1
|
Novacek A, Ugaz B, Stephanopoulos N. Templating Peptide Chemistry with Nucleic Acids: Toward Artificial Ribosomes, Cell-Specific Therapeutics, and Novel Protein-Mimetic Architectures. Biomacromolecules 2024; 25:3865-3876. [PMID: 38860980 DOI: 10.1021/acs.biomac.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.
Collapse
Affiliation(s)
- Alexandra Novacek
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Bryan Ugaz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85251, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe Arizona 85251, United States
| |
Collapse
|
2
|
Piemontese E, Herfort A, Perevedentseva Y, Möller HM, Seitz O. Multiphosphorylation-Dependent Recognition of Anti-pS2 Antibodies against RNA Polymerase II C-Terminal Domain Revealed by Chemical Synthesis. J Am Chem Soc 2024; 146:12074-12086. [PMID: 38639141 PMCID: PMC11066871 DOI: 10.1021/jacs.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.
Collapse
Affiliation(s)
- Emanuele Piemontese
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Alina Herfort
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yulia Perevedentseva
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Heiko M. Möller
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Oliver Seitz
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Narayanan RP, Prasad A, Buchberger A, Zou L, Bernal-Chanchavac J, MacCulloch T, Fahmi NE, Yan H, Zhang F, Webber MJ, Stephanopoulos N. High-Affinity Host-Guest Recognition for Efficient Assembly and Enzymatic Responsiveness of DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307585. [PMID: 37849034 PMCID: PMC10922742 DOI: 10.1002/smll.202307585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Indexed: 10/19/2023]
Abstract
The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010 m-1 , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity β-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.
Collapse
Affiliation(s)
- Raghu Pradeep Narayanan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhay Prasad
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Alex Buchberger
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Lei Zou
- Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Julio Bernal-Chanchavac
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Tara MacCulloch
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Nour Eddine Fahmi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University-Newark, Newark, NJ, 07102, USA
| | - Matthew J Webber
- Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
4
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
5
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
7
|
Controllable DNA hybridization by host-guest complexation-mediated ligand invasion. Nat Commun 2022; 13:5936. [PMID: 36209265 PMCID: PMC9547909 DOI: 10.1038/s41467-022-33738-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of nucleic acid hybridization is fundamental for switchable nanostructures and controllable functionalities of nucleic acids in both material developments and biological regulations. In this work, we report a ligand-invasion pathway to regulate DNA hybridization based on host-guest interactions. We propose a concept of recognition handle as the ligand binding site to disrupt Watson-Crick base pairs and induce the direct dissociation of DNA duplex structures. Taking cucurbit[7]uril as the invading ligand and its guest molecules that are integrated into the nucleobase as recognition handles, we successfully achieve orthogonal and reversible manipulation of DNA duplex dissociation and recovery. Moreover, we further apply this approach of ligand-controlled nucleic acid hybridization for functional regulations of both the RNA-cleaving DNAzyme in test tubes and the antisense oligonucleotide in living cells. This ligand-invasion strategy establishes a general pathway toward dynamic control of nucleic acid structures and functionalities by supramolecular interactions.
Collapse
|
8
|
Kankanamalage DVDW, Tran JHT, Beltrami N, Meng K, Zhou X, Pathak P, Isaacs L, Burin AL, Ali MF, Jayawickramarajah J. DNA Strand Displacement Driven by Host-Guest Interactions. J Am Chem Soc 2022; 144:16502-16511. [PMID: 36063395 PMCID: PMC9479067 DOI: 10.1021/jacs.2c05726] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length). Further, for a given input sequence, competing small-molecule guests can serve as effective regulators (with fine and coarse control) of HG-TMSD. To show integration into functional devices, we have incorporated HG-TMSD into machines that control enzyme activity and layered reactions that detect specific microRNA.
Collapse
Affiliation(s)
| | - Jennifer H T Tran
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Noah Beltrami
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Kun Meng
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Pravin Pathak
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Mehnaaz F Ali
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | | |
Collapse
|
9
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Roth M, Seitz O. A Self-immolative Molecular Beacon for Amplified Nucleic Acid Detection*. Chemistry 2021; 27:14189-14194. [PMID: 34516006 PMCID: PMC8597011 DOI: 10.1002/chem.202102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/18/2023]
Abstract
Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iMB) that escapes the one‐target/one‐probe paradigm. The iMB probe includes a photoreductively cleavable N‐alkyl‐picolinium (NAP) linkage within the loop region. A fluorophore at the 5’‐end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP‐linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo‐induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo‐reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.
Collapse
Affiliation(s)
- Magdalena Roth
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Liu Y, Zhang Y, Yu H, Liu Y. Cucurbituril‐Based Biomacromolecular Assemblies. Angew Chem Int Ed Engl 2020; 60:3870-3880. [DOI: 10.1002/anie.202009797] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Chernikova EY, Berdnikova DV. Cucurbiturils in nucleic acids research. Chem Commun (Camb) 2020; 56:15360-15376. [PMID: 33206072 DOI: 10.1039/d0cc06583h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past ten years, the importance of cucurbiturils (CB[n]) as macrocyclic hosts in supramolecular assemblies with various types of natural and synthetic nucleic acids (NAs) has increased explosively. As a component of such systems, CB[n] macrocycles can play a wide spectrum of roles from drug and gene delivery vehicles to catalysts/inhibitors of biochemical reactions and even building blocks for NA-based materials. The aim of this highlight article is to describe the development of the CB[n] applications in nucleic acids research and to outline the current situation and perspectives of this fascinating synergistic combination of supramolecular chemistry of CB[n] and NAs.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, Russia.
| | | |
Collapse
|
15
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA‐Scaffolded High‐Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gunnar Bachem
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Dongyoon Kim
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Felix Fuchsberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Oliver Seitz
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
16
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020; 59:21016-21022. [PMID: 32749019 PMCID: PMC7693190 DOI: 10.1002/anie.202006880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Indexed: 11/17/2022]
Abstract
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50 =300 nM) for specific internalization by langerin-expressing cells.
Collapse
Affiliation(s)
- Gunnar Bachem
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Dongyoon Kim
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Hannes Baukmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Felix Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| |
Collapse
|
17
|
Peri-Naor R, Pode Z, Lahav-Mankovski N, Rabinkov A, Motiei L, Margulies D. Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. J Am Chem Soc 2020; 142:15790-15798. [PMID: 32786755 DOI: 10.1021/jacs.0c05644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties. For example, the facile device integration was used to attach the well-known anthracene-boronic acid (An-BA) probe to a biomimetic DNA scaffold and consequently, to use the unique photophysical properties of An-BA to improve glycoform differentiation. In addition, the noncovalent assembly enabled us to modify the sensor with a trinitrilotriacetic acid (tri-NTA)-Ni2+ complex, which endows it with selectivity toward a hexa-histidine tag (His-tag). The selective responses of the system to diverse His-tag-labeled proteins further demonstrate the potential applicability of such sensors and validate the mechanism underlying their function.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aharon Rabinkov
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 2020; 219:121213. [PMID: 32887115 DOI: 10.1016/j.talanta.2020.121213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
The abuse of adamantanamine (ADA) and its derivatives as veterinary drugs in the poultry industry could cause severe health problems for humans. It is of great need to develop a rapid, cheap and ultrasensitive method for ADA detection. In this study, a sensitive conical nanochannel sensor was established for the rapid quantitative detection of ADA with the distinctive design of the host-guest competition. The sensor was constructed by functionalizing the nanochannel surface with p-toluidine and was then assembled with Cucurbit [7]uril (CB [7]). When ADA is added, it could occupy the cavity of CB [7] due to the host-guest competition and makes CB [7] to release from the CB [7]-p-toluidine complex, resulting in a distinct change of hydrophobicity of the nanochannel, which could be determined by the ionic current. Under the optimal conditions, the strategy permitted sensitive detection of ADA in a linear range of 10-1000 nM. The nanochannel based ADA sensing platform showed both high sensitivity and excellent reproducibility and the limit of detection was 4.54 nM. For the first time, the rapid and sensitive recognition of an illegal medicine was realized based on the host-guest competition method with the nanochannel system and the principle and feasibility of this method were described at length. This strategy provides a simple, reliable, and effective way to apply host-guest system in the development of nanochannel sensor for small-molecule drug detection.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingfeng Yang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiping Lv
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kangjin Song
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Abel AS, Zenkov IS, Averin AD, Cheprakov AV, Bessmertnykh-Lemeune AG, Orlinson BS, Beletskaya IP. Tuning the Luminescent Properties of Ruthenium(II) Amino-1,10-Phenanthroline Complexes by Varying the Position of the Amino Group on the Heterocycle. Chempluschem 2020; 84:498-503. [PMID: 31943904 DOI: 10.1002/cplu.201900206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Indexed: 01/29/2023]
Abstract
Eight 1,10-phenanthrolines bearing one or two 2-(1-adamantyloxy)ethylamino substituents attached to different positions of the heterocyclic core were prepared according to SN Ar or palladium-catalyzed amination reactions. Their reaction with cis-Ru(bpy)2 Cl2 (bpy=2,2'-bipyridine) was investigated and Ru(bpy)2 (L)(PF6 )2 (phen=1,10-phenanthroline) (L=amino-substituted 1,10-phenanthroline) complexes were obtained in good yields. The electronic structure and emissive properties of these complexes are strongly dependent on the position of the amino substituent in the heterocycle. Emission bands of the complexes bearing 2- and 4-substituted 1,10-phenanthroline ligands are red-shifted (up to 56 nm) and less intense compared to that of the parent [Ru(phen)(bpy)2 ](PF6 )2 . In contrast, the introduction of the substituent in 3- or 5-position of 1,10-phenanthroline ring induces only small decrease of luminescence and the brightness of the complex with the 3-substituted ligand is comparable to that of the parent complex.
Collapse
Affiliation(s)
- Anton S Abel
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Ilya S Zenkov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | - Alexei D Averin
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| | - Andrey V Cheprakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia
| | | | - Boris S Orlinson
- Volgograd State Technical University, Prosp. Lenina, 28, Volgograd, 400131, Russia
| | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow, 119991, Russia.,Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Pr. 31, Moscow, 119071, Russia
| |
Collapse
|
20
|
Loescher S, Walther A. Suprakolloidale Selbstorganisation von bivalenten Janus‐3D‐DNA‐Origami über programmierbare, multivalente Wirt/Gast‐Wechselwirkungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sebastian Loescher
- A3BMS Lab Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Deutschland
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Strasse 21 79104 Freiburg Deutschland
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Kçhler-Allee 105 79110 Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg Albertstrasse 19 79104 Freiburg Deutschland
| | - Andreas Walther
- A3BMS Lab Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Deutschland
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Strasse 21 79104 Freiburg Deutschland
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Kçhler-Allee 105 79110 Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg Albertstrasse 19 79104 Freiburg Deutschland
| |
Collapse
|
21
|
Loescher S, Walther A. Supracolloidal Self-Assembly of Divalent Janus 3D DNA Origami via Programmable Multivalent Host/Guest Interactions. Angew Chem Int Ed Engl 2020; 59:5515-5520. [PMID: 31814217 PMCID: PMC7154728 DOI: 10.1002/anie.201911795] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/26/2019] [Indexed: 01/17/2023]
Abstract
We introduce divalent 3D DNA origami cuboids as truly monodisperse colloids and harness their ability for precision functionalization with defined patches and defined numbers of supramolecular binding motifs. We demonstrate that even adamantane/β-cyclodextrin host/guest inclusion complexes of moderate association strength can induce efficient supracolloidal fibrillization at high dilution of the 3D DNA Origami as a result of cooperative multivalency. We show details on the assembly of Janus and non-Janus 3D DNA origami into supracolloidal homo- and heterofibrils with respect to multivalency effects, electrostatic screening, and stoichiometry. We believe that the merger of 3D DNA origami with colloidal self-assembly and supramolecular motifs provides new synergies at the interface of these disciplines to better understand multivalency effects, to promote structural complexity, and add non-DNA assembling and switching mechanisms to DNA nanoscience.
Collapse
Affiliation(s)
- Sebastian Loescher
- ABMS LabInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Kçhler-Allee 10579110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstrasse 1979104FreiburgGermany
| | - Andreas Walther
- ABMS LabInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Kçhler-Allee 10579110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstrasse 1979104FreiburgGermany
| |
Collapse
|
22
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
23
|
Yeldell SB, Seitz O. Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem Soc Rev 2020; 49:6848-6865. [DOI: 10.1039/d0cs00518e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-programmed self-assembly provides multivalent nucleic acid–ligand constructs used as tailor-made probes for unravelling and exploiting the mechanisms of multivalency-enhanced interactions on protein receptors.
Collapse
Affiliation(s)
- Sean B. Yeldell
- Department of Chemistry
- Humboldt-Universität zu Berlin
- Brook-Taylor-Str. 2
- 12489 Berlin
- Germany
| | - Oliver Seitz
- Department of Chemistry
- Humboldt-Universität zu Berlin
- Brook-Taylor-Str. 2
- 12489 Berlin
- Germany
| |
Collapse
|
24
|
Sasmal R, Das Saha N, Schueder F, Joshi D, Sheeba V, Jungmann R, Agasti SS. Dynamic host-guest interaction enables autonomous single molecule blinking and super-resolution imaging. Chem Commun (Camb) 2019; 55:14430-14433. [PMID: 31737873 DOI: 10.1039/c9cc07153a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic host-guest complexes are inherently dynamic as they employ weak and reversible noncovalent interactions for their recognition processes. We strategically exploited dynamic supramolecular recognition between fluorescently labeled guest molecules to complementary cucurbit[7]uril hosts to obtain stochastic switching between fluorescence ON- and OFF-states, enabling PAINT-based nanoscopic imaging in cells and tissues.
Collapse
Affiliation(s)
- Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chimeric protein probes for C5a receptors through fusion of the anaphylatoxin C5a core region with a small-molecule antagonist. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9513-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
27
|
Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics 2019; 9:3262-3279. [PMID: 31244953 PMCID: PMC6567960 DOI: 10.7150/thno.31885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The elegant properties of deoxyribonucleic acid (DNA), such as accurate recognition, programmability and addressability, make it a well-defined and promising material to develop various molecular probes, drug delivery carriers and theranostic systems for cancer diagnosis and therapy. In addition, supramolecular chemistry, also termed "chemistry beyond the molecule", is a promising research field that aims to develop functional chemical systems by bringing discrete molecular components together in a manner that invokes noncovalent intermolecular forces, such as hydrophobic interaction, hydrogen bonding, metal coordination, and shape or size matching. Thus, DNA-supramolecule conjugates (DSCs) combine accurate recognition, programmability and addressability of DNA with the greater toolbox of supramolecular chemistry. This review discusses the applications of DSCs in sensing, protein activity regulation, cell behavior manipulation, and biomedicine.
Collapse
Affiliation(s)
- Kun Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai (P. R. China)
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|