1
|
Feng J, Wang Y, Li EQ, Loh TP. Recent Developments in Copper-Catalyzed Annulations for Synthesis of Spirooxindoles. CHEM REC 2024:e202400126. [PMID: 39439210 DOI: 10.1002/tcr.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Indexed: 10/25/2024]
Abstract
Spirooxindoles represent a special scaffold for pharmaceuticals and natural products, and significant advancements have been achieved in their synthesis in recent years. Among these, transition metal catalysis, particularly copper catalysis, has emerged as an efficient and reliable method for the synthesis of spirooxindoles. Based on different reaction types, two distinct substrate types have been summarized and classified by us for constructing spirooxindole scaffolds via intramolecular and intermolecular annulations. This review outlines the latest advancements in copper-catalyzed cyclization reactions for synthesizing spirooxindoles and provides detailed insights into the types of annulation reactions and their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jinzan Feng
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Yue Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Er-Qing Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Chen X, Li G, Huang Z, Luo Q, Chen T, Yang W. Synthesis of nicotinimidamides via a tandem CuAAC/ring-cleavage /cyclization/oxidation four-component reaction and their cytotoxicity. RSC Adv 2024; 14:25844-25851. [PMID: 39156748 PMCID: PMC11328002 DOI: 10.1039/d4ra04918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Nicotinamide and its derivatives, recognized as crucial drug intermediates, have been a focal point of extensive chemical modifications and rigorous pharmacological studies. Herein, a series of novel nicotinamide derivatives, nicotinimidamides, were synthesized via a tandem CuAAC/ring-cleavage/cyclization/oxidation four-component reaction procedure from O-acetyl oximes, terminal ynones, sulfonyl azides, and NH4OAc. This strategy is significantly more efficient than previously reported, and the cytotoxicity of the nicotinimidamides is also tested. This project not only exhibits a sustainable and eco-friendly domino methodology for the creation of nicotinimidamides but also presents a promising candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Guanrong Li
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Zixin Huang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University Zhanjiang 524048 P. R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Weiguang Yang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| |
Collapse
|
3
|
Escandón-Mancilla FM, González-Rivas N, Unnamatla MVB, García-Eleno MA, Corona-Becerril D, Frontana-Uribe BA, Cuevas-Yañez E. Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition. Curr Org Synth 2024; 21:359-379. [PMID: 36177624 DOI: 10.2174/1570179420666220929152449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Ketemines represent an interesting class of organic intermediates that has undergone a regrowth as a consequence of recent extensions of copper catalyzed azide alkyne cycloaddition (Cu- AAC) to other synthetic fields. This review summarizes the most recent generation methods of ketimines from CuAAC reaction, highlighting chemical properties focused on the synthesis of cyclic compounds, among others, affording a general outlook towards the development of new biologically active compounds.
Collapse
Affiliation(s)
- Flor M Escandón-Mancilla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
| | - Nelly González-Rivas
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Murali V Basavanag Unnamatla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Marco A García-Eleno
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - David Corona-Becerril
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Erick Cuevas-Yañez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| |
Collapse
|
4
|
Wei Q, Zhang Y, Lv C, Hu C, Su Z. Theoretical Study on Cooperation Catalysis of Chiral Guanidine/ Copper(I) in Asymmetric Azide-Alkyne Cycloaddition/[2 + 2] Cascade Reaction. J Org Chem 2023. [PMID: 37437267 DOI: 10.1021/acs.joc.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Density functional theory (DFT) calculations with BP86-D3(BJ) functionals were employed to reveal the mechanism and stereoselectivity of chiral guanidine/copper(I) salt-catalyzed stereoselective three-component reaction among N-sulfonyl azide, terminal alkyne, and isatin-imine for spiroazetidinimines that was first reported by Feng and Liu (Angew. Chem. Int. Ed. 2018, 57, 16852-16856). For the noncatalytic cascade reaction, the denitrogenation to generate ketenimine species was the rate-determining step, with an activation barrier of 25.8-34.8 kcal mol-1. Chiral guanidine-amide promoted the deprotonation of phenylacetylene, generating guanidine-Cu(I) acetylide complexes as active species. In azide-alkyne cycloaddition, copper acetylene coordinated to the O atom of the amide moiety in guanidium, and TsN3 was activated by hydrogen bonding, affording the Cu(I)-ketenimine species with an energy barrier of 3.5∼9.4 kcal mol-1. The optically active spiroazetidinimine oxindole was constructed via a stepwise four-membered ring formation, followed by deprotonation of guanidium moieties for C-H bonding in a stereoselective way. The steric effect of the bulky CHPh2 group and chiral backbone in the guanidine, combined with the coordination between the Boc group in isatin-imine with a copper center, played important roles in controlling the stereoselectivity of the reaction. The major spiroazetidinimine oxindole product with an SS configuration was formed in a kinetically more favored way, which was consistent with the experimental observation.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
5
|
Hommelsheim R, Bausch S, Selvakumar A, Amer MM, Truong KN, Rissanen K, Bolm C. A Copper-Catalyzed Interrupted Domino Reaction for the Synthesis of Fused Triazolyl Benzothiadiazine-1-oxides. Chemistry 2023; 29:e202203729. [PMID: 36453242 DOI: 10.1002/chem.202203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Copper(I)-catalyzed domino reactions of 2-azido sulfoximines with 1-iodoalkynes yield fused triazolyl-containing benzothiadiazine-1-oxides. The protocol features the synthesis of two fused heterocyclic rings in one step with good to excellent yields and a broad functional group tolerance. Detailed mechanistic investigations indicate that a copper π-complex initiates a cycloaddition and oxidative C-N coupling reaction sequence. The results suggest an interrupted domino process involving an iodinated triazole as a key intermediate.
Collapse
Affiliation(s)
- Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Sandra Bausch
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Arjuna Selvakumar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Wang L, Gao F, Zhang X, Peng T, Xu Y, Wang R, Yang D. Concerted Enantioselective [2+2] Cycloaddition Reaction of Imines Mediated by a Magnesium Catalyst. J Am Chem Soc 2023; 145:610-625. [PMID: 36538490 DOI: 10.1021/jacs.2c11284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Yingfan Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Zhang Y, Wu J, Ning L, Chen Q, Feng X, Liu X. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
[4 + 3] Cycloaddition of ketenimines with furocarbenoids: Divergent and efficient synthesis of fused cycloheptatriene and tropone scaffolds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Tan Q, Chen Q, Zhu Z, Liu X. Asymmetric organocatalytic sulfenylation for the construction of a diheteroatom-bearing tetrasubstituted carbon centre. Chem Commun (Camb) 2022; 58:9686-9689. [PMID: 35959638 DOI: 10.1039/d2cc03443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic enantioselective sulfenylation to construct diheteroatom-bearing carbon centres was achieved by employing chiral guanidine organocatalysts. This protocol provided a facile route towards the synthesis of α-fluoro-α-sulfenyl-β-ketoamides, azlactone adducts and α-sulfur-substituted amino acid derivatives in high yields with good to excellent enantioselectivities. A possible working mode was proposed to elucidate the chiral control of the process.
Collapse
Affiliation(s)
- Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qianping Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zitong Zhu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Zhang Y, Lv C, Hu C, Su Z. Mechanistic Study of Asymmetric Alkynylation of Isatin-Derived Ketimine Mediated by a Copper/Guanidine Catalyst. J Org Chem 2022; 87:11693-11707. [PMID: 36001814 DOI: 10.1021/acs.joc.2c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we performed a mechanistic study of asymmetric alkynylation of isatin-derived N-Boc ketimine that was first reported by Feng, Liu, and co-workers (Chem. Commun. 2018, 54, 678-681). Guanidine-amide promoted the formation of highly nucleophilic copper acetylene species by abstracting the terminal proton of phenylacetylene with an imine moiety. The guanidinium salt-Cu(I) complex was the most active species in the addition of the C═N bond, in which copper acetylene coordinated to the O atom of the amide moiety, and the isatin-derived ketimine substrate was activated by hydrogen bonding as well as tert-butoxycarbonyl···Cu(I) coordination. Due to weak interaction between Cu(I) and the Ph group in the amide of guanidine, as well as the repulsion between the tert-butyl group in ketimine and the cyclohexyl group in guanidine, the copper acetylene preferred to attack isatin-derived ketimine from the re-face, leading to the S-configuration product with excellent stereoselectivity. The affinity of the counterion for the Cu(I) center in the copper salt affected the deprotonation of phenylacetylene and the formation of guanidinium salt active species. In contrast to CuBr and CuCl, the combination of CuI with aniline-derived guanidine-amide exhibited high catalytic activity and a chiral induction effect, contributing to a high turnover frequency (9.70 × 10-4 s-1) in catalysis and ee%.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
11
|
Copper-catalyzed Z-selective synthesis of acrylamides and polyacrylamides via alkylidene ketenimines. Nat Commun 2022; 13:4362. [PMID: 35896596 PMCID: PMC9329291 DOI: 10.1038/s41467-022-32082-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
It remains very important to discover and study new fundamental intermediates consisting of carbon and nitrogen as the abundant elements of organic molecules. The unique alkylidene ketenimine could be formed in situ under mild conditions by an unexpected copper-catalyzed three-component reaction of alkyne, azide and water involving a successive cycloaddition, N2 extrusion and carbene-assisted rearrangement. Only Z-α,β-unsaturated amides instead of E-α,β-unsaturated amides or triazoles were acquired from alkylidene ketenimines with excellent selectivities and stereospecificities. In addition, a series of “approximate” alternating copolymers (poly (triazole-alt-Z-acrylamides)) with high Mns and yields were efficiently afforded by multicomponent polymerization through a very simple operation basing on this multicomponent reaction. Alkylidene ketenimines are rarely reported, but synthetically useful, reactive intermediates. Here, the authors disclose a three-component reaction of alkyne, azide and water by cycloaddition, nitrogen extrusion, and carbene-assisted rearrangement, via in situ formation of alkylidene ketenimine.
Collapse
|
12
|
Chen X, Liu J, Li H, Xiao Y, Chen F. Asymmetric Synthesis of Spirooxazolidinone Oxindoles by the Thiourea‐Catalyzed Aldol Reaction of 2‐Isocyanatomalonate Diesters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Pan Chen
- Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Jin‐Xin Liu
- Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Hong‐Yan Li
- Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - You‐Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Fen‐Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
13
|
Dong K, Liu M, Xu X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules 2022; 27:3088. [PMID: 35630567 PMCID: PMC9144650 DOI: 10.3390/molecules27103088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the abundant and inexpensive metals on the earth, copper has demonstrated broad applications in synthetic chemistry and catalysis. Among these copper-catalyzed advances, copper carbenes are versatile and reactive intermediates that can mediate a variety of transformations, which have attracted much attention in the past decades. The present review summarizes two different reaction models that take place between a copper carbene intermediate and alkyne species, including the cross-coupling reaction of copper carbene intermediate with terminal alkyne, and the addition of copper carbene intermediate onto the C-C triple bond. This article will cover the profile from 2010 to 2021 by placing emphasis on the detailed catalytic models and highlighting the synthetic applications offered by these practical and mild methods.
Collapse
Affiliation(s)
- Kuiyong Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
14
|
Łowicki D, Przybylski P. Cascade synthetic strategies opening access to medicinal-relevant aliphatic 3- and 4-membered N-heterocyclic scaffolds. Eur J Med Chem 2022; 238:114438. [PMID: 35567964 DOI: 10.1016/j.ejmech.2022.114438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Cascade reactions are often 'employed' by nature to construct structurally diverse nitrogen-containing heterocycles in a highly stereoselective fashion, i.e., secondary metabolites important for pharmacy. Nitrogen-containing heterocycles of three- and four-membered rings, as standalone and bicyclic compounds, inhibit different enzymes and are pharmacophores of approved drugs or drug candidates considered in many therapies, e.g. anticancer, antibacterial or antiviral. Domino transformations are in most cases in line with modern green chemistry concepts due to atom economy, one-pot procedures often without use the protective groups, time-saving and at markedly lower costs than multistep transformations. The tandem approaches can help to obtain novel N-heterocyclic scaffolds, functionalized according to structural requirements of the target in cells, taking into account the nature of functional group and stereochemistry. On the other hand cascade strategies allow to modify small N-heterocyclic rings in a systematic way, which is beneficial for structure-activity relationship (SAR) analyses. This review is focused on the biological relevance of the N-heterocyclic scaffolds with smaller 3- and 4-membered rings among approved drugs and leading structures of drug candidates. The cascade synthetic strategies offering N-heterocyclic scaffolds, at relatively good yields and high stereoselectivity, are discussed here. The review covers mainly years from 2015 to 2021.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
15
|
Zhang F, Sang X, Zhou Y, Cao W, Feng X. Enantioselective Synthesis of Azetidines through [3 + 1]-Cycloaddition of Donor-Acceptor Aziridines with Isocyanides. Org Lett 2022; 24:1513-1517. [PMID: 35147442 DOI: 10.1021/acs.orglett.2c00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enantioselective [3 + 1]-cycloaddition of racemic donor-acceptor (D-A) aziridines with isocyanides was first realized under mild reaction conditions using a chiral N,N'-dioxide/MgII complex as catalyst, providing a facile route to enantioenriched exo-imido azetidines with good to excellent yield (up to 99%) and enantioselectivity (up to 94% ee). An obvious chiral amplification effect was observed in this system, and an explanation was elucidated based on the experimental investigation and X-ray crystal structure of the enantiomerically pure catalyst.
Collapse
Affiliation(s)
- Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xinpeng Sang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
17
|
Yang W, Zhao Y, Bu Q, Li L, Zhou B, Huang Z. Tandem CuAAC/Ring Cleavage/[4 + 2] Annulation Reaction to Synthesize Dihydrooxazines and Conversion to 2-Aminopyrimidines. Org Lett 2021; 24:457-461. [PMID: 34935394 DOI: 10.1021/acs.orglett.1c04179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A tandem CuAAC/ring cleavage/[4 + 2] annulation reaction of terminal ynones, sulfonyl azides, and oximes has been developed to synthesize functionalized dihydrooxazines under mild conditions. In particular, intermediate N-sulfonyl acylketenimines are the first example of a 4π-system participating in [4 + 2] cycloadditions, and dihydrooxazines can convert to 2-aminopyridines through ring cleavage under basic conditions.
Collapse
Affiliation(s)
- Weiguang Yang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qingxia Bu
- Department of Chemistry, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210009, China
| | - Li Li
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Baojing Zhou
- Department of Chemistry, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210009, China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
18
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
19
|
Zhao Y, Zhou Z, Liu L, Chen M, Yang W, Chen Q, Gardiner MG, Banwell MG. The Copper-Catalyzed Reaction of 2-(1-Hydroxyprop-2-yn-1-yl)phenols with Sulfonyl Azides Leading to C3-Unsubstituted N-Sulfonyl-2-iminocoumarins. J Org Chem 2021; 86:9155-9162. [PMID: 34137260 DOI: 10.1021/acs.joc.1c00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An operationally simple synthesis of Z-configured and C3-unsubstituted N-sulfonyl-2-iminocoumarins (e.g., 8a) that proceeds under mild conditions is achieved by reacting 2-(1-hydroxyprop-2-yn-1-yl)phenols (e.g., 6a) with sulfonyl azides (e.g., 7a). The cascade process involved likely starts with a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. This is followed by ring-opening of the resulting metalated triazole (with accompanying loss of nitrogen), reaction of the ensuing ketenimine with the pendant phenolic hydroxyl group, and finally dehydration of the (Z)-N-(4-hydroxychroman-2-ylidene)sulfonamide so formed.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lvling Liu
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| | - Man Chen
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524023, China
| | - Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan UniversityGuangzhou/Zhuhai, 510632/519070, China
| | - Michael G Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra 2601, Australia
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,Institute for Advanced and Applied Chemical Synthesis, Jinan UniversityGuangzhou/Zhuhai, 510632/519070, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
20
|
Kalra P, Kaur R, Singh G, Singh H, Singh G, Pawan, Kaur G, Singh J. Metals as “Click” catalysts for alkyne-azide cycloaddition reactions: An overview. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
|
22
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
23
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
24
|
Brandão P, Marques CS, Carreiro EP, Pineiro M, Burke AJ. Engaging Isatins in Multicomponent Reactions (MCRs) - Easy Access to Structural Diversity. CHEM REC 2021; 21:924-1037. [PMID: 33599390 DOI: 10.1002/tcr.202000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent reactions (MCRs) are a valuable tool in diversity-oriented synthesis. Its application to privileged structures is gaining relevance in the fields of organic and medicinal chemistry. Isatin, due to its unique reactivity, can undergo different MCRs, affording multiple interesting scaffolds, namely oxindole-derivatives (including spirooxindoles, bis-oxindoles and 3,3-disubstituted oxindoles) and even, under certain conditions, ring-opening reactions occur that leads to other heterocyclic compounds. Over the past few years, new methodologies have been described for the application of this important and easily available starting material in MCRs. In this review, we explore these novelties, displaying them according to the structure of the final products obtained.
Collapse
Affiliation(s)
- Pedro Brandão
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal.,LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - M Pineiro
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal.,University of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| |
Collapse
|
25
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
26
|
Liu Z, Cao S, Wu J, Zanoni G, Sivaguru P, Bi X. Palladium(II)-Catalyzed Cross-Coupling of Diazo Compounds and Isocyanides to Access Ketenimines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Zhang R, Zhang Z, Wang K, Wang J. Difluoroketenimine: Generation from Difluorocarbene and Isocyanide and Its [3 + 2] Cycloadditions with Alkenes or Alkynes. J Org Chem 2020; 85:9791-9800. [PMID: 32633508 DOI: 10.1021/acs.joc.0c01120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ketenimines have been explored as useful building blocks for the synthesis of heteroatom-containing cyclic compounds through the cycloaddition with polar multiple bonds. Herein, we report the cycloaddition of difluoroketenimine with nonpolar multiple bonds, namely, the cycloaddition with alkenes or alkynes. The difluoroketenimine is generated from the coupling of tert-butyl isocyanide and difluorocarbene, which is formed in situ from (bromodifluoromethyl)trimethylsilane. The difluoroketenimine then reacts in situ with alkenes or alkynes to afford fluorinated pyrrolidines or pyrroles. DFT study suggests that a fluorinated cyclic (alkyl)(amino)carbene is involved as the key intermediate in these reactions.
Collapse
Affiliation(s)
- Rui Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhikun Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Nakamura A, Kuwano S, Sun J, Araseki K, Ogino E, Arai T. Chiral Dinuclear Benzyliminobinaphthoxy‐Palladium Catalyst for Asymmetric Mannich Reaction of Aldimines and Isatin‐Derived Ketimines with Alkylmalononitriles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayu Nakamura
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Junchuan Sun
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Kensuke Araseki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Eri Ogino
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of ScienceChiba University1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
29
|
|
30
|
Azizollahi H, Pérez‐Gómez M, Mehta VP, García‐López J. Synthesis of [3.4]‐Spirooxindoles through Cascade Carbopalladation of Skipped Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hamid Azizollahi
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad 91775-1436 Mashhad Iran
| | - Marta Pérez‐Gómez
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
| | - Vaibhav P. Mehta
- Grupo de Química OrganometálicaUniversidad de Murcia Campus de Espinardo 30100 Murcia Spain
| | | |
Collapse
|
31
|
Wang CG, Wu R, Li TP, Jia T, Li Y, Fang D, Chen X, Gao Y, Ni HL, Hu P, Wang BQ, Cao P. Copper(I)-Catalyzed Ketenimine Formation/Aza-Claisen Rearrangement Cascade for Stereoselective Synthesis of α-Allylic Amidines. Org Lett 2020; 22:3234-3238. [PMID: 32233500 DOI: 10.1021/acs.orglett.0c01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper-catalyzed three-component reaction of terminal alkynes, TsN3, and tertiary allylic amines is developed toward the one-pot synthesis of α-allylic amidines. The product was synthesized on gram scale under 1 mol % of catalyst loading. Transformations of products into alkenyl amine and other nitrogen-containing compounds are demonstrated without any loss of stereochemical information.
Collapse
Affiliation(s)
- Cheng-Gang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Rui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ting-Peng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Tao Jia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Dongmei Fang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaozhen Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
32
|
Luo Y, Zhang H, Wang S, Zhou Y, Dong S, Feng X. Asymmetric Catalytic Diverse Ring Opening/Cycloadditions of Cyclobutenones with ( E)-Alkenyloxindoles and ( E)-Dioxopyrrolidines. Org Lett 2020; 22:2645-2650. [PMID: 32208616 DOI: 10.1021/acs.orglett.0c00608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly enantioselective ring-opening/cycloaddition reactions of cyclobutenones were achieved by employing chiral N,N'-dioxide/metal complexes as the catalysts. The Diels-Alder type cycloaddition with (E)-alkenyloxindoles yielded spirocyclohexaneoxindoles with excellent results. Meanwhile, a hetero-Diels-Alder process occurred with (E)-dioxopyrrolidines to afford spiropyrrolidinone-dihydropyranone derivatives.
Collapse
Affiliation(s)
- Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Wang H, Zeng T, Li X, Wang S, Xiao W, Liu L, Chang W, Li J. Cocatalyst-controlled divergent cascade cycloaddition reaction of arylalkynols and dioxopyrrolidienes: access to spiroketals and oxa-bridged eight-membered cyclic ethers. Org Chem Front 2020. [DOI: 10.1039/d0qo00464b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A cocatalyst-controlled divergent cascade cycloaddition reaction was developed for the synthesis of two different complex oxygen-containing heterocyclic compounds from arylalkynols and dioxopyrrolidienes in the presence of Au(i) catalyst.
Collapse
Affiliation(s)
- Hongkai Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Tianlong Zeng
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xinhong Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Songmeng Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Weiguo Xiao
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
34
|
Kaur J, Kaur BP, Chimni SS. Recent advances in the catalytic synthesis of 3-aminooxindoles: an update. Org Biomol Chem 2020; 18:4692-4708. [DOI: 10.1039/d0ob00777c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3-Substituted-3-aminooxindoles are versatile scaffolds and these motifs constitute the core structure of number of natural products and biologically active compounds.
Collapse
Affiliation(s)
- Jasneet Kaur
- Post-Graduate Department of Chemistry
- Khalsa College Amritsar
- India
| | - Banni Preet Kaur
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| | - Swapandeep Singh Chimni
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
35
|
Ruan S, Zhong X, Chen Q, Feng X, Liu X. An asymmetric hydrocyanation/Michael reaction of α-diazoacetates via Cu(i)/chiral guanidine catalysis. Chem Commun (Camb) 2020; 56:2155-2158. [DOI: 10.1039/c9cc09521g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric one-pot hydrocyanation/Michael reaction of α-aryl diazoacetates with trimethylsilyl cyanide, tert-butanol, and N-phenylmaleimides has been realized using a chiral guanidinium salt/CuBr catalyst.
Collapse
Affiliation(s)
- Sai Ruan
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xia Zhong
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Quangang Chen
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
36
|
Valizadeh S, Ghasemi Z, Shahrisa A, Notash B, Pirouzmand M, Kabiri R. Magnetic chitosan nanocomposite: As a novel catalyst for the synthesis of new derivatives of N-sulfonylamidine and N-sulfonylimidate. Carbohydr Polym 2019; 226:115310. [PMID: 31582060 DOI: 10.1016/j.carbpol.2019.115310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
This study reports the synthesis and characterization of a highly active catalyst based on chelated copper iodide on magnetic chitosan-salicylaldehyde Schiff base. This catalyst was successfully used for the three-component reaction of N-propargylphthalimide, tosylazide, and NH or OH containing nucleophiles to access new classes of N-sulfonylamidine or N-sulfonylimidate derivatives. The products, which were constructed via an in situ generated sulfonyl keteneimine intermediate, were obtained in good to excellent yields. Short reaction times, easy separation and reusability without significant loss of catalyst activity were found to be the notable features of this synthetic protocol.
Collapse
Affiliation(s)
- Sepideh Valizadeh
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Zarrin Ghasemi
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran.
| | - Aziz Shahrisa
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Mahtab Pirouzmand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 516661476, Iran
| | - Roya Kabiri
- Laboratory of NMR, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| |
Collapse
|
37
|
Yang J, Ruan P, Yang W, Feng X, Liu X. Enantioselective carbene insertion into the N-H bond of benzophenone imine. Chem Sci 2019; 10:10305-10309. [PMID: 32110317 PMCID: PMC6979361 DOI: 10.1039/c9sc03354h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023] Open
Abstract
Efficient enantioselective insertion of α-diazoesters into the N-H bond of N-sp2-hybridized benzophenone imine was realized by using Rh2(esp)2 and chiral guanidine cooperative catalysis. Both aliphatic and aromatic substituted α-amino esters were obtained in high yields (up to 99%) and good enantioselectivities (up to 95.5 : 4.5 er) under mild reaction conditions.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Peiran Ruan
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Wei Yang
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China .
| |
Collapse
|
38
|
Zhou J, Zhu GD, Wang L, Tan FX, Jiang W, Ma ZG, Kang JC, Hou SH, Zhang SY. Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Org Lett 2019; 21:8662-8666. [DOI: 10.1021/acs.orglett.9b03276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guo-Dong Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fu-Xin Tan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wei Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhi-Gang Ma
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
39
|
Massaro NP, Chatterji A, Sharma I. Three-Component Approach to Pyridine-Stabilized Ketenimines for the Synthesis of Diverse Heterocycles. J Org Chem 2019; 84:13676-13685. [PMID: 31550889 DOI: 10.1021/acs.joc.9b01906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ketenimines are versatile synthetic intermediates capable of performing novel transformations in organic synthesis. They are normally generated in situ due to their inherent instability and high level of reactivity. Herein, we report pyridine-stabilized ketenimine zwitterionic salts, which are prepared through click chemistry from readily accessible alkynes and sulfonyl azides. To demonstrate their synonymous reactivity to ketenimines, these salts have been utilized in a cascade sequence to access highly functionalized quinolines including the core structures of an antiprotozoal agent and the potent topoisomerase inhibitor Tas-103.
Collapse
Affiliation(s)
- Nicholas P Massaro
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Aayushi Chatterji
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
40
|
Liu W, Zhang Y, He J, Yu Y, Yuan J, Ye X, Zhang Z, Xue L, Cao H. Transition-Metal-Free Three-Component Reaction: Additive Controlled Synthesis of Sulfonylated Imidazoles. J Org Chem 2019; 84:11348-11358. [PMID: 31379165 DOI: 10.1021/acs.joc.9b01818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two efficient transition-metal-free highly regioselective pathways for constructing sulfonylated imidazoles via three-component reactions of amidines, ynals, and sodium sulfonates have been developed. The generations of different sulfonylated imidazoles were simply controlled by additives. In addition, this method features environmental friendliness, good functional group tolerance, and high atom economy, which makes it practical.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiaming He
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiajun Yuan
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Xiaoyi Ye
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Liang Xue
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| |
Collapse
|
41
|
Palomba M, Scarcella E, Sancineto L, Bagnoli L, Santi C, Marini F. Synthesis of Spirooxindole Oxetanes Through a Domino Reaction of 3-Hydroxyoxindoles and Phenyl Vinyl Selenone. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Martina Palomba
- Department of Pharmaceutical Sciences; University of Perugia; Via del Liceo, 1 - 06123 Perugia Italy
| | - Elisabetta Scarcella
- Department of Pharmaceutical Sciences; University of Perugia; Via del Liceo, 1 - 06123 Perugia Italy
| | - Luca Sancineto
- Division of Organic Chemistry; Center of Molecular and Macromolecular Studies; Polish academy of Science; Sienkiewicza, 112 90-363 Lodz Poland
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences; University of Perugia; Via del Liceo, 1 - 06123 Perugia Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences; University of Perugia; Via del Liceo, 1 - 06123 Perugia Italy
| | - Francesca Marini
- Department of Pharmaceutical Sciences; University of Perugia; Via del Liceo, 1 - 06123 Perugia Italy
| |
Collapse
|
42
|
Liu Y, Xie P, Li J, Bai WJ, Jiang J. Nickel-Catalyzed Coupling of N-Sulfonyl-1,2,3-triazole with H-Phosphine Oxides: Stereoselective and Site-Selective Synthesis of α-Aminovinylphosphoryl Derivatives. Org Lett 2019; 21:4944-4949. [DOI: 10.1021/acs.orglett.9b01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Jiagen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5580, United States
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
43
|
Han C, Wu W, Chen Z, Pu S. Rhodium‐Catalyzed [5+1]‐Cycloaddition Reactions to Spiro‐Benzo[
e
][1,3]Oxazineindoline Imines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cuifen Han
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
| | - Wenjin Wu
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules Ministry of Education, and College of Chemistry & Chemical EngineeringJiangxi Normal University 99 Ziyang Road, Nanchang Jiangxi 330022 P. R. China
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University 605 Fenglin Road, Nanchang Jiangxi 330013 P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University 605 Fenglin Road, Nanchang Jiangxi 330013 P. R. China
| |
Collapse
|
44
|
Wei S, Yin L, Wang SR, Tang Y. Catalyst-Controlled Chemoselective All-Alkene [2 + 2 + 2] and [2 + 2] Cyclizations of Enamides with Electron-Deficient Alkenes. Org Lett 2019; 21:1458-1462. [DOI: 10.1021/acs.orglett.9b00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Wei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Lei Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Sunewang R. Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|