1
|
Feng L, Hua X, Shang J, Feng Y, Yuan C, Liu Z, Zhang HL, Shao X. Synthesis, Structures, and Properties for P III-Doped Hetero-Buckybowls and Their Phosphonium Salts. Chemistry 2024; 30:e202402977. [PMID: 39177072 DOI: 10.1002/chem.202402977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Doping polycyclic aromatic hydrocarbons with heteroatoms enables manipulation of their electronic structures. Herein, the structures and properties of phosphorus (P) doped heterosumanenes (HSEs) are regulated by varying the valence states of P-dopant. The phosphine sulfide (PV) and chalcogens (S, Se, Te) co-doped HSEs (1-3) are reduced to trivalent phosphorus (PIII) doped analogues 4-6. Then, the PIII-dopants on 4-6 are converted to phosphonium salts (R4P+), giving 7-9. The valence states of P-dopant show great influence on molecular geometries and electronic structures. Taking P and S co-doped HSEs as example, bowl-depths increase in the order of 1 (PV)<7 (R4P+)<4 (PIII), and the HOMO energy levels and HOMO-LUMO gaps increase to be 7<1<4. Consistent with the theoretical calculation, the first oxidation potentials decrease and the absorption/emission bands show blue shift from 7 to 1 to 4. The transformation of PV to PIII leads to large variations on the coordination with Ag+, owing to the alteration of coordination site from P=S to PIII. The phosphonium salts show ring-opening of phosphole rings under electrochemical reduction. It is found that chalcogen atoms play pivotal roles on coordination patterns of coordination complexes and the conversion rates of ring-opening reactions.
Collapse
Affiliation(s)
- Lijun Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Jihai Shang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Yawei Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui, Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Feng L, Hua X, Shang J, Shao X. Coordination complexes of P III-doped heterobuckybowls and their applications in catalysis. Org Biomol Chem 2024. [PMID: 39601649 DOI: 10.1039/d4ob01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Doping the π-frameworks of polycyclic aromatic hydrocarbons (PAHs) with main-group elements is a powerful strategy to manipulate optoelectronic properties. Herein, the benzylic carbons of π-bowl sumanene are replaced with chalcogens (S, Se, and Te) and trivalent phosphorus (PIII), affording a series of PIII-doped heterosumanenes (HSEs). The lone-pair electrons of the PIII-dopant endow these HSEs with pronounced affinity toward transition metals (Au+, Pt2+, and Pd2+). Accordingly, nine coordination complexes were synthesized to exhibit diverse coordination patterns contingent upon the metal ions and chalcogen atoms on HSEs. For the first time, we proved that the Pd2+ complexes of these HSEs are promising catalysts for the Suzuki-Miyaura coupling reaction of aryl chlorides.
Collapse
Affiliation(s)
- Lijun Feng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China.
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China.
| | - Jihai Shang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China.
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China.
| |
Collapse
|
3
|
Szeląg D, Cyniak JS, Ażgin J, Wagner J, Lindner M, Wróblewski W, Kasprzak A. Metal cations recognition by bowl-shaped N-pyrrolic polycyclic aromatic hydrocarbons. Chem Commun (Camb) 2024; 60:10488-10491. [PMID: 39118502 DOI: 10.1039/d4cc02586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bowl-shaped, nitrogen-doped polycyclic aromatic hydrocarbons were examined for the first time as molecular receptors for the recognition of metal cations. Potentiometric and spectrofluorimetric assays, supported with density functional theory computations, revealed that the title compounds recognise metal cations with a special focus on caesium (Cs+) cations.
Collapse
Affiliation(s)
- Daria Szeląg
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Joachim Ażgin
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Jakub Wagner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wojciech Wróblewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
4
|
Xia Z, Wang W, Zhang G. Formation of Nitrogen-Doped Positively Curved Molecules by π-Extension. Org Lett 2024; 26:3901-3905. [PMID: 38666661 DOI: 10.1021/acs.orglett.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two nitrogen-doped positively curved aromatic molecules bearing doubly fused pentagonal rings were synthesized and characterized. Crystallographic analysis confirms the formation of a bowl-shaped structure, which is induced by the fusion of adjacent pentagons to the rigid aromatic planes. Both compounds demonstrate good photoluminescence. These electron-rich bowl-shaped molecules can associate with C60 to form complexes in 2:1 ratio in toluene with different association constants depending on the molecular dimension of the hosts.
Collapse
Affiliation(s)
- Zhen Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Weifan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
5
|
Kasprzak A. Supramolecular Chemistry of Sumanene. Angew Chem Int Ed Engl 2024; 63:e202318437. [PMID: 38231540 DOI: 10.1002/anie.202318437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Sumanene is a buckybowl molecule that is continuously attracting the attention of the scientific community because of its unique geometrical and physicochemical properties. This Minireview systematically summarizes advances and considerations regarding the applied supramolecular chemistry of sumanene. This work highlights the major fields in which potential or real applications of sumanene molecule have been reported to date, such as the design of sumanene-containing functional supramolecular materials and architectures, sumanene-based drug-delivery systems, or sumanene-tethered ion-selective molecular receptors. An assessment of the current status in the applied supramolecular chemistry of sumanene is provided, together with an emphasis on the key advances being made. Discussion on those milestones that are still to be achieved within this emerging field is also provided.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664, Warsaw, Poland
| |
Collapse
|
6
|
Wu L, Li Y, Hua X, Ye L, Yuan C, Liu Z, Zhang HL, Shao X. Radical Cation Salts of Hetera-Buckybowls: Polar Crystals, Negative Thermal Expansion and Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202319587. [PMID: 38226832 DOI: 10.1002/anie.202319587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.
Collapse
Affiliation(s)
- Lingxi Wu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Yecheng Li
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Lei Ye
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
7
|
Qiu ZL, Cheng Y, Zeng Q, Wu Q, Zhao XJ, Xie RJ, Feng L, Liu K, Tan YZ. Synthesis and Interlayer Assembly of a Graphenic Bowl with Peripheral Selenium Annulation. J Am Chem Soc 2023; 145:3289-3293. [PMID: 36745399 DOI: 10.1021/jacs.2c12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pentagonal cyclization at the bay positions of armchair-edged graphenic cores can build molecular bowls without the destruction of hexagonal lattices. However, this synthesis remains challenging due to unfavorable strain and the multiple reactions required. Here, we show that a new type of graphenic molecular bowl with a depth of 1.7 Å and a diameter of 1.2 nm is constructed by sextuple Se annulation at the bay positions of armchair-edged hexa-peri-hexabenzocoronene. This graphenic bowl is functionalized with phenylseleno groups that stack into a discrete bilayer dimer in solution. Such a dimer exhibits high stability and survives in the gas phase after laser ablation. Strikingly, the asymmetric one-dimensional supramolecular columns of graphenic bowl with coherent stacking configuration are observed in the solid state, which results in a strong second harmonic generation with prominent polarization dependence. Our findings present a concise synthesis of a giant molecular bowl with a graphenic core and demonstrate the unique supramolecular assembly of extended graphenic bowls.
Collapse
Affiliation(s)
- Zhen-Lin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Cheng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Jie Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - LiuBin Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Wu J, Zhang G. Periphery‐Core Strategy to Access a Bowl‐Shaped Molecule Bearing Multiple Heteroatoms. Angew Chem Int Ed Engl 2022; 61:e202208061. [DOI: 10.1002/anie.202208061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jianrong Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| |
Collapse
|
9
|
Wu J, Zhang G. Periphery‐Core Strategy to Access a Bowl‐Shaped Molecule Bearing Multiple Heteroatoms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianrong Wu
- Nanjing Forestry University College of Chemical Engineering CHINA
| | - Gang Zhang
- Nanjing Forestry University College of Chemical Engineering Longpan Road 159 210037 Nanjing CHINA
| |
Collapse
|
10
|
Shang J, Wang R, Yuan C, Liu Z, Zhang H, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022; 61:e202117504. [DOI: 10.1002/anie.202117504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Renjie Wang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province China
| |
Collapse
|
11
|
Liu Z, Song W, Yang S, Yuan C, Liu Z, Zhang H, Shao X. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C
60
and C
70. Chemistry 2022; 28:e202200306. [DOI: 10.1002/chem.202200306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Shaojie Yang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000, Gansu Province P. R. China
| |
Collapse
|
12
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Shang J, Wang R, Yuan C, Liu Z, Zhang HL, Shao X. Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jihai Shang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Renjie Wang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Chengshan Yuan
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Zitong Liu
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Hao-Li Zhang
- Lanzhou University State key Laboratory of Applied Organic Chemistry 730000 Lanzhou CHINA
| | - Xiangfeng Shao
- Lanzhou University State Key Laboratory of Applied Organic Chemistry 222 Tianshui Southern Road 730000 Lanzhou CHINA
| |
Collapse
|
14
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
15
|
Tanaka T, Kise K. Non-Planar Polycyclic Aromatic Molecules Including Heterole Units. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Wang W, Feng L, Hua X, Yuan C, Shao X. Stimuli‐Responsive
Polycycles Based on
Hetero‐Buckybowl
Trithiasumanene. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Lijun Feng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| |
Collapse
|
17
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
18
|
Wang S, Yan C, Zhao W, Liu X, Yuan CS, Zhang HL, Shao X. A tellura-Baeyer-Villiger oxidation: one-step transformation of tellurophene into chiral tellurinate lactone. Chem Sci 2021; 12:5811-5817. [PMID: 34168805 PMCID: PMC8179672 DOI: 10.1039/d1sc00397f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Baeyer-Villiger (BV) oxidation is a fundamental organic reaction, whereas the hetero-BV oxidation is uncharted. Herein, a tellura-BV oxidation is discovered. By oxidizing a tellurophene-embedded and electron-rich polycycle (1) with mCPBA or Oxone, an oxygen atom is inserted into the Te-C bond of the tellurophene to form tellurinate lactone mono-2. This reaction proceeds as follows: (i) 1 is oxidized to the tellurophene Te-oxide form (IM-1); (ii) IM-1 undergoes tellura-BV oxidation to give mono-2. Moreover, the hybrid trichalcogenasumanenes 7 and 8 are, respectively, converted to tellurinate lactones mono-9 and mono-10 under the same conditions, indicating that tellura-BV oxidation shows high chemoselectivity. Due to the strong secondary bonding interactions between the Te[double bond, length as m-dash]O groups on tellurinate lactones, mono-2, mono-9, and mono-10 are dimerized to form U-shaped polycycles 2, 9, and 10, respectively. Notably, mono-2, mono-9, mono-10, and their dimers show chirality. This work enables one-step transformation of tellurophene into tellurinate lactone and construction of intricate polycycles.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Wenlong Zhao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiaolan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| |
Collapse
|
19
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Song Y, Zhang G. Effect of Fusion Manner of Concave Molecules on the Properties of Resulting Nanoboats. Org Lett 2021; 23:491-496. [PMID: 33403857 DOI: 10.1021/acs.orglett.0c04008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A boat-shaped compound, which can be viewed as the fusion of two concave molecules with crossed quinacridone and indolocarbazole throughout, was synthesized and characterized. The investigation determined that the fusion manner of two concave molecules has little influence on the molecular curvature and aromaticity when compared with its congener containing crossed indolocarbazole throughout. The situation of carbonyl groups is critical in adjusting the electronic structure and physicochemical properties due to the fixed position of nitrogen atoms.
Collapse
Affiliation(s)
- Yujun Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, P.R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, P.R. China
| |
Collapse
|
21
|
Zhu G, Song Y, Zhang Q, Ding W, Chen X, Wang Y, Zhang G. Modulating the properties of buckybowls containing multiple heteroatoms. Org Chem Front 2021. [DOI: 10.1039/d0qo01452d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-centered buckybowls with sulfur decoration at the rim were synthesized and characterized. The buckybowls demonstrate tunable properties depending on the state of the sulfur atom.
Collapse
Affiliation(s)
- Guanxing Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yujun Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Qianyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Weiwei Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Xinxin Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yuannan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| |
Collapse
|
22
|
Liu Z, Song W, Yan C, Liu Z, Zhang HL, Shao X. Transforming electron-rich hetero-buckybowls into electron-deficient polycycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00702e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidation of trichalcogenasumanenes (TCSs) with NO species results in the simultaneous formation of ortho-quinone and diester groups. This reaction enables the transformation of electron-rich TCSs into electron-deficient polycycles.
Collapse
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Wenru Song
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Tianshui Southern Road 222, Gansu Province, China
| |
Collapse
|
23
|
Deng G, Liu T, Wang Y, Liu B, Tan Q, Xu B. α‐Iminonitriles: Composite Functional Groups for Functionalization of Pyrene. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guigang Deng
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Tianqi Liu
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Yuqin Wang
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bingxin Liu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Qitao Tan
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Bin Xu
- Department of Chemistry Innovative Drug Research Center Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
- School of Medicine Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
24
|
Highly sensitive detection of mercury(II) and silver(I) ions in aqueous solution via a chromene-functionalized imidazophenazine derivative. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Alvi S, Ali R. Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners. Beilstein J Org Chem 2020; 16:2212-2259. [PMID: 32983269 PMCID: PMC7492699 DOI: 10.3762/bjoc.16.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/24/2023] Open
Abstract
Since the first synthetic report in 2003 by Sakurai et al., sumanene (derived from the Indian 'Hindi as well as Sanskrit word' "Suman", which means "Sunflower"), a beautifully simple yet much effective bowl-shaped C 3-symmetric polycyclic aromatic hydrocarbon having three benzylic positions clipped between three phenyl rings in the triphenylene framework has attracted a tremendous attention of researchers worldwide. Therefore, since its first successful synthesis, a variety of functionalized sumanenes as well as heterosumanenes have been developed because of their unique physiochemical properties. For example, bowl-to-bowl inversion, bowl depth, facial selectivity, crystal packing, metal complexes, intermolecular charge transfer systems, cation-π complexation, electron conductivity, optical properties and so on. Keeping the importance of this beautiful scaffold in mind, we compiled all the synthetic routes available for the construction of sumanene and its heteroatom derivatives including Mehta's first unsuccessful effort up to the latest achievements. Our major goal to write this review article was to provide a quick summary of where the field has been, where it stands at present, and where it might be going in near future. Although several reviews have been published on sumanene chemistry dealing with different aspects but this is the first report that comprehensively describes the 'all-in-one' chemistry of the sumanene architecture since its invention to till date. We feel that this attractive review article will definitely help the scientific community working not only in the area of organic synthesis but also in materials science and technology.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| |
Collapse
|
26
|
Zhou L, Zhang G. A Nanoboat with Fused Concave N-Heterotriangulene. Angew Chem Int Ed Engl 2020; 59:8963-8968. [PMID: 32150655 DOI: 10.1002/anie.202002869] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/09/2023]
Abstract
The surface extension of all-carbon based bowl-shaped molecules, such as corannulene and sumanene, to synthesize even larger buckybowls has been widely studied, leaving other concave compounds with heteroatoms less considered. Herein we present a highly curved molecule synthesized via stepwise cyclization of fjords of a bisacridone derivative. Crystallographic analysis unambiguously confirmed a boat-shaped structure with deformed bottom benzene ring. Theoretical calculation unravels an inversion process with an S-shaped transition structure rather than a planar one. The enlarged boat demonstrates interesting properties, such as red shifts in absorption and emission spectra, enhanced emission intensity, and convergent frontier molecular orbital energy levels, in comparison to the related concave N-heterotriangulene.
Collapse
Affiliation(s)
- Leyong Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, P. R. China
| | - Gang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, P. R. China
| |
Collapse
|
27
|
Liu L, Yan C, Li Y, Liu Z, Yuan C, Zhang H, Shao X. Tetrathiafulvalene‐Fused Heterabuckybowl: Protonation‐Induced Electron Transfer and Self‐Sensitized Photooxidation. Chemistry 2020; 26:7083-7091. [PMID: 32073723 DOI: 10.1002/chem.201905732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Yecheng Li
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Zhe Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 Gansu Province P.R. China
| |
Collapse
|
28
|
Rahman MS, Yoshikai N. Synthesis of triphenylene-fused phosphole oxides via C-H functionalizations. Beilstein J Org Chem 2020; 16:524-529. [PMID: 32273913 PMCID: PMC7113549 DOI: 10.3762/bjoc.16.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 01/14/2023] Open
Abstract
The synthesis of triphenylene-fused phosphole oxides has been achieved through two distinct C–H functionalization reactions as key steps. The phosphole ring was constructed by a three-component coupling of 3-(methoxymethoxy)phenylzinc chloride, an alkyne, and dichlorophenylphosphine, involving the regioselective C–H activation of the C2 position of the arylzinc intermediate via 1,4-cobalt migration. The resulting 7-hydroxybenzo[b]phosphole derivative was used for further π-extension through Suzuki–Miyaura couplings and a Scholl reaction, the latter closing the triphenylene ring. The absorption and emission spectra of the thus-synthesized compounds illustrated their nature as hybrids of triphenylene and benzo[b]phosphole.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
29
|
Affiliation(s)
- Leyong Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| | - Gang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 P. R. China
| |
Collapse
|
30
|
Hu JP, He JX, Fang H, Yang HH, Zhang Q, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A novel pillar[5]arene-based emission enhanced supramolecular sensor for dual-channel selective detection and separation of Hg2+. NEW J CHEM 2020. [DOI: 10.1039/d0nj02362k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We constructed a supramolecular sensor (APRA–G) via a host–guest inclusion interaction between a rhodamine hydrazide-functionalized pillar[5]arene (APRA) and a bipyridine salt guest (G), which formed a stable dimer.
Collapse
|
31
|
Zhao P, Xu CQ, Sun C, Xia J, Sun L, Li J, Xu H. Exploring the difference of bonding strength between silver(i) and chalcogenides in block copolymer systems. Polym Chem 2020. [DOI: 10.1039/d0py01201g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The order of Ag(i)–S < Ag(i)–Se < Ag(i)–Te bond strength was confirmed by single-molecule force spectroscopy (SMFS) with quantum chemical studies.
Collapse
Affiliation(s)
- Peng Zhao
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Cong-Qiao Xu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Chenxing Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jiahao Xia
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Lin Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jun Li
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
32
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
33
|
Zierkiewicz W, Wysokiński R, Michalczyk M, Scheiner S. Chalcogen bonding of two ligands to hypervalent YF 4 (Y = S, Se, Te, Po). Phys Chem Chem Phys 2019; 21:20829-20839. [PMID: 31517347 DOI: 10.1039/c9cp04006d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two NH3 ligands to engage in simultaneous chalcogen bonds to a hypervalent YF4 molecule, with Y = S, Se, Te, Po, is assessed via quantum calculations. The complex can take on one of two different geometries. The cis structure places the two ligands adjacent to one another in a pseudo-octahedral geometry, held there by a pair of σ-hole chalcogen bonds. The bases can also lie nearly opposite one another, in a distorted octahedron containing one π-hole and one strained σ-hole bond. The cis geometry is favored for Y = S, while Te, and Po tend toward the trans structure; they are nearly equally stable for Se. In either case, the binding energy rises rapidly with the size of the Y atom, exceeding 30 kcal mol-1 for PoF4.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
34
|
Xu T, Li D, Yan C, Wu Y, Yuan C, Shao X. Decoration of Terpyridine with Electron‐Rich Unit THDTAP: an Efficient Way to Explore Fluorescence Sensors for Recognizing Metal Ions. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Taoshan Xu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Dongxu Li
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Yuewei Wu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Cheng‐Shan Yuan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
35
|
Affiliation(s)
- Niping Deng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Gang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|