polymers: Dynamic Multicomponent Assemblies with Emergent Properties. Bioconjug Chem 2019; 30:1905-1914. [PMID: 30860819 PMCID: PMC6756584 DOI: 10.1021/acs.bioconjchem.9b00095] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Recent
years have witnessed an increasing interest in hybrid
molecular systems in which the programmability of DNA hybridization
is used to introduce enhanced molecular control in synthetic systems.
The first examples of DNA-functionalized supramolecular polymers have
been reported only recently, but have already revealed structural
and functional properties that are not easily obtained in either synthetic
supramolecular polymers or DNA-only based systems. In this Topical
Review, we provide an overview of the various forms of additional
control offered by DNA hybridization for different types of supramolecular
polymers and discuss how orthogonal supramolecular interactions in
these hybrid systems can give rise to emergent structural and functional
properties.
Collapse
|
34
|
Vybornyi M, Vyborna Y, Häner R. DNA-inspired oligomers: from oligophosphates to functional materials. Chem Soc Rev 2019; 48:4347-4360. [DOI: 10.1039/c8cs00662h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replacement of the natural nucleotides in DNA by non-nucleosidic building blocks leads to phosphodiester-linked oligomers with a high functional diversity.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Laboratoire de Biochimie (LBC)
- ESPCI Paris
- PSL Research University
- CNRS UMR8231 Chimie Biologie Innovation
- 75005 Paris
| | - Yuliia Vyborna
- Sorbonne Université
- Laboratoire Jean Perrin
- 75005 Paris
- France
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Freiestrasse 3
- Switzerland
| |
Collapse
|
35
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|