1
|
Li H, Goldfuss B, Dickschat JS. On the Role of Hydrogen Migrations in the Taxadiene System. Angew Chem Int Ed Engl 2025:e202422788. [PMID: 39749413 DOI: 10.1002/anie.202422788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Taxa-4,11-diene is made by the taxa-4,11-diene synthase (TxS) from Taxus brevifolia. The unique reactivity of the taxane system is characterised by long distance hydrogen migrations in the biosynthesis. This study demonstrates that selective long range hydrogen migrations also play a role in the high energy process of the EI-MS fragmentation of taxa-4,11-diene. A TxS enzyme variant was generated that produces cyclophomactene, a compound that is formed through a concerted process involving a long range proton shift and a ring closure that can also be described as the addition of a methylcarbinyl cation to an olefin. Based on a previous computational study the cyclisation mechanism towards taxa-4,11-diene was suggested to involve two long distance proton migrations instead of one direct transfer. A substrate analog with a shifted double bond was converted with TxS to obtain experimental evidence for this proposal.
Collapse
Affiliation(s)
- Heng Li
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Xu H, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Biosynthesis of the Non-Canonical C 17 Sesquiterpenoids Chlororaphen A and B from Pseudomonas Chlororaphis. Angew Chem Int Ed Engl 2024; 63:e202412040. [PMID: 39023217 DOI: 10.1002/anie.202412040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Liu JY, Lin FL, Taizoumbe KA, Lv JM, Wang YH, Wang GQ, Chen GD, Yao XS, Hu D, Gao H, Dickschat JS. A Functional Switch Between Asperfumene and Fusicoccadiene Synthase and Entrance to Asperfumene Biosynthesis through a Vicinal Deprotonation-Reprotonation Process. Angew Chem Int Ed Engl 2024; 63:e202407895. [PMID: 38949843 DOI: 10.1002/anie.202407895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.
Collapse
Affiliation(s)
- Jing-Yuan Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
4
|
Tabekoueng GB, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Skeletal Rearrangements in the Enzyme-Catalysed Biosynthesis of Coral-Type Diterpenes from Chitinophaga pinensis. Angew Chem Int Ed Engl 2024:e202413860. [PMID: 39195349 DOI: 10.1002/anie.202413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Two diterpene synthases from the bacterium Chitinophaga pinensis were characterised. The first enzyme mainly produced the rearranged diterpene palmatol, a compound known from octocorals, while the second enzyme made the new coral-type eunicellane chitinol. The mechanisms of both enzymes were deeply studied through isotopic labelling experiments, DFT calculations, and with a substrate analog containing a saturated double bond, resulting in the formation of derailment products that gave additional insights into the nature of the cyclisation cascade intermediates. The formation of coral-type diterpenes poses interesting questions on the functions of these compounds in organisms as different as bacteria and corals.
Collapse
Affiliation(s)
- Georges B Tabekoueng
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
6
|
Taizoumbe KA, Goldfuss B, Dickschat JS. The Diterpenoid Substrate Analogue 19-nor-GGPP Reveals Pronounced Methyl Group Effects in Diterpene Cyclisations. Angew Chem Int Ed Engl 2024; 63:e202318375. [PMID: 38117607 DOI: 10.1002/anie.202318375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
The substrate analogue 19-nor-geranylgeranyl diphosphate (19-nor-GGPP) was synthesised and incubated with 20 diterpene synthases, resulting in the formation of diterpenoids in all cases. A total of 23 different compounds were isolated from these enzyme reactions and structurally characterised, if possible including the experimental determination of absolute configurations through a stereoselective deuteration approach. In several cases the missing 19-Me group in the substrate analogue resulted in opening of completely new reaction paths towards compounds with novel skeletons. DFT calculations were applied to gain a deeper understanding of these observed methyl group effects in diterpene biosynthesis.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Huang ZY, Taizoumbe KA, Liang C, Goldfuss B, Xu JH, Dickschat JS. Spiroluchuene A Synthase: A Cyclase from Aspergillus luchuensis Forming a Spirotetracyclic Diterpene. Angew Chem Int Ed Engl 2023; 62:e202315659. [PMID: 37962519 DOI: 10.1002/anie.202315659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
The diterpene synthase AlTS was identified from Aspergillus luchuensis. AlTS catalyses the formation of the diterpene hydrocarbon spiroluchuene A, which exhibits a novel skeleton characterised by a spirocyclic ring system. The cyclisation mechanism towards this compound was elucidated through isotopic labelling experiments in conjunction with DFT calculations and metadynamic simulations. The biosynthetic intermediate luchudiene, besides the derivative spiroluchuene B, was captured from an enzyme variant obtained through site-directed mutagenesis. With its 10-membered ring luchudiene is structurally related to germacrenes and can undergo a Cope rearrangement to luchuelemene.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Kizerbo A Taizoumbe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Chengqin Liang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Gu B, Goldfuss B, Schnakenburg G, Dickschat JS. Subrutilane-A Hexacyclic Sesterterpene from Streptomyces subrutilus. Angew Chem Int Ed Engl 2023; 62:e202313789. [PMID: 37846897 DOI: 10.1002/anie.202313789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Mining of a terpene synthase from Streptomyces subrutilus resulted in the identification of the hexacyclic sesterterpene subrutilane, besides eight pentacyclic side products. Subrutilane represents the first case of a saturated sesterterpene hydrocarbon. Its structure, including the absolute configuration, was unambiguously determined through X-ray crystallographic analysis and stereoselective deuteration. The cyclisation mechanism to subrutilane and its side products was investigated in all detail by isotopic labelling experiments and DFT calculations. The subrutilane synthase (SrS) also converted (2Z)-GFPP into one major product. Additional compounds were obtained from the substrate analogues (7R)-6,7-dihydro-GFPP and (2Z,7R)-6,7-dihydro-GFPP with blocked reactivity at the C6-C7 bond. Interestingly, the early steps of the cyclisation cascade with (2Z)-GFPP and the saturated substrate analogues were analogous to those of GFPP, but then deviations from the natural cyclisation mode occur.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Taizoumbe KA, Steiner ST, Dickschat JS. Mechanistic Characterisation of Collinodiene Synthase, a Diterpene Synthase from Streptomyces collinus. Chemistry 2023; 29:e202302469. [PMID: 37579200 DOI: 10.1002/chem.202302469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
10
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
11
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022; 61:e202211054. [PMID: 36066489 PMCID: PMC9826473 DOI: 10.1002/anie.202211054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/11/2023]
Abstract
Two analogues of the diterpene precursor geranylgeranyl diphosphate with shifted double bonds, named iso-GGPP I and iso-GGPP II, were enzymatically converted with twelve diterpene synthases from bacteria, fungi and protists. The changed reactivity in the substrate analogues resulted in the formation of 28 new diterpenes, many of which exhibit novel skeletons.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
12
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heng Li
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institute for Organic Chemistry and Biochemistry GERMANY
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institute for Organic Chemistry and Biochemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
13
|
Abstract
All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene1. This approach is fundamentally different from the biosynthesis of short-chain (C10–C25) terpenes that are formed from polyisoprenyl diphosphates2–4. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature. Chimeric triterpene synthases are identified that catalyse non-squalene-dependent triterpene biosynthesis.
Collapse
|
14
|
Liang J, Merrill AT, Laconsay CJ, Hou A, Pu Q, Dickschat JS, Tantillo DJ, Wang Q, Peters RJ. Deceptive Complexity in Formation of Cleistantha-8,12-diene. Org Lett 2022; 24:2646-2649. [PMID: 35385666 PMCID: PMC9040526 DOI: 10.1021/acs.orglett.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A barley diterpene synthase (HvKSL4) was found to produce (14S)-cleistantha-8,12-diene (1). Formation of the nearly planar cyclohexa-1,4-diene configuration leaves the ring poised for aromatization, but necessitates a deceptively complicated series of rearrangements steered through a complex energetic landscape, as elucidated here through quantum chemical calculations and labeling studies.
Collapse
Affiliation(s)
- Jin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy T Merrill
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms Universität Bonn, 53121 Bonn, Germany
| | - Qingyu Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms Universität Bonn, 53121 Bonn, Germany
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Mechanistic investigations of hirsutene biosynthesis catalyzed by a chimeric sesquiterpene synthase from Steccherinum ochraceum. Fungal Genet Biol 2022; 161:103700. [DOI: 10.1016/j.fgb.2022.103700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
16
|
Quan Z, Hou A, Goldfuss B, Dickschat JS. Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus. Angew Chem Int Ed Engl 2022; 61:e202117273. [PMID: 35072966 PMCID: PMC9303889 DOI: 10.1002/anie.202117273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 01/06/2023]
Abstract
The multiproduct chimeric sesterterpene synthase AcAS from Aspergillus calidoustus yielded spirocyclic calidoustene, which exhibits a novel skeleton, besides five known sesterterpenes. The complex cyclisation mechanism to all six compounds was investigated by isotopic labelling experiments in combination with DFT calculations. Chemically synthesised 8-hydroxyfarnesyl diphosphate was converted with isopentenyl diphosphate and AcAS into four oxygenated sesterterpenoids that structurally resemble cytochrome P450 oxidation products of the sesterterpene hydrocarbons. Protein engineering of AcAS broadened the substrate scope and gave significantly improved enzyme yields.
Collapse
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Anwei Hou
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
17
|
|
18
|
Quan Z, Hou A, Goldfuss B, Dickschat JS. Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcldAS from Aspergillus calidoustus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyang Quan
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic Chemistry GERMANY
| | - Anwei Hou
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Organic Chemistry GERMANY
| | - Bernd Goldfuss
- University of Cologne: Universitat zu Koln Organic Chemistry GERMANY
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institute for Organic Chemistry and Biochemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
19
|
Li H, Dickschat JS. Isotopic labelling experiments and enzymatic preparation of iso-casbenes with casbene synthase from Ricinus communis. Org Chem Front 2022. [DOI: 10.1039/d1qo01707a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Casbene synthase was used to convert GGPP isomers into iso-casbenes. The enzyme mechanism and absolute configurations were investigated through stereoselective deuteration. 13C-labellings gave insights into the mass spectrometric fragmentation.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
20
|
Hou A, Dickschat JS. The EI‐MS Fragmentation Mechanisms of the Bacterial Diterpenes Polytrichastrene A and Wanju‐2,5‐diene. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Institute of Microbiology Jiangxi Academy of Sciences Changdong Road No. 7777 330096 Nanchang China
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
21
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10‐Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baofu Xu
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California-Davis Davis CA 95616 USA
| | - Jeffrey D. Rudolf
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
22
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10-Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021; 60:23159-23163. [PMID: 34378291 PMCID: PMC8511055 DOI: 10.1002/anie.202109641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/05/2022]
Abstract
The eunicellane diterpenoids are a unique family of natural products seen in marine organisms, plants, and bacteria. We used a series of biochemical, bioinformatics, and theoretical experiments to investigate the mechanism of the first diterpene synthase known to form the eunicellane skeleton. Deuterium labeling studies and quantum chemical calculations support that Bnd4, from Streptomyces sp. (CL12-4), forms the 6,10-bicyclic skeleton through a 1,10-cyclization, 1,3-hydride shift, and 1,14-cyclization cascade. Bnd4 also demonstrated sesquiterpene cyclase activity and the ability to prenylate small molecules. Bnd4 possesses a unique D94 NxxxD motif and mutation experiments confirmed an absolute requirement for D94 as well as E169.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA, 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
23
|
Xu H, Schotte C, Cox RJ, Dickschat JS. Stereochemical characterisation of the non-canonical α-humulene synthase from Acremonium strictum. Org Biomol Chem 2021; 19:8482-8486. [PMID: 34533184 DOI: 10.1039/d1ob01769a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-canonical fungal α-humulene synthase was investigated through isotopic labelling experiments for its stereochemical course regarding inversion or retention at C-1, the face selectivity at C-11, and the stereoselectivity of the final deprotonation. A new and convenient desymmetrisation strategy was developed to enable a full stereochemical analysis of the catalysed steps to the achiral α-humulene product from stereoselectively labelled farnesyl diphosphate.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| | - Carsten Schotte
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Russell J Cox
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
24
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
25
|
Li G, Guo Y, Dickschat JS. Diterpen‐Biosynthese in
Catenulispora acidiphila
: Über den Mechanismus der Catenul‐14‐en‐6‐ol‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Geng Li
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
26
|
Li G, Guo YW, Dickschat JS. Diterpene Biosynthesis in Catenulispora acidiphila: On the Mechanism of Catenul-14-en-6-ol Synthase. Angew Chem Int Ed Engl 2020; 60:1488-1492. [PMID: 33169911 PMCID: PMC7839432 DOI: 10.1002/anie.202014180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Indexed: 11/15/2022]
Abstract
A new diterpene synthase from the actinomycete Catenulispora acidiphila was identified and the structures of its products were elucidated, including the absolute configurations by an enantioselective deuteration approach. The mechanism of the cationic terpene cyclisation cascade was deeply studied through the use of isotopically labelled substrates and of substrate analogues with partially blocked reactivity, resulting in derailment products that gave further insights into the intermediates along the cascade. Their chemistry was studied, leading to the biomimetic synthesis of a diterpenoid analogue of a brominated sesquiterpene known from the red seaweed Laurencia microcladia.
Collapse
Affiliation(s)
- Geng Li
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.,State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
27
|
Hou A, Dickschat JS. On the mass spectrometric fragmentations of the bacterial sesterterpenes sestermobaraenes A-C. Beilstein J Org Chem 2020; 16:2807-2819. [PMID: 33281984 PMCID: PMC7684692 DOI: 10.3762/bjoc.16.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
A 13C-labelling was introduced into each individual carbon of the recently discovered sestermobaraenes by the enzymatic conversion of the correspondingly 13C-labelled isoprenyl diphosphate precursors with the sestermobaraene synthase from Streptomyces mobaraensis. The main compounds sestermobaraenes A, B, and C were analysed by gas chromatography-mass spectrometry (GC-MS), allowing for a deep mechanistic investigation of the electron impact mass spectrometry (EIMS) fragmentation reactions of these sesterterpene hydrocarbons.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53127 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53127 Bonn, Germany
| |
Collapse
|
28
|
Quan Z, Dickschat JS. Biosynthetic Gene Cluster for Asperterpenols A and B and the Cyclization Mechanism of Asperterpenol A Synthase. Org Lett 2020; 22:7552-7555. [DOI: 10.1021/acs.orglett.0c02748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
29
|
Quan Z, Dickschat JS. On the mechanism of ophiobolin F synthase and the absolute configuration of its product by isotopic labelling experiments. Org Biomol Chem 2020; 18:6072-6076. [PMID: 32725018 DOI: 10.1039/d0ob01470b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ophiobolin F synthase homolog was discovered from Aspergillus calidoustus CBS121601. The cyclisation mechanism of this terpene synthase was investigated by extensive isotopic labelling experiments and the absolute configuration of its product ophiobolin F was elucidated by enantioselective deuteration.
Collapse
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
30
|
Liu YP, Dai Q, Wang WX, He J, Li ZH, Feng T, Liu JK. Psathyrins: Antibacterial Diterpenoids from Psathyrella candolleana. JOURNAL OF NATURAL PRODUCTS 2020; 83:1725-1729. [PMID: 32330030 DOI: 10.1021/acs.jnatprod.0c00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two skeletally novel tetracyclic diterpenoids, psathyrins A (1) and B (2), have been characterized from cultures of the basidiomycete Psathyrella candolleana. Their structures including absolute configurations were established by means of spectroscopic methods, as well as ECD calculations. They possess a novel 5/5/4/6-fuesd ring system, for which the biosynthetic pathway is proposed. Compounds 1 and 2 inhibited the growth of Staphylococcus aureus and Salmonella enterica.
Collapse
Affiliation(s)
- Ya-Pei Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Quan Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research, Leibniz University Hannover, Hannover 30167, Germany
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| |
Collapse
|
31
|
Reddy GK, Leferink NGH, Umemura M, Ahmed ST, Breitling R, Scrutton NS, Takano E. Exploring novel bacterial terpene synthases. PLoS One 2020; 15:e0232220. [PMID: 32353014 PMCID: PMC7192455 DOI: 10.1371/journal.pone.0232220] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Terpenes are the largest class of natural products with extensive structural diversity and are widely used as pharmaceuticals, herbicides, flavourings, fragrances, and biofuels. While they have mostly been isolated from plants and fungi, the availability and analysis of bacterial genome sequence data indicates that bacteria also possess many putative terpene synthase genes. In this study, we further explore this potential for terpene synthase activity in bacteria. Twenty two potential class I terpene synthase genes (TSs) were selected to represent the full sequence diversity of bacterial synthase candidates and recombinantly expressed in E. coli. Terpene synthase activity was detected for 15 of these enzymes, and included mono-, sesqui- and diterpene synthase activities. A number of confirmed sesquiterpene synthases also exhibited promiscuous monoterpene synthase activity, suggesting that bacteria are potentially a richer source of monoterpene synthase activity then previously assumed. Several terpenoid products not previously detected in bacteria were identified, including aromandendrene, acora-3,7(14)-diene and longiborneol. Overall, we have identified promiscuous terpene synthases in bacteria and demonstrated that terpene synthases with substrate promiscuity are widely distributed in nature, forming a rich resource for engineering terpene biosynthetic pathways for biotechnology.
Collapse
Affiliation(s)
- Gajendar Komati Reddy
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tsukuba, Ibaraki, Japan
| | - Syed T. Ahmed
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Lin FL, Lauterbach L, Zou J, Wang YH, Lv JM, Chen GD, Hu D, Gao H, Yao XS, Dickschat JS. Mechanistic Characterization of the Fusicoccane-type Diterpene Synthase for Myrothec-15(17)-en-7-ol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| |
Collapse
|
33
|
Rinkel J, Dickschat JS. Characterization of Micromonocyclol Synthase from the Marine Actinomycete Micromonospora marina. Org Lett 2019; 21:9442-9445. [DOI: 10.1021/acs.orglett.9b03654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
34
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. An Unusual Skeletal Rearrangement in the Biosynthesis of the Sesquiterpene Trichobrasilenol from Trichoderma. Angew Chem Int Ed Engl 2019; 58:15046-15050. [PMID: 31418991 PMCID: PMC7687074 DOI: 10.1002/anie.201907964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Indexed: 11/08/2022]
Abstract
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies.
Collapse
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Kazuya Teramoto
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Makoto Nishiyama
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
35
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. Eine ungewöhnliche Gerüstumlagerung in der Biosynthese des Sesquiterpens Trichobrasilenol aus Trichoderma. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Kazuya Teramoto
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Makoto Nishiyama
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
36
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
37
|
Abstract
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA-related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
38
|
Rinkel J, Dickschat JS. Mechanistic investigations on multiproduct β-himachalene synthase from Cryptosporangium arvum. Beilstein J Org Chem 2019; 15:1008-1019. [PMID: 31164939 PMCID: PMC6541374 DOI: 10.3762/bjoc.15.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022] Open
Abstract
A bacterial terpene synthase from Cryptosporangium arvum was characterised as a multiproduct β-himachalene synthase. In vitro studies showed not only a high promiscuity with respect to its numerous sesquiterpene products, including the structurally demanding terpenes longicyclene, longifolene and α-longipinene, but also to its substrates, as additional activity was observed with geranyl- and geranylgeranyl diphosphate. In-depth mechanistic investigations using isotopically labelled precursors regarding the stereochemical course of both 1,11-cyclisation and 1,3-hydride shift furnished a detailed catalytic model suggesting the molecular basis of the observed low product selectivity. The enzyme’s synthetic potential was also exploited in the preparation of sesquiterpene isotopomers, which provided insights into their EIMS fragmentation mechanisms.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
39
|
Rinkel J, Dickschat JS. Addressing the Chemistry of Germacrene A by Isotope Labeling Experiments. Org Lett 2019; 21:2426-2429. [PMID: 30859837 DOI: 10.1021/acs.orglett.9b00725] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the central role of germacrene A in sesquiterpene biosynthesis and its widespread occurrence in nature, its complete NMR characterization is still pending. This problem was solved through enzymatic preparation of germacrene A isotopomers that allowed for a full signal assignment to all three conformers. The obtained materials gave insights into the stereochemical course of the Cope rearrangement to β-elemene and uncovered the Cope rearrangement as a new EI-MS fragmentation reaction.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| |
Collapse
|
40
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as vlasoulamine A from Vladimiria souliei.
Collapse
|