1
|
Zhu GB, Guo C, Ren XL, Li MZ, Lu DY, Hu XL, Huang H, James TD, He XP. Non-natural sialic acid derivatives with o-nitrobenzyl alcohol substituents for light-mediated protein conjugation and cell imaging. Org Biomol Chem 2024; 22:9403-9407. [PMID: 39494475 DOI: 10.1039/d4ob01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We have synthesized two sialic acid derivatives substituted with an ortho-nitrobenzyl alcohol (o-NBA) group that can undergo light-mediated conjugation with primary amines at their 5- or 9-carbon position. The o-NBA derivatives were shown to react with multiple lysine residues of human serum albumin (HSA) when exposed to 365 nm light irradiation within 10 min. The resulting sugar conjugates were characterized by mass spectroscopy and used for fluorescence-based cell imaging.
Collapse
Affiliation(s)
- Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Chen Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Xue-Lian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ming-Zhe Li
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Di-Ya Lu
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer, Shanghai 200438, China
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| |
Collapse
|
2
|
Le Saux L, Haddad F, Gestin JF, Eychenne R, Guérard F. Sydnone-based prosthetic groups for radioiodination. Bioorg Med Chem 2024; 113:117904. [PMID: 39265508 DOI: 10.1016/j.bmc.2024.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
The potential of Strained-Promoted Sydnone-Alkyne Cycloaddition (SPSAC) for radioiodination was evaluated with model cyclooctyne-conjugated peptides. Starting with a series of sydnones with varying N3 and C4 substitution, a preliminary kinetic study with non-radioactive iodinated compounds highlighted the superiority of an arylsydnone substituted by a chlorine atom in C4 position. Interestingly, reaction rate up to 11 times higher than using an azide was achieved with the best system. Access to 125I-labelled sydnones was granted with high efficiency from arylboronic acid precursors by copper catalyzed nucleophilic substitution. Application of SPSAC on the model peptide in radiotracer conditions showed the same trend than in non-radioactive kinetic study and complete reactions could be achieved within less than an hour for the best systems. These results are favorable for use in the production of radiopharmaceuticals with heavy halogens and increase the diversity of available bioorthogonal reaction for nuclear imaging and therapy.
Collapse
Affiliation(s)
- Ludovic Le Saux
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France; Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France
| | - Ferid Haddad
- Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France; Laboratoire Subatech, IN2P3-CNRS, IMT Atlantique, Nantes Université, 4 rue Alfred Kastler, F-44307 Nantes, France
| | | | - Romain Eychenne
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France; Groupement d'Intérêt Public ARRONAX, 1 rue Aronnax, F-44817 Saint-Herblain, France.
| | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA Nantes, France.
| |
Collapse
|
3
|
Kumawat D, Gray TE, Garnier CR, Bui DT, Li Z, Jame-Chenarboo Z, Jerasi J, Wong WO, Klassen JS, Capicciotti CJ, Macauley MS. A Kinetic Trapping Approach for Facile Access to 3F axNeu5Ac and a Photo-Cross-Linkable Sialyltransferase Probe. J Am Chem Soc 2024; 146:28630-28634. [PMID: 39377645 DOI: 10.1021/jacs.4c10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sialic acid (Neu5Ac) is installed onto glycoconjugates by sialyltransferases (STs) using cytidine monophosphate-Neu5Ac (CMP-β-d-Neu5Ac) as their donor. The only class of cell-active ST inhibitors are those based on a 3FaxNeu5Ac scaffold, which is metabolically converted into CMP-3FaxNeu5Ac within cells. It is essential for the fluorine to be axial, yet stereoselective installation of fluorine in this specific orientation is challenging. Sialic acid aldolase can convert 3-fluoropyruvate and 2-acetamido-2-deoxy-d-mannopyranose (ManNAc) to 3FNeu5Ac, but stereocontrol of the fluorine in the product has not been possible. We hypothesized that the 3Fax kinetic product of a sialic acid aldolase reaction could be trapped by coupling with CMP-sialic acid synthetase to yield CMP-3FaxNeu5Ac. Here, we report that highly active CMP-sialic acid synthetase and short reaction times produce exclusively CMP-3FaxNeu5Ac. Removal of CMP from CMP-3FaxNeu5Ac under acidic conditions unexpectedly led to 3-fluoro-β-d-Neu5Ac 2-phosphate (3FaxNeu5Ac-2P). Alkaline phosphatase successfully converted 3FaxNeu5Ac-2P to 3FaxNeu5Ac, enabling stereochemically controlled access to 3FaxNeu5Ac, which is effective in lowering the sialoglycan ligands for Siglecs on cells. Moreover, our kinetic trapping approach could be used to access CMP-3FaxNeu5Ac with modifications at the C5, C9, or both positions, which enabled the chemoenzymatic synthesis of a photo-cross-linkable version of CMP-3FaxNeu5Ac that selectively photo-cross-linked to ST6GAL1 over two other STs.
Collapse
Affiliation(s)
- Dhanraj Kumawat
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Cole R Garnier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Zhixiong Li
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | | | - Jeremy Jerasi
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
| | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Chemistry, Queen's University, Kingston K7L 2S8, Canada
- Department of Surgery, Queen's University, Kingston K7L 2V7, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Canada
| |
Collapse
|
4
|
Babulic JL, Kofsky JM, Boddington ME, Kim Y, Leblanc EV, Cook MG, Garnier CR, Emberley-Korkmaz S, Colpitts CC, Capicciotti CJ. One-Step Selective Labeling of Native Cell Surface Sialoglycans by Exogenous α2,8-Sialylation. ACS Chem Biol 2023; 18:2418-2429. [PMID: 37934063 DOI: 10.1021/acschembio.3c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Exo-enzymatic glycan labeling strategies have emerged as versatile tools for efficient and selective installation of terminal glyco-motifs onto live cell surfaces. Through employing specific enzymes and nucleotide-sugar probes, cells can be equipped with defined glyco-epitopes for modulating cell function or selective visualization and enrichment of glycoconjugates. Here, we identifyCampylobacter jejunisialyltransferase Cst-II I53S as a tool for cell surface glycan modification, expanding the exo-enzymatic labeling toolkit to include installation of α2,8-disialyl epitopes. Labeling with Cst-II was achieved with biotin- and azide-tagged CMP-Neu5Ac derivatives on a model glycoprotein and native sialylated cell surface glycans across a panel of cell lines. The introduction of modified Neu5Ac derivatives onto cells by Cst-II was also retained on the surface for 6 h. By examining the specificity of Cst-II on cell surfaces, it was revealed that the α2,8-sialyltransferase primarily labeled N-glycans, with O-glycans labeled to a lesser extent, and there was an apparent preference for α2,3-linked sialosides on cells. This approach thus broadens the scope of tools for selective exo-enzymatic labeling of native sialylated glycans and is highly amenable for the construction of cell-based arrays.
Collapse
Affiliation(s)
- Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Joshua M Kofsky
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Emmanuelle V Leblanc
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Madeleine G Cook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Cole R Garnier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Sophie Emberley-Korkmaz
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston K7L 3N6, Canada
| |
Collapse
|
5
|
Cheng B, Wang C, Hao Y, Wang J, Xia X, Zhang H, He R, Zhang S, Dai P, Chen X. Facile Synthesis of Clickable Unnatural Sugars in the Unprotected and 1,6-Di-O-Acylated Forms for Metabolic Glycan Labeling. Chemistry 2023; 29:e202203054. [PMID: 36422057 DOI: 10.1002/chem.202203054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Clickable unnatural sugars have been widely used in studying glycosylation in living systems via the metabolic glycan labelling (MGL) strategy. Partial protection of unnatural sugars by 1,6-di-O-acylation increases the labelling efficiency while avoiding the non-specific S-glyco-modification. Herein, we report the facile synthesis of a series of clickable unnatural sugars in both the unprotected and 1,6-di-O-acylated forms at the ten-gram scale. By evaluation of the labelling specificity, efficiency, and biocompatibility of various 1,6-di-O-acylated sugars for MGL in cell lines and living mice, we demonstrate that 1,6-di-O-propionylated unnatural sugars are optimal chemical reporters for glycan labelling. The synthetic routes developed in this work should facilitate the widespread use of MGL with no artificial S-glyco-modification for investigating the functional roles of glycans.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xiaoqian Xia
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Hao Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Rundong He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Xu W, Yu H, Zhao R, Liang Y. Investigation of mitochondrial targeting ability of sydnones and sydnonimines and mitochondria-targeted delivery of celecoxib. Bioorg Med Chem Lett 2023; 81:129129. [PMID: 36634752 DOI: 10.1016/j.bmcl.2023.129129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Mitochondria are considered to be a promising target in cancer diagnosis and therapeutics. Recently, sydnone and sydnonimine, as mesoionic bioorthogonal reagents, have been used in cell labeling and drug delivery. Here we investigated the mitochondrial targeting ability of sydnones and sydnonimines for the first time. Experimental results show that sydnone and sydnonimine themselves have high mitochondrial distribution. However, the introduction of a phenyl group into the C4 position of sydnone dramatically decreases the mitochondrial affinity. In addition, we took advantage of mitochondrial targeting ability and click-and-release reaction of sydnonimine to evaluate anticancer activities of in-mitochondria delivery of celecoxib against HeLa and HepG2 cells, indicating that celecoxib-induced cancer cell death may not involve mitochondria-related pathway.
Collapse
Affiliation(s)
- Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongzhe Yu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Precise assembly of inside-out cell membrane camouflaged nanoparticles via bioorthogonal reactions for improving drug leads capturing. Acta Pharm Sin B 2023; 13:852-862. [PMID: 36873174 PMCID: PMC9979189 DOI: 10.1016/j.apsb.2022.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Cell membrane camouflaged nanoparticles have been widely used in the field of drug leads discovery attribute to their unique biointerface targeting function. However, random orientation of cell membrane coating does not guarantee effective and appropriate binding of drugs to specific sites, especially when applied to intracellular regions of transmembrane proteins. Bioorthogonal reactions have been rapidly developed as a specific and reliable method for cell membrane functionalization without disturbing living biosystem. Herein, inside-out cell membrane camouflaged magnetic nanoparticles (IOCMMNPs) were accurately constructed via bioorthogonal reactions to screen small molecule inhibitors targeting intracellular tyrosine kinase domain of vascular endothelial growth factor recptor-2. Azide functionalized cell membrane acted as a platform for specific covalently coupling with alkynyl functionalized magnetic Fe3O4 nanoparticles to prepare IOCMMNPs. The inside-out orientation of cell membrane was successfully verified by immunogold staining and sialic acid quantification assay. Ultimately, two compounds, senkyunolide A and ligustilidel, were successfully captured, and their potential antiproliferative activities were further testified by pharmacological experiments. It is anticipated that the proposed inside-out cell membrane coating strategy endows tremendous versatility for engineering cell membrane camouflaged nanoparticles and promotes the development of drug leads discovery platforms.
Collapse
|
9
|
Kufleitner M, Haiber LM, Wittmann V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem Soc Rev 2023; 52:510-535. [PMID: 36537135 DOI: 10.1039/d2cs00764a] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are involved in numerous biological recognition events. Being secondary gene products, their labeling by genetic methods - comparable to GFP labeling of proteins - is not possible. To overcome this limitation, metabolic glycoengineering (MGE, also known as metabolic oligosaccharide engineering, MOE) has been developed. In this approach, cells or organisms are treated with synthetic carbohydrate derivatives that are modified with a chemical reporter group. In the cytosol, the compounds are metabolized and incorporated into newly synthesized glycoconjugates. Subsequently, the reporter groups can be further derivatized in a bioorthogonal ligation reaction. In this way, glycans can be visualized or isolated. Furthermore, diverse targeting strategies have been developed to direct drugs, nanoparticles, or whole cells to a desired location. This review summarizes research in the field of MGE carried out in recent years. After an introduction to the bioorthogonal ligation reactions that have been used in in connection with MGE, an overview on carbohydrate derivatives for MGE is given. The last part of the review focuses on the many applications of MGE starting from mammalian cells to experiments with animals and other organisms.
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Lisa Maria Haiber
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
10
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
11
|
Switching azide and alkyne tags on bioorthogonal reporters in metabolic labeling of sialylatedglycoconjugates: a comparative study. Sci Rep 2022; 12:22129. [PMID: 36550357 PMCID: PMC9780200 DOI: 10.1038/s41598-022-26521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.
Collapse
|
12
|
Chinoy ZS, Friscourt F. Expanding the Strain‐Promoted 1,3‐Dipolar Cycloaddition Arsenal for a More Selective Bioorthogonal Labeling in Living Cells. Isr J Chem 2022. [DOI: 10.1002/ijch.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie Université de Bordeaux 2 rue Robert Escarpit 33607 Pessac France
- Institut des Sciences Moléculaires CNRS UMR5255 33405 Talence France
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie Université de Bordeaux 2 rue Robert Escarpit 33607 Pessac France
- Institut des Sciences Moléculaires CNRS UMR5255 33405 Talence France
| |
Collapse
|
13
|
Buchanan CJ, Gaunt B, Harrison PJ, Yang Y, Liu J, Khan A, Giltrap AM, Le Bas A, Ward PN, Gupta K, Dumoux M, Tan TK, Schimaski L, Daga S, Picchiotti N, Baldassarri M, Benetti E, Fallerini C, Fava F, Giliberti A, Koukos PI, Davy MJ, Lakshminarayanan A, Xue X, Papadakis G, Deimel LP, Casablancas-Antràs V, Claridge TDW, Bonvin AMJJ, Sattentau QJ, Furini S, Gori M, Huo J, Owens RJ, Schaffitzel C, Berger I, Renieri A, Naismith JH, Baldwin AJ, Davis BG. Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science 2022; 377:eabm3125. [PMID: 35737812 DOI: 10.1126/science.abm3125] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.
Collapse
Affiliation(s)
- Charles J Buchanan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Ben Gaunt
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Peter J Harrison
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Yun Yang
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Jiwei Liu
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Aziz Khan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Andrew M Giltrap
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Audrey Le Bas
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Philip N Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Kapil Gupta
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lisa Schimaski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Annarita Giliberti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Panagiotis I Koukos
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matthew J Davy
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK
| | - Abirami Lakshminarayanan
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Xiaochao Xue
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Sir William Dunn School of Pathology, Oxford, UK
| | | | | | - Virgínia Casablancas-Antràs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | | | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Gori
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy.,Maasai, I3S CNRS, Université Côte d'Azur, Nice, France
| | - Jiandong Huo
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Raymond J Owens
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Christiane Schaffitzel
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Imre Berger
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - James H Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Andrew J Baldwin
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Benjamin G Davis
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Oxford OX11 0FA, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.,Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
14
|
Chinoy ZS, Moremen KW, Friscourt F. A Clickable Bioorthogonal Sydnone-Aglycone for the Facile Preparation of a Core 1 O-Glycan-Array. European J Org Chem 2022; 2022:e202200271. [PMID: 36035814 PMCID: PMC9401066 DOI: 10.1002/ejoc.202200271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Indexed: 11/12/2022]
Abstract
Protein-O-glycosylation has been shown to be essential for many biological processes. However, determining the exact relationship between O-glycan structures and their biological activity remains challenging. Here we report that, unlike azides, sydnones can be incorporated as an aglycon into core 1 O-glycans early-on in their synthesis since it is compatible with carbohydrate chemistry and enzymatic glycosylations, allowing us to generate a small library of sydnone-containing core 1 O-glycans by chemoenzymatic synthesis. The sydnone-aglycon was then employed for the facile preparation of an O-glycan array, via bioorthogonal strain-promoted sydnone-alkyne cycloaddition click reaction, and in turn was utilized for the high-throughput screening of O-glycan-lectin interactions. This sydnone-aglycon, particularly adapted for O-glycomics, is a valuable chemical tool that complements the limited technologies available for investigating O-glycan structure-activity relationships.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA 30602USA
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA 30602USA
| | - Frédéric Friscourt
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| |
Collapse
|
15
|
Krell K, Pfeuffer B, Rönicke F, Chinoy ZS, Favre C, Friscourt F, Wagenknecht H. Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions. Chemistry 2021; 27:16093-16097. [PMID: 34633713 PMCID: PMC9297951 DOI: 10.1002/chem.202103026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59 M-1 s-1 ), and two different sydnones were effectively incorporated into both 2'-deoxyuridines at position 5, and 7-deaza-2'-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both in vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells.
Collapse
Affiliation(s)
- Katja Krell
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Bastian Pfeuffer
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Franziska Rönicke
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Camille Favre
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
16
|
Chinoy ZS, Montembault E, Moremen KW, Royou A, Friscourt F. Impacting Bacterial Sialidase Activity by Incorporating Bioorthogonal Chemical Reporters onto Mammalian Cell-Surface Sialosides. ACS Chem Biol 2021; 16:2307-2314. [PMID: 34590826 DOI: 10.1021/acschembio.1c00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioorthogonal chemical reporters, in synergy with click chemistry, have emerged as a key technology for tagging complex glycans in living cells. This strategy relies on the fact that bioorthogonal chemical reporters are highly reactive species while being biologically noninvasive. Here, we report that chemical reporters and especially sydnones may have, on the contrary, enormous impact on biomolecule processing enzymes. More specifically, we show that editing cell-surface sialic acid-containing glycans (sialosides) with bioorthogonal chemical reporters can significantly affect the activity of bacterial sialidases, enzymes expressed by bacteria during pathogenesis for cleaving sialic acid sugars from mammalian cell-surface glycans. Upon screening various chemical reporters, as well as their position on the sialic acid residue, we identified that pathogenic bacterial sialidases were unable to cleave sialosides displaying a sydnone at the 5-position of sialic acids in vitro as well as in living cells. This study highlights the importance of investigating more systematically the metabolic fate of glycoconjugates modified with bioorthogonal reporters.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| | - Emilie Montembault
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Anne Royou
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| |
Collapse
|
17
|
Scherpenzeel M, Conte F, Büll C, Ashikov A, Hermans E, Willems A, Tol W, Kragt E, Noga M, Moret EE, Heise T, Langereis JD, Rossing E, Zimmermann M, Rubio-Gozalbo ME, de Jonge MI, Adema GJ, Zamboni N, Boltje T, Lefeber DJ. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs. Glycobiology 2021; 32:239-250. [PMID: 34939087 PMCID: PMC8966471 DOI: 10.1093/glycob/cwab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography–triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.
Collapse
Affiliation(s)
- Monique Scherpenzeel
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,GlycoMScan B.V., Kloosterstraat 9, RE0329, 5349 AB Oss, The Netherlands
| | - Federica Conte
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Angel Ashikov
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Esther Hermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Walinka Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Else Kragt
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Marek Noga
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Ed E Moret
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Emiel Rossing
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | - M Estela Rubio-Gozalbo
- Department of Clinical Genetics, department of Pediatrics, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, box 16, 6200 MD, Maastricht, The Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Thomas Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Molecules 2021; 26:molecules26195950. [PMID: 34641494 PMCID: PMC8512710 DOI: 10.3390/molecules26195950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.
Collapse
|
19
|
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnone Methides-A Forgotten Class of Mesoionic Compounds for the Generation of Anionic N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2021; 60:18882-18887. [PMID: 34153173 PMCID: PMC8456854 DOI: 10.1002/anie.202107495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 12/25/2022]
Abstract
Sydnone methides are described from which only one single example has been mentioned in the literature so far. Their deprotonation gave anions which can be formulated as π-electron rich anionic N-heterocyclic carbenes. Sulfur and selenium adducts were stabilized as their methyl ethers, and mercury, gold as well as rhodium complexes of the sydnone methide carbenes were prepared. Sydnone methide anions also undergo C-C coupling reactions with 1-fluoro-4-iodobenzene under Pd(PPh3 )4 and CuBr catalysis. 77 Se NMR resonance frequencies and 1 JC4-Se as well as 1 JC4-H coupling constants have been determined to gain knowledge about the electronic properties of the anionic N-heterocyclic carbenes. The carbene carbon atom of the sydnone methide anion 3 j resonates at δ=155.2 ppm in 13 C NMR spectroscopy at -40 °C which is extremely shifted upfield in comparison to classical N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Sebastian Mummel
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| | - Felix Lederle
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
- Fraunhofer Heinrich Hertz Institute HHIFiber Optical Sensor SystemsAm Stollen 19HD-38640GoslarGermany
| | - Eike G. Hübner
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
- Fraunhofer Heinrich Hertz Institute HHIFiber Optical Sensor SystemsAm Stollen 19HD-38640GoslarGermany
| | - Jan C. Namyslo
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| | - Martin Nieger
- University of HelsinkiDepartment of ChemistryP.O. Box 55FIN-00014HelsinkiFinland
| | - Andreas Schmidt
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| |
Collapse
|
20
|
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnonmethide – fast vergessene Mesoionen als Vorläufermoleküle von anionischen N‐heterocyclischen Carbenen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sebastian Mummel
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| | - Felix Lederle
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
- Fraunhofer Heinrich-Hertz-Institut HHI Faseroptische Sensorsysteme Am Stollen 19H 38640 Goslar Deutschland
| | - Eike G. Hübner
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
- Fraunhofer Heinrich-Hertz-Institut HHI Faseroptische Sensorsysteme Am Stollen 19H 38640 Goslar Deutschland
| | - Jan C. Namyslo
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| | - Martin Nieger
- Universität Helsinki Department für Chemie P.O. Box 55 00014 Helsinki Finnland
| | - Andreas Schmidt
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| |
Collapse
|
21
|
Cheng B, Tang Q, Zhang C, Chen X. Glycan Labeling and Analysis in Cells and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:363-387. [PMID: 34314224 DOI: 10.1146/annurev-anchem-091620-091314] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
23
|
Porte K, Riomet M, Figliola C, Audisio D, Taran F. Click and Bio-Orthogonal Reactions with Mesoionic Compounds. Chem Rev 2021; 121:6718-6743. [PMID: 33238101 DOI: 10.1021/acs.chemrev.0c00806] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Click and bio-orthogonal reactions are dominated by cycloaddition reactions in general and 1,3-dipolar cycloadditions in particular. Among the dipoles routinely used for click chemistry, azides, nitrones, isonitriles, and nitrile oxides are the most popular. This review is focused on the emerging click chemistry that uses mesoionic compounds as dipole partners. Mesoionics are a very old family of molecules, but their use as reactants for click and bio-orthogonal chemistry is quite recent. The facility to derivatize these dipoles and to tune their reactivity toward cycloaddition reactions makes mesoionics an attractive opportunity for future click chemistry development. In addition, some compounds from this family are able to undergo click-and-release reactions, finding interesting applications in cells, as well as in animals. This review covers the synthetic access to main mesoionics, their reaction with dipolarophiles, and recent applications in chemical biology and heterocycle synthesis.
Collapse
Affiliation(s)
- Karine Porte
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Margaux Riomet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Carlotta Figliola
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Nagorny S, Lederle F, Udachin V, Weingartz T, Hübner EG, Dahle S, Maus‐Friedrichs W, Adams J, Schmidt A. Switchable Mesomeric Betaines Derived from Pyridinium‐Phenolates and Bis(thienyl)ethane. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sven Nagorny
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Felix Lederle
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Am Stollen 19 B D-38640 Goslar Germany
| | - Viktor Udachin
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Thea Weingartz
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Eike G. Hübner
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Sebastian Dahle
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Wolfgang Maus‐Friedrichs
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Jörg Adams
- Clausthal University of Technology Institute of Physical Chemistry Arnold-Sommerfeld-Strasse 4 38678 Clausthal-Zellerfeld Germany
| | - Andreas Schmidt
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
25
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
26
|
Glycoengineering: scratching the surface. Biochem J 2021; 478:703-719. [DOI: 10.1042/bcj20200612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
At the surface of many cells is a compendium of glycoconjugates that form an interface between the cell and its surroundings; the glycocalyx. The glycocalyx serves several functions that have captivated the interest of many groups. Given its privileged residence, this meshwork of sugar-rich biomolecules is poised to transmit signals across the cellular membrane, facilitating communication with the extracellular matrix and mediating important signalling cascades. As a product of the glycan biosynthetic machinery, the glycocalyx can serve as a partial mirror that reports on the cell's glycosylation status. The glycocalyx can also serve as an information-rich barrier, withholding the entry of pathogens into the underlying plasma membrane through glycan-rich molecular messages. In this review, we provide an overview of the different approaches devised to engineer glycans at the cell surface, highlighting considerations of each, as well as illuminating the grand challenges that face the next era of ‘glyco-engineers’. While we have learned much from these techniques, it is evident that much is left to be unearthed.
Collapse
|
27
|
|
28
|
Bouton J, Van Calenbergh S, Hullaert J. Sydnone Ribosides as a Platform for the Synthesis of Pyrazole C-Nucleosides: A Unified Synthesis of Formycin B and Pyrazofurin. Org Lett 2020; 22:9287-9291. [PMID: 33210930 DOI: 10.1021/acs.orglett.0c03523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The C-nucleoside natural products formycin B and pyrazofurin were synthesized in seven steps employing a sydnone riboside as common intermediate. Sydnone ribosides were synthesized via a direct Lewis acid catalyzed dehydrative glycosylation reaction. We demonstrated that these can be used for the diversity-oriented synthesis of pyrazole C-nucleoside analogues via thermal 1,3-dipolar cycloaddition reactions with various alkynes, giving access to the pyrazole C-nucleoside natural products, as well as opening new avenues for exploring nucleoside chemical space.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jan Hullaert
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
30
|
Zhang P, Zhang X, Li C, Zhou S, Wu W, Jiang X. Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32697-32705. [PMID: 31411033 DOI: 10.1021/acsami.9b10295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioorthogonal chemistry together with biomarker-installing techniques is very promising in the amplification of the tumor targeting efficiency of nanomedicine. In this work, we newly synthesized an amphiphilic block copolymer polyoxazoline-block-polycaprolactone (POX-PCL) in which a certain number of amino groups were dangled in the side chain of the POX block and then functionalized into triarylphosphine groups for active tumor targeting via Staudinger ligation. By using the block copolymer self-assembly, the Staudinger ligation reagent-containing and drug-loaded reactive micelles were prepared with a hydrodynamic diameter of ∼74 nm. Such drug-loaded reactive POX-PCL micelles exhibited significant tumor target ability through the Staudinger ligation between the micelles and the tumors metabolically labeled with azide group, as demonstrated by a series of in vitro and in vivo evaluations. In this work, a novel method was proposed for the application of Staudinger ligation in the nanomedicine for amplifying the tumor targeting ability and antitumor activity of nanodrugs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiaoke Zhang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Cheng Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Sensen Zhou
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
31
|
Zhang X, Wu X, Jiang S, Gao J, Yao Z, Deng J, Zhang L, Yu Z. Photo-accelerated “click” reaction between diarylsydnones and ring-strained alkynes for bioorthogonal ligation. Chem Commun (Camb) 2019; 55:7187-7190. [DOI: 10.1039/c9cc02882j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photo-click ligation reaction between diarylsydnones and ring-strained alkynes, exhibiting decent bioorthogonality, was established under 405 nm light irradiation.
Collapse
Affiliation(s)
- Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Jingshuo Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Linmeng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu (610064)
- China
| |
Collapse
|
32
|
Yao Z, Wu X, Zhang X, Xiong Q, Jiang S, Yu Z. Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photo-click cyclization of peptides. Org Biomol Chem 2019; 17:6777-6781. [DOI: 10.1039/c9ob00898e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-Diarylsydnone-l-alanines were designed and introduced into peptides allowing photo-cyclization only in phosphate containing buffer with concomitant fluorescence generation in live cells.
Collapse
Affiliation(s)
- Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|