1
|
Wiström E, Hyacinthe JN, Lê TP, Gruetter R, Capozzi A. 129Xe Dynamic Nuclear Polarization Demystified: The Influence of the Glassing Matrix on the Radical Properties. J Phys Chem Lett 2024; 15:2957-2965. [PMID: 38453156 PMCID: PMC10961830 DOI: 10.1021/acs.jpclett.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
129Xe dissolution dynamic nuclear polarization (DNP) is a controversial topic. The gold standard technique for hyperpolarized xenon magnetic resonance imaging (MRI) is spin exchange optical pumping, which received FDA approval in 2022. Nevertheless, the versatility of DNP for enhancing the signal of any NMR active nucleus might provide new perspectives for hyperpolarized 129Xe NMR/MRI. Initial publications about 129Xe DNP underlined the increased complexity in the sample preparation and lower polarization levels when compared to more conventional 13C-labeled molecules, at same experimental conditions, despite very close gyromagnetic ratios. Herein, we introduce, using a Custom Fluid Path system, a user-friendly and very robust sample preparation method. Moreover, investigating the radical properties at real DNP conditions by means of LOngitudinal Detected Electron Spin Resonance, we discovered a dramatic shortening of the electron spin longitudinal relaxation time (T1e) of nitroxyl radicals in xenon DNP samples' matrices, with respect to more commonly used water:glycerol ones. Mitigating those challenges through microwave frequency modulation, we achieved over 20% 129Xe polarization without employing any deuterated solvent.
Collapse
Affiliation(s)
- Emma Wiström
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Thanh Phong Lê
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Andrea Capozzi
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG,
Department of Health Technology, Technical
University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
3
|
Lê TP, Hyacinthe JN, Capozzi A. Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization. Sci Rep 2023; 13:7962. [PMID: 37198242 DOI: 10.1038/s41598-023-34958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized (HP) sample. Being able to hyperpolarize more samples at once represents a clear advantage and can expand the range and complexity of the applications. In this work, we present the design and performance of a highly versatile and customizable dDNP cryogenic probe, herein adapted to a 5 T "wet" preclinical polarizer, that can accommodate up to three samples at once and, most importantly, it is capable of monitoring the solid-state spin dynamics of each sample separately, regardless of the kind of radical used and the nuclear species of interest. Within 30 min, the system was able to dispense three HP solutions with high repeatability across the channels (30.0 ± 1.2% carbon polarization for [1-13C]pyruvic acid doped with trityl radical). Moreover, we tested multi-nucleus NMR capability by polarizing and monitoring simultaneously 13C, 1H and 129Xe. Finally, we implemented [1-13C]lactate/[1-13C]pyruvate polarization and back-to-back dissolution and injection in a healthy mouse model to perform multiple-substrate HP Magnetic Resonance Spectroscopy (MRS) at 14.1 T.
Collapse
Affiliation(s)
- Thanh Phong Lê
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
- Image Guided Intervention Laboratory, Department of Radiology and Medical Informatics, University of Geneva, 4 Rue Gabrielle - Perret - Gentil, 1211, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, 1206, Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Capozzi A. Design and performance of a small bath cryostat with NMR capability for transport of hyperpolarized samples. Sci Rep 2022; 12:19260. [PMID: 36357496 PMCID: PMC9649762 DOI: 10.1038/s41598-022-23890-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
As of today, dissolution Dynamic Nuclear Polarization (dDNP) is the only clinically available hyperpolarization technique for 13C-MRI. Despite the clear path towards personalized medicine that dDNP is paving as an alternative and/or complement to Positron Emission Tomography (PET), the technique struggles to enter everyday clinical practice. Because of the minute-long hyperpolarization lifetime after dissolution, one of the reasons lies in the need and consequent complexities of having the machine that generates the hyperpolarization (i.e. the dDNP polarizer) on site. Since some years, research groups are working to make hyperpolarization transportable. Two different methods have been developed that allow "freezing" of the nuclear spin state prior to samples extraction from the polarizer. Nevertheless, so far, all attempts of transport have been limited to a very small scale and to the level of proof-of-principle experiments. The main reason for that is the lack of adequate hardware, strategy, and control on most of the crucial parameters. To bridge the technical gap with PET and provide MRI facilities with hours long relaxing hyperpolarized compounds at controlled conditions, a new generation of low cost/small footprint liquid He cryostats equipped with a magnetically enforced cryogenic probe is needed. In this paper, we detail the theoretical and practical construction of a hyperpolarized samples transportation device small enough to fit in a car and able to hold a sample at 4.2 K for almost 8 h despite the presence of a cryogenically-demanding purpose-built probe that provides enough magnetic field upon insertion of the sample and NMR quality homogeneity at storage position. Should transportable hyperpolarization via DNP become a reality, we herein provide important details to make it possible.
Collapse
Affiliation(s)
- Andrea Capozzi
- SB IPHYS LIFMET, Institute of Physics, EPFL, CH F0 632, Bâtiment CH, Station 6, CH-1015, Lausanne, Switzerland.
- Department of Health Technology, HYPERMAG, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
5
|
Lewis JS, Gaunt AP, Comment A. Photochemistry of pyruvic acid is governed by photo-induced intermolecular electron transfer through hydrogen bonds. Chem Sci 2022; 13:11849-11855. [PMID: 36320913 PMCID: PMC9580485 DOI: 10.1039/d2sc03038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Despite more than 85 years of research, the mechanism behind the photodecarboxylation of pyruvic acid remains elusive. Most studies focused on the gas and liquid phase of diluted solutions of pyruvic acid to understand the impact of sun light on the degradation of this molecule in the atmosphere. By analyzing concentrated supercooled solutions at 77 K, we demonstrate that instead of decarboxylating, the pyruvic acid molecule plays the role of electron donor and transfers an electron to an acceptor molecule that subsequently degrades to form CO2. We show that this electron transfer occurs via hydrogen bonding and that in aqueous solutions of pyruvic acid, the hydrated form is the electron acceptor. These findings demonstrate that photo-induced electron transfer via hydrogen bonding can occur between two simple carboxylic acids and that this mechanism governs the photochemistry of pyruvic acid, providing unexplored alternative pathways for the decarboxylation of photo-inactive molecules. When supercooled pyruvic acid is photo-irradiated, a radical detectable by ESR forms following the transfer of an electron from a molecule in its keto form to a molecule in its hydrated form. The latter subsequently degrades to CO2 and acetic acid.![]()
Collapse
Affiliation(s)
- Jennifer S. Lewis
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Adam P. Gaunt
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK,General Electric HealthcarePollards Wood, Nightingales Lane, Chalfont St GilesHP8 4SPUK
| |
Collapse
|
6
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Pham P, Mandal R, Qi C, Hilty C. Interfacing Liquid State Hyperpolarization Methods with NMR Instrumentation. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100052. [PMID: 35530721 PMCID: PMC9070690 DOI: 10.1016/j.jmro.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in liquid state hyperpolarization methods have enabled new applications of high-resolution NMR spectroscopy. Utilizing strong signal enhancements from hyperpolarization allows performing NMR spectroscopy at low concentration, or with high time resolution. Making use of the high, but rapidly decaying hyperpolarization in the liquid state requires new techniques to interface hyperpolarization equipment with liquid state NMR spectrometers. This article highlights rapid injection, high resolution NMR spectroscopy with hyperpolarization produced by the techniques of dissolution dynamic nuclear polarization (D-DNP) and para-hydrogen induced polarization (PHIP). These are popular, albeit not the only methods to produce high polarization levels for liquid samples. Gas and liquid driven sample injection techniques are compatible with both of these hyperpolarization methods. The rapid sample injection techniques are combined with adapted NMR experiments working in a single, or small number of scans. They expand the application of liquid state hyperpolarization to spins with comparably short relaxation times, provide enhanced control over sample conditions, and allow for mixing experiments to study reactions in real time.
Collapse
|
8
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13 C Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202112982. [PMID: 34679201 PMCID: PMC7612908 DOI: 10.1002/anie.202112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
10
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13C Magnetic Resonance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112982. [PMID: 38505340 PMCID: PMC10947361 DOI: 10.1002/ange.202112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (HP) 13C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13C-molecules such as [1-13C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13C relaxation time in frozen HP 13C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
11
|
Zanella CC, Capozzi A, Yoshihara HAI, Radaelli A, Mackowiak ALC, Arn LP, Gruetter R, Bastiaansen JAM. Radical-free hyperpolarized MRI using endogenously occurring pyruvate analogues and UV-induced nonpersistent radicals. NMR IN BIOMEDICINE 2021; 34:e4584. [PMID: 34245482 PMCID: PMC8518970 DOI: 10.1002/nbm.4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
Collapse
Affiliation(s)
| | - Andrea Capozzi
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | | | - Alice Radaelli
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Adèle L. C. Mackowiak
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Lionel P. Arn
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Jessica A. M. Bastiaansen
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
12
|
Li Y, Baryshnikov GV, Xu C, Ågren H, Zhu L, Yi T, Zhao Y, Wu H. Photoinduced Radical Emission in a Coassembly System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yiran Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Chenggang Xu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy Uppsala University Box 516 75120 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
13
|
Li Y, Baryshnikov GV, Xu C, Ågren H, Zhu L, Yi T, Zhao Y, Wu H. Photoinduced Radical Emission in a Coassembly System. Angew Chem Int Ed Engl 2021; 60:23842-23848. [PMID: 34480398 DOI: 10.1002/anie.202110405] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/07/2022]
Abstract
Developing radical emission at ambient conditions is a challenging task since radical species are unstable in air. In the present work, we overcome this challenge by coassembling a series of tricarbonyl-substituted benzene molecules with polyvinyl alcohol (PVA). The strong hydrogen bonds between the guest dopants and the PVA host matrix protect the free radicals of carbonyl compounds after light irradiation, leading to strong solid state free radical emission. Changing temperature and peripheral functional groups of the tricarbonyl-substituted benzenes can influence the intensity of the radical emission. Quantum-chemical calculations predict that such free radical fluorescence originates from anti-Kasha D2 →D0 vertical emission by the anion radicals. The photoinduced radical emission by the tricarbonyl-substituted benzenes was successfully utilized for information encryption application.
Collapse
Affiliation(s)
- Yiran Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Chenggang Xu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Capozzi A, Kilund J, Karlsson M, Patel S, Pinon AC, Vibert F, Ouari O, Lerche MH, Ardenkjær-Larsen JH. Metabolic contrast agents produced from transported solid 13C-glucose hyperpolarized via dynamic nuclear polarization. Commun Chem 2021; 4:95. [PMID: 36697707 PMCID: PMC9814755 DOI: 10.1038/s42004-021-00536-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.
Collapse
Affiliation(s)
- Andrea Capozzi
- LIFMET, Department of Physics, EPFL, Station 6 (Batiment CH), Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Kilund
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Magnus Karlsson
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Saket Patel
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Arthur Cesar Pinon
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - François Vibert
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Olivier Ouari
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Mathilde H Lerche
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
15
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
16
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
17
|
Mishkovsky M, Gusyatiner O, Lanz B, Cudalbu C, Vassallo I, Hamou MF, Bloch J, Comment A, Gruetter R, Hegi ME. Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma. Sci Rep 2021; 11:5771. [PMID: 33707647 PMCID: PMC7952603 DOI: 10.1038/s41598-021-85339-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.
Collapse
Affiliation(s)
- Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Olga Gusyatiner
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irene Vassallo
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-France Hamou
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Monika E Hegi
- Neuroscience Research Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Service of Neurosurgery Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
19
|
Pinon AC, Capozzi A, Ardenkjær-Larsen JH. Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun Chem 2020; 3:57. [PMID: 36703471 PMCID: PMC9814647 DOI: 10.1038/s42004-020-0301-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, hyperpolarization of water protons via dissolution Dynamic Nuclear Polarization (dDNP) has attracted increasing interest in the magnetic resonance community. Hyperpolarized water may provide an alternative to Gd-based contrast agents for angiographic and perfusion Magnetic Resonance Imaging (MRI) examinations, and it may report on chemical and biochemical reactions and proton exchange while perfoming Nuclear Magnetic Resonance (NMR) investigations. However, hyperpolarizing water protons is challenging. The main reason is the presence of radicals, required to create the hyperpolarized nuclear spin state. Indeed, the radicals will also be the main source of relaxation during the dissolution and transfer to the NMR or MRI system. In this work, we report water magnetizations otherwise requiring a field of 10,000 T at room temperature on a sample of pure water, by employing dDNP via UV-generated, labile radicals. We demonstrate the potential of our methodology by acquiring a 15N spectrum from natural abundance urea with a single scan, after spontaneous magnetization transfer from water protons to nitrogen nuclei.
Collapse
Affiliation(s)
- Arthur C. Pinon
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Andrea Capozzi
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- grid.5170.30000 0001 2181 8870Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
20
|
Harris T, Gamliel A, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. The Effect of Gadolinium Doping in [ 13 C 6 , 2 H 7 ]Glucose Formulations on 13 C Dynamic Nuclear Polarization at 3.35 T. Chemphyschem 2020; 21:251-256. [PMID: 31922367 DOI: 10.1002/cphc.201900946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The promise of hyperpolarized glucose as a non-radioactive imaging agent capable of reporting on multiple metabolic routes has led to recent advances in its dissolution-DNP (dDNP) driven polarization using UV-light induced radicals and trityl radicals at high field (6.7 T) and 1.1 K. However, most preclinical dDNP polarizers operate at the field of 3.35 T and 1.4-1.5 K. Minute amounts of Gd3+ complexes have shown large improvements in solid-state polarization, which can be translated to improved hyperpolarization in solution. However, this Gd3+ effect seems to depend on magnetic field strength, metal ion concentration, and sample formulation. The effect of varying Gd3+ concentrations at 3.35 T has been described for 13 C-labeled pyruvic acid and acetate. However, it has not been studied for other compounds at this field. The results presented here suggest that Gd3+ doping can lead to various concentration and temperature dependent effects on the polarization of [13 C6 ,2 H7 ]glucose, not necessarily similar to the effects observed in pyruvic acid or acetate in size or direction. The maximal polarization for [13 C6 ,2 H7 ]glucose appears to be at a Gd3+ concentration of 2 mM, when irradiating for more than 2 h at the negative maximum of the DNP intensity profile. Surprisingly, for shorter irradiation times, higher polarization levels were determined at 1.50 K compared to 1.45 K, at a [Gd3+ ]=1.3 mM. This was explained by the build-up time constant and maximum at these temperatures.
Collapse
Affiliation(s)
- Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
21
|
Vinther JMO, Zhurbenko V, Albannay MM, Ardenkjær-Larsen JH. Design of a local quasi-distributed tuning and matching circuit for dissolution DNP cross polarization. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:12-20. [PMID: 31220747 DOI: 10.1016/j.ssnmr.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) build-up times at low temperature for low-gamma nuclei can be unfavorably long and can be accelerated by transfer of polarization from protons. The efficiency of the cross polarization (CP) depends on the B1-field strengths, the pulse sequence chosen for cross polarization and the sample composition. CP experiments rely on high B1-fields, which typically lead to electrical discharge and breakdown in the circuit. This problem is particularly severe in the low pressure helium atmosphere due to easily ionized helium atoms. The purpose of this study is to identify strategies to minimize voltages across components in a tuning and matching circuit of the coil to avoid electrical discharge during CP experiments. Design equations for three tuning and matching network configurations are derived. The results of the study are then used in the design of a single coil double resonance DNP probe operating at 71.8 MHz (13C frequency) and 285.5 MHz (1H frequency). In the current setup we achieve 28% polarization on 13C in urea with a build-up time of 11.6 min with CP compared to 14% and 53 min by direct polarization using TEMPOL as the radical. Different cross polarization sequences are compared.
Collapse
Affiliation(s)
- Joachim M O Vinther
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs. Lyngby, Denmark
| | - Vitaliy Zhurbenko
- Center for Hyperpolarization in Magnetic Resonance, Electromagnetic Systems Group, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, 2800, Kgs. Lyngby, Denmark
| | - Mohammed M Albannay
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs. Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
22
|
Katz I, Feintuch A, Carmieli R, Blank A. Proton polarization enhancement of up to 150 with dynamic nuclear polarization of plasma-treated glucose powder. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:26-35. [PMID: 30913499 DOI: 10.1016/j.ssnmr.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) for the enhancement of the NMR signals of specific metabolites has recently found applications in the context of magnetic resonance imaging (MRI). Currently, DNP signal enhancement is implemented in clinical systems through the use of exogenous stable organic free radicals, known as polarization agents (PAs), mixed in a solution with the metabolite of interest. These PAs are medically undesirable and thus must be filtered out prior to patient injection - a task that involves considerable technical complexity and consumes valuable time during which the polarization decays. Here, we aim to demonstrate DNP enhancements large enough for clinical relevance using a process free of exogenous PAs. This is achieved by processing (soft grinding) the metabolite in its solid form and subsequently exposing it to plasma in a dilute atmosphere to produce chemically-unstable free radicals (herein referred to as electrical-discharge-induced radicals - EDIRs) within the powder. These samples are then subjected to the normal DNP procedure of microwave irradiation while placed under a high static magnetic field, and their NMR signal is measured to quantify the enhancement of the protons' signal in the solid. Proton signal enhancements (measured as the ratio of the NMR signal with microwave irradiation to the NMR signal without microwave irradiation) of up to 150 are demonstrated in glucose. Upon fast dissolution, the free radicals are annihilated, leaving the sample in its original chemical composition (which is safe for clinical use) without any need for filtration and cumbersome quality control procedures. We thus conclude that EDIRs are found to be highly efficient in providing DNP enhancement levels that are on par with those achieved with the exogenous PAs, while being safe for clinical use. This opens up the possibility of applying our method to clinical scenarios with minimal risks and lower costs per procedure.
Collapse
Affiliation(s)
- Itai Katz
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Akiva Feintuch
- Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Raanan Carmieli
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
23
|
Capozzi A, Patel S, Wenckebach WT, Karlsson M, Lerche MH, Ardenkjær-Larsen JH. Gadolinium Effect at High-Magnetic-Field DNP: 70% 13C Polarization of [U- 13C] Glucose Using Trityl. J Phys Chem Lett 2019; 10:3420-3425. [PMID: 31181932 DOI: 10.1021/acs.jpclett.9b01306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We show that the trityl electron spin resonance (ESR) features, crucial for an efficient dynamic nuclear polarization (DNP) process, are sample-composition-dependent. Working at 6.7 T and 1.1 K with a generally applicable DNP sample solvent mixture such as water/glycerol plus trityl, the addition of Gd3+ leads to a dramatic increase in [U-13C] glucose polarization from 37 ± 4% to 69 ± 3%. This is the highest value reported to date and is comparable to what can be achieved on pyruvic acid. Moreover, performing ESR measurements under actual DNP conditions, we provide experimental evidence that gadolinium doping not only shortens the trityl electron spin-lattice relaxation time but also modifies the radical g-tensor. The latter yielded a considerable narrowing of the ESR spectrum line width. Finally, in the frame of the spin temperature theory, we discuss how these two phenomena affect the DNP performance.
Collapse
Affiliation(s)
- Andrea Capozzi
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Saket Patel
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - W Thomas Wenckebach
- Paul Scherrer Institute , CH-5232 Villigen , Switzerland
- National High Magnetic Field Laboratory, UF, AMRIS , Gainesville , Florida 32611 , United States
| | - Magnus Karlsson
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Mathilde H Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology , Technical University of Denmark , Building 349 , 2800 Kongens Lyngby , Denmark
- GE Healthcare , Park Alle 295 , 2605 Brøndby , Denmark
| |
Collapse
|
24
|
Tortajada A, Duan Y, Sahoo B, Cong F, Toupalas G, Sallustrau A, Loreau O, Audisio D, Martin R. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01921] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andreu Tortajada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Basudev Sahoo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Georgios Toupalas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antoine Sallustrau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Olivier Loreau
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Davide Audisio
- Service de Chimie Bio-Organique et Marquage (SCBM), CEA-DRF-JOLIOT-SCBM, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|