1
|
Chen B, Yang H, Bai R, Du X, Gao Y, Zheng L. Engineering silica nanocoated whole-cell asymmetric biocatalyst for efficient preparation of a key chiral intermediate of (S)-Rivastigmine. J Biotechnol 2025; 399:19-27. [PMID: 39814203 DOI: 10.1016/j.jbiotec.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.) could reach to 78.2 % and 99 %, respectively, ionic liquid as an additive was required to improve the permeability of cell membrane. To further simplify the reaction, the molecular docking and saturation mutagenesis technology were used here to obtain an activity-improved yhdN variant such as G19A. And then, both excellent conversion and e.e. of 99 % for (S)-NEMCA-HEPE could be achieved within 40 min by using only G19A-GDH whole cell as a catalyst without any additive. However, the use of the whole cells still faces the issues of poor operation stability and adverse application prospect. Subsequently, a hydrophobic "cell-in-shell" complex of G19A-GDH@O-Silica was constructed by using a silica nanocoated technology. The obtained G19A-GDH@O-Silica exhibited an excellent conversion towards the asymmetric carbonyl reduction, and a good tolerance in changing thermal, pH, and storage environmental. Giving 76.3 % of reaction conversion even after the 11th cycle of reuse, indicated that G19A-GDH@O-Silica also possessed ideal recyclability. The aim of this study is to provide a rapid, and cost-effective nanocoated whole-cell biocatalyst for efficient preparation of (S)-NEMCA-HEPE. The simplicity and robustness of the immobilization approach may become a powerful tool to utilize whole-cell catalysts towards organic catalysis.
Collapse
Affiliation(s)
- Baoling Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ruixuan Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaotong Du
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liangyu Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Zhang SX, Long L, Li Z, He YM, Li S, Chen H, Hao W, Fan QH. Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives. J Am Chem Soc 2025; 147:5197-5211. [PMID: 39879104 DOI: 10.1021/jacs.4c15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence. A novel synergistic activation mode was proposed in which HFIP assists a synergistic activation of both the hydrogen molecule and naphthol in the presence of a base, and the in situ-generated fleeting keto tautomer is immediately trapped and reduced by the Rh(III)-H species before it escapes from the solvent cage. This protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs. Particularly, optically pure Nadolol, a drug for the treatment of hypertension, angina pectoris, congestive heart failure, and certain arrhythmias, is enantioselectively synthesized for the first time.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Linhong Long
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zeyu Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Mei He
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Shan Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Wei Hao
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Qing-Hua Fan
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Guan J, Luo Y, Wang Q, Chen J, Zhang W. Copper-Catalyzed Asymmetric Hydrogenation of Unsymmetrical ortho-Br Substituted Benzophenones. Angew Chem Int Ed Engl 2025; 64:e202416313. [PMID: 39248055 DOI: 10.1002/anie.202416313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
The asymmetric hydrogenation of benzophenones, catalyzed by low-activity earth-abundant metal copper, has hitherto remained a challenge due to the substrates equipped with two indistinguishably similar aryl groups. In this study, we demonstrated that the prochiral carbon of the ortho-bromine substrate exhibits the highest electrophilicity and high reactivity among the ortho-halogen substituted benzophenones, as determined by the Fukui function (f+) analysis and hydrogenation reaction. Considering that the enantiodirecting functional bromine group can be easily derivatized and removed in the products, we successfully achieved a green copper-catalyzed asymmetric hydrogenation of ortho-bromine substituted benzophenones. This method yielded a series of chiral benzhydrols with excellent results. The utility of this protocol has been validated through a gram-scale reaction and subsequent product transformations. Independent gradient model based on Hirshfeld partition (IGMH) and energy decomposition analysis (EDA) indicate that the CH⋅⋅⋅HC multiple attractive dispersion interactions (MADI) effect between the catalyst and substrate enhances the catalyst's activity.
Collapse
Affiliation(s)
- Jing Guan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Qiyuan Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
4
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Zhang Y, Li B, Wang T, Duan N, Zheng J, Li H, Zhang F, Fang X. Efficient hydrogenation of ketones over the diaminophosphino manganese complex. Dalton Trans 2024; 53:16475-16479. [PMID: 39324845 DOI: 10.1039/d4dt02297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Herein, we synthesized new manganese(I) complexes coordinated with the tetradentate ligand PNNP. The complexes show higher activity and excellent substituent tolerance in contrast to their manganese counterparts and are applicable in the hydrogenation of a wide range of aromatic, aliphatic and heterocyclic ketones to their corresponding alcohols.
Collapse
Affiliation(s)
- Yu Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Bin Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Tao Wang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Ning Duan
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Jianwei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Fengjun Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Xiaolong Fang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| |
Collapse
|
6
|
Xu Y, Hao A, Xing P. Structural Basis of Cucurbituril-Containing Self-Assembled Supramolecular Chiral Materials. Angew Chem Int Ed Engl 2024; 63:e202409624. [PMID: 39009530 DOI: 10.1002/anie.202409624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Macrocycle-based host-guest complexation offers an intriguing protocol in producing chiroptical materials, while the bulky size and dynamic exchange between hosts and guests hinders the ordered aggregation to afford the long-range chiral arrangement. It remains great challenges in assembling cucurbit[n]urils (CB[n]s) included complexes to induce supramolecular chirality ascribed to the excellent water solubility and flexible packing. Herein, we unveiled the structural basis on the formation of chiroptical coassemblies from CB[n] (n=6, 7) complexes. Perylene diimides (PDIs) with cationic chiral pendants formed complexes in the aqueous media, which selectively showed chiroptical properties. Chlorination at the bay position, increasing alkyl length of cationic chiral pendants or reducing the number of polyaromatic rings would hinder the chiral aggregation. In a comprehensive manner, CB[6] favors ordered aggregation into one-dimensional fibrous nanoarchitectures that greatly facilitates the supramolecular chirality. In contrast, CB[7] with larger cavity and water solubility shrinks the ordered arrangement of complexes, reducing the formation possibility of supramolecular chiral nanoarchitectures. This work suggests the great potential of CB[6] in the preparation and manipulation of supramolecular chiral assemblies, shedding light on the macrocycle-based functional chiroptical materials.
Collapse
Affiliation(s)
- Yunying Xu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, People's Republic of China
| |
Collapse
|
7
|
Wang YZ, Duan YN, Chen GQ, Zhang X. Design and Synthesis of Sulfur-Containing Tetradentate Ligands for Ir-Catalyzed Asymmetric Hydrogenation of Ketones. Org Lett 2024; 26:8594-8598. [PMID: 39347579 DOI: 10.1021/acs.orglett.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Developing highly active and enantioselective ligands for the asymmetric hydrogenation of ketones has consistently attracted significant attention from scientists. A series of novel tetradentate sulfur-containing ligands, termed as f-thiophamidol, were successfully designed and synthesized which exhibited excellent performance in the asymmetric hydrogenation of simple ketones (up to 99% yield, 99% ee) and α-substituted β-keto sulfonamides (up to 99% yield, 99% ee, 99:1 dr). The subsequent successful gram-scale experiments with high TON demonstrated the immense potential application value of this system in synthesizing drug molecules.
Collapse
Affiliation(s)
- Yuan-Zheng Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| |
Collapse
|
8
|
Su Y, Ma Z, Wang J, Li L, Yan X, Ma N, Liu Q, Solan GA, Wang Z. Asymmetric Transfer Hydrogenation of Ketones Improved by PNN-Manganese Complexes. J Org Chem 2024; 89:12318-12325. [PMID: 39146490 DOI: 10.1021/acs.joc.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Chiral manganese(I) complexes that contain carbocyclic-fused 8-amino-5,6,7,8-tetrahydroquinolinyl groups that are appended with distinct para-R substituents have proven to be effective catalysts in the asymmetric transfer hydrogenation (ATH) of a wide range of ketones (48 examples). Notably, Mn2 proved to be the most productive catalyst, allowing an outstanding turnover number of 8300 with catalyst loadings as low as 0.01 mol %. Furthermore, this catalytic protocol shows considerable promise for applications in the synthesis of chiral drugs such as Lusutrombopag.
Collapse
Affiliation(s)
- Yi Su
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhifeng Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China
| | - Jingyao Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Libin Li
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
- Shijiazhuang Chiral Chemical Co., Ltd., Shijiazhuang 050000, China
| | - Xiuli Yan
- College of Material Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ning Ma
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qingbin Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Gregory A Solan
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Zheng Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
9
|
Császár Z, Guóth M, Kovács M, Bényei AC, Bakos J, Farkas G. Asymmetric Hydrogenation of Ketones by Simple Alkane-Diyl-Based Ir(P,N,O) Catalysts: A Comparative Study. Molecules 2024; 29:3743. [PMID: 39202822 PMCID: PMC11357652 DOI: 10.3390/molecules29163743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The development of new chiral ligands with simple and modular structure represents a challenging direction in the design of efficient homogeneous transition metal catalysts. Herein, we report on the asymmetric hydrogenation of prochiral ketones catalyzed by the iridium complexes of simple alkane-diyl-based P,N,O-type chiral ligands with a highly modular structure. The role of (i) the P-N and N-O backbone in the potentially tridentate ligands, (ii) the number, position and relative configuration of their stereogenic elements and (iii) the effect of their NH and OH subunits on the activity and enantioselectivity of the catalytic reactions are studied. The systematic variation in the ligand structure and the comparative catalytic experiments shed light on different mechanistic aspects of the iridium-catalyzed reaction. The catalysts containing the simple alkane-diyl-based ligands with central chirality provided high enantioselectivities (up to 98% ee) under optimized reaction conditions and proved to be active and selective even at very high substrate concentrations (100 mmol substrate/mL solvent).
Collapse
Affiliation(s)
- Zsófia Császár
- Research Group of Organic Chemistry—Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (Z.C.); (M.G.)
| | - Mária Guóth
- Research Group of Organic Chemistry—Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (Z.C.); (M.G.)
| | - Margit Kovács
- NMR Laboratory, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary;
| | - Attila C. Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - József Bakos
- Research Group of Organic Chemistry—Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (Z.C.); (M.G.)
| | - Gergely Farkas
- Research Group of Organic Chemistry—Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (Z.C.); (M.G.)
| |
Collapse
|
10
|
Huang F, Lang Q, Chen GQ, Zhang X. Highly Enantioselective Hydrogenation of Unsymmetrical Benzophenones via Iridium- f-phamidol Catalysis. Org Lett 2024; 26:6159-6163. [PMID: 39023325 DOI: 10.1021/acs.orglett.4c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A sequence of f-phamidol-based tetradentate phosphine ligands have been developed and successfully used in iridium-catalyzed enantioselective hydrogenation of benzophenones to deliver chiral benzhydrols in almost quantitative yields and with excellent enantioselectivities (up to >99% yield and up to >99% ee). Moreover, the catalytic system shows a broad substrate scope and functional group tolerance. The synthetic utilities of this methodology have been showcased by gram-scale experiments and the formal synthesis of levocetirizine.
Collapse
Affiliation(s)
- Fanping Huang
- Medi-X Pingshan, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Qiwei Lang
- Medi-X Pingshan, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Medi-X Pingshan, and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People's Republic of China
| |
Collapse
|
11
|
Zhao CG, Cai J, Du C, Gao Q, Han J, Xie J. Manganese(I)-Catalyzed Enantioselective C(sp 2)-C(sp 3) Bond-Forming for the Synthesis of Skipped Dienes with Synergistic Aminocatalysis. Angew Chem Int Ed Engl 2024; 63:e202400177. [PMID: 38488857 DOI: 10.1002/anie.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Mn(I)-catalyzed enantioselective C-C bond-forming reactions represent a great challenge in homogeneous catalysis primarily due to a limited understanding of its mechanistic principles. Herein, we have developed an interesting catalytic strategy that leverages a synergistic combination of a dimeric manganese(I) catalyst and a chiral aminocatalyst to address this issue. A range of conjugated dienals and trienals can exclusively proceed 1,4-hydroalkenylation by using readily available aromatic and aliphatic alkenyl boronic acids as coupling partners, producing a rich library of skipped diene aldehydes in synthetically useful yields and high levels of enantioselectivities. Notably, downstream transformations of these products can not only afford a concise approach to construct enantioenriched skipped trienes but also realize enantioselective total synthesis of analogues to (-)-Blepharocalyxin D in four steps. DFT calculations suggest the 1,4-hydroalkenylation is kinetically more favorable than 1,6-hydroalkenylation.
Collapse
Affiliation(s)
- Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junzhe Cai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Gulyaeva ES, Buhaibeh R, Boundor M, Azouzi K, Willot J, Bastin S, Duhayon C, Lugan N, Filippov OA, Sortais JB, Valyaev DA, Canac Y. Impact of the Methylene Bridge Substitution in Chelating NHC-Phosphine Mn(I) Catalyst for Ketone Hydrogenation. Chemistry 2024; 30:e202304201. [PMID: 38314964 DOI: 10.1002/chem.202304201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Systematic modification of the chelating NHC-phosphine ligand (NHC = N-heterocyclic carbene) in highly efficient ketone hydrogenation Mn(I) catalyst fac-[(Ph2PCH2NHC)Mn(CO)3Br] has been performed and the catalytic activity of the resulting complexes was evaluated using acetophenone as a benchmark substrate. While the variation of phosphine and NHC moieties led to inferior results than for a parent system, the incorporation of a phenyl substituent into the ligand methylene bridge improved catalytic performance by ca. 3 times providing maximal TON values in the range of 15000-20000. Mechanistic investigation combining experimental and computational studies allowed to rationalize this beneficial effect as an enhanced stabilization of reaction intermediates including anionic hydride species fac-[(Ph2PC(Ph)NHC)Mn(CO)3H]- playing a crucial role in the hydrogenation process. These results highlight the interest of such carbon bridge substitution strategy being rarely employed in the design of chemically non-innocent ligands.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Ruqaya Buhaibeh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Mohamed Boundor
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Karim Azouzi
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jérémy Willot
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 5, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
13
|
Ramspoth TF, Kootstra J, Harutyunyan SR. Unlocking the potential of metal ligand cooperation for enantioselective transformations. Chem Soc Rev 2024; 53:3216-3223. [PMID: 38381077 PMCID: PMC10985679 DOI: 10.1039/d3cs00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/22/2024]
Abstract
Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.
Collapse
Affiliation(s)
- Tizian-Frank Ramspoth
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johanan Kootstra
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Syuzanna R Harutyunyan
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
14
|
Yin C, Zhang R, Pan Y, Gao S, Ding X, Bai ST, Lang Q, Zhang X. PPM Ir-f-phamidol-Catalyzed Asymmetric Hydrogenation of γ-Amino Ketones Followed by Stereoselective Cyclization for Construction of Chiral 2-Aryl-pyrrolidine Pharmacophores. J Org Chem 2024; 89:527-533. [PMID: 38095905 DOI: 10.1021/acs.joc.3c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Transition metal catalysts with a million turnovers and excellent selectivity are rarely reported but are crucial for the industrial manufacture of optical pure pharmaceuticals, natural products, and fine chemicals. In this paper, we report an unprecedented aninoic Ir-f-phamidol catalyst for asymmetric hydrogenation of γ-amino ketones followed by stereoselective cyclization for construction of valuable chiral 2-aryl-pyrrolidine pharmacophores. The Ir-f-phamidol catalyst showed up to 1,000,000 TON and >99% ee, as well as excellent tolerance of substrates and protecting groups, providing various chiral amino alcohol intermediates. Upon optimization of the conditions, the stereoselective cyclization reaction was highly smooth and efficient (quantitative conversions, 92 to >99% ee). Finally, this solution was applied in the preparation of high-value chiral entities containing such chiral 2-aryl-pyrrolidine pharmacophores.
Collapse
Affiliation(s)
- Congcong Yin
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
- Research Center of Green Pharmaceutical Technology and Process, Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Runtong Zhang
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Carbon-Neutrality Catalysis and Engineering and Institute of Carbon-Neutral Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yingmin Pan
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Gao
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaobing Ding
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Tao Bai
- Center for Carbon-Neutrality Catalysis and Engineering and Institute of Carbon-Neutral Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Qiwei Lang
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry and Department of Chemistry and Medi-X PingShan, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Wu W, Zhao N, Liu Y, Du S, Wang X, Mo W, Yan X, Xu C, Zhou Y, Ji B. Iridium Catalysts with f-Amphbinol Ligands: Highly Stereoselective Hydrogenation of a Variety of Ketones. Org Lett 2023. [PMID: 38047622 DOI: 10.1021/acs.orglett.3c03550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A series of novel and modular ferrorence-based amino-phosphine-binol (f-amphbinol) ligands have been successfully synthesized. The f-amphbinol ligands exhibited extremely high air stability and catalytic efficiency in the Ir-catalyzed stereoselective hydrogenation of various ketones to afford corresponding stereodefined alcohols with excellent results (full conversions, cis/trans >99:1, and 83% → 99% ee, TON up to 500 000). Control experiments have shown that -OH and -NH groups played a key role in this stereoselective hydrogenation.
Collapse
Affiliation(s)
- Weilong Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Niu Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yiyi Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Shenshen Du
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinxin Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Wenzhi Mo
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xianghe Yan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Chunying Xu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Baoming Ji
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
16
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
17
|
Wang W, Tachibana R, Zou Z, Chen D, Zhang X, Lau K, Pojer F, Ward TR, Hu X. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology. Angew Chem Int Ed Engl 2023; 62:e202311896. [PMID: 37671593 DOI: 10.1002/anie.202311896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.
Collapse
Affiliation(s)
- Weijin Wang
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Zhi Zou
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Dongping Chen
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Zhou W, Li A, Zhou M, Xu Y, Zhang Y, He Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat Commun 2023; 14:5388. [PMID: 37666841 PMCID: PMC10477329 DOI: 10.1038/s41467-023-41056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Adsorbents widely utilized for environmental remediation, water purification, and gas storage have been usually reported to be either porous or crystalline materials. In this contribution, we report the synthesis of two covalent organic superphane cages, that are utilized as the nonporous amorphous superadsorbents for aqueous iodine adsorption with the record-breaking iodine adsorption capability and selectivity. In the static adsorption system, the cages exhibit iodine uptake capacity of up to 8.41 g g-1 in I2 aqueous solution and 9.01 g g-1 in I3- (KI/I2) aqueous solution, respectively, even in the presence of a large excess of competing anions. In the dynamic flow-through experiment, the aqueous iodine adsorption capability for I2 and I3- can reach up to 3.59 and 5.79 g g-1, respectively. Moreover, these two superphane cages are able to remove trace iodine in aqueous media from ppm level (5.0 ppm) down to ppb level concentration (as low as 11 ppb). Based on a binding-induced adsorption mechanism, such nonporous amorphous molecular materials prove superior to all existing porous adsorbents. This study can open up a new avenue for development of state-of-the-art adsorption materials for practical uses with conceptionally new nonporous amorphous superadsorbents (NAS).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yiyao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
19
|
Zeng L, Zhao M, Lin B, Song J, Tucker JHR, Wen J, Zhang X. Cobalt-Catalyzed Enantioselective Hydrogenation of Diaryl Ketones with Ferrocene-Based Secondary Phosphine Oxide Ligands. Org Lett 2023; 25:6228-6233. [PMID: 37585346 DOI: 10.1021/acs.orglett.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
A new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various ortho-substituted diaryl ketones. In addition, the diferrocenyl cobalt complex was characterized with intriguing UV-vis absorption and electrochemical properties.
Collapse
Affiliation(s)
- Liyao Zeng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Menglong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bijin Lin
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
20
|
Yin C, Jiang YF, Huang F, Xu CQ, Pan Y, Gao S, Chen GQ, Ding X, Bai ST, Lang Q, Li J, Zhang X. A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine. Nat Commun 2023; 14:3718. [PMID: 37349291 DOI: 10.1038/s41467-023-39375-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Developing catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein, we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s-1 TOF (turnover frequency) were documented for benchmark acetophenone. Up to 1,000,000 TON and 99% ee were achieved for challenging pyridyl alkyl ketone where at most 10,000 TONs are previously reported. The anionic Ir-catalyst showed a novel preferred ONa/MH instead of NNa/MH bifunctional mechanism. A selective industrial route to enantiopure nicotine has been established using this anionic Ir-catalyst for the key asymmetric hydrogenation step at 500 kg batch scale, providing 40 tons scale of product.
Collapse
Affiliation(s)
- Congcong Yin
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ya-Fei Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fanping Huang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingmin Pan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Shuang Gao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gen-Qiang Chen
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaobing Ding
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China
| | - Shao-Tao Bai
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China.
| | - Qiwei Lang
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China.
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Xumu Zhang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Almutairi N, Vijjamarri S, Du G. Manganese Salan Complexes as Catalysts for Hydrosilylation of Aldehydes and Ketones. Catalysts 2023. [DOI: 10.3390/catal13040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Manganese has attracted significant recent attention due to its abundance, low toxicity, and versatility in catalysis. In the present study, a series of manganese (III) complexes supported by salan ligands have been synthesized and characterized, and their activity as catalysts in the hydrosilylation of carbonyl compounds was examined. While manganese (III) chloride complexes exhibited minimal catalytic efficacy without activation of silver perchlorate, manganese (III) azide complexes showed good activity in the hydrosilylation of carbonyl compounds. Under optimized reaction conditions, several types of aldehydes and ketones could be reduced with good yields and tolerance to a variety of functional groups. The possible mechanisms of silane activation and hydrosilylation were discussed in light of relevant experimental observations.
Collapse
|
22
|
Gridnev ID. Co-Catalyzed Asymmetric Hydrogenation. The Same Enantioselection Pattern for Different Mechanisms. Int J Mol Sci 2023; 24:5568. [PMID: 36982642 PMCID: PMC10057697 DOI: 10.3390/ijms24065568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The mechanism of the recently reported catalyzed asymmetric hydrogenation of enyne 1 catalyzed by the Co-(R,R)-QuinoxP* complex was studied by DFT. Conceivable pathways for the Co(I)-Co(III) mechanism were computed together with a Co(0)-Co(II) catalytic cycle. It is commonly assumed that the exact nature of the chemical transformations taking place along the actually operating catalytic pathway determine the sense and level of enantioselection of the catalytic reaction. In this work, two chemically different mechanisms reproduced the experimentally observed perfect stereoselection of the same handedness. Moreover, the relative stabilities of the transition states of the stereo induction stages were controlled via exactly the same weak disperse interactions between the catalyst and the substrate.
Collapse
Affiliation(s)
- Ilya D Gridnev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119911 Moscow, Russia
| |
Collapse
|
23
|
Zhang R, Xu S, Luo Z, Liu Y, Zhang J. Enantiodivergent Hydrogenation of Exocyclic α,β-Unsaturated Lactams Enabled by Switching the N-Chirality of Iridium Catalyst. Angew Chem Int Ed Engl 2023; 62:e202213600. [PMID: 36629743 DOI: 10.1002/anie.202213600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Central chirality is an important chiral element used in the design of chiral ligands and catalysts. Mostly, the attention of organic chemists is focused on developing of chiral ligands with stable stereogenic centers. However, the N-chirality in chiral ligand design has been rarely explored due to its flexibility. Here we demonstrate the design, synthesis, and application of a class of simple P,N-ligands with flexible N-chirality and their derived iridium complexes with fixed N-chiral stereocenters. Both fixed configurations of the N-stereocenter of the iridium complexes could be selectively formed from the same chiral ligand. This pair of diastereoisomeric iridium complexes showed good performance in the enantiodivergent asymmetric hydrogenation of exocyclic α,β-unsaturated lactams. The N-H group plays an impressive role in catalytic activity. Computational studies emphasized the importance of N-chirality and N-H group.
Collapse
Affiliation(s)
- Ronghua Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shan Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhou Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
24
|
Zhang L, Liu C, Sun M, Liang C, Cao L, Yao X, Ma Y, Cheng R, Ye J. Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones with Tridentate PNN Ligands Bearing Unsymmetrical Vicinal Diamines. J Org Chem 2023. [PMID: 36787380 DOI: 10.1021/acs.joc.2c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
An iridium catalytic system with a ferrocene-based phosphine ligand bearing a modular and tunable unsymmetrical vicinal diamine scaffold was developed for the asymmetric hydrogenation of aryl ketones. This approach provided a powerful tool for the enantioselective synthesis of diverse chiral alcohols with excellent reactivity and enantioselectivity (up to 99% yield, up to 99% ee, and up to 50,000 turnover number). The substituents and chirality of unsymmetrical diamines in ligands played an important role in the satisfactory results.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaoming Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liming Cao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiantong Yao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Niu T, Liu LX, Wu B, Zhou YG. Synthesis of Tridentate PNO Ligands with Planar Chirality and Application in Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones. J Org Chem 2023. [PMID: 36802570 DOI: 10.1021/acs.joc.2c02358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A series of [2,2]paracyclophane-based tridentate PNO ligands with planar chirality were designed and synthesized. The easily prepared chiral tridentate PNO ligands were successfully applied to the iridium-catalyzed asymmetric hydrogenation of simple ketones, giving chiral alcohols with high efficiency and excellent enantioselectivities (up to 99% yield and >99% ee). Control experiments revealed the indispensability of both N-H and O-H in the ligands.
Collapse
Affiliation(s)
- Tong Niu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
26
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
27
|
Wang Z, Chen S, Chen C, Yang Y, Wang C. Manganese-Catalyzed Hydrogenative Desulfurization of Thioamides. Angew Chem Int Ed Engl 2023; 62:e202215963. [PMID: 36428247 DOI: 10.1002/anie.202215963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Earth-abundant transition metal catalysis has emerged as an important alternative to noble transition metal catalysis in hydrogenation reactions. However, there has been no Earth-abundant transition metal catalyzed hydrogenation of thioamides reported so far, presumably due to the poisoning of catalysts by sulfur-containing molecules. Herein, we described the first manganese-catalyzed hydrogenative desulfurization of thioamides to amines or imines. The key to success is the use of MnBr(CO)5 instead of commonly-employed pincer-manganese catalysts, together with simple NEt3 and CuBr. This protocol features excellent selectivity on sole cleavage of the C=S bond of thioamides, in contrast to the only known Ru-catalyzed hydrogenation of thioamides, and unprecedented chemo-selectivity tolerating vulnerable functional groups such as nitrile, ketone, aldehyde, ester, sulfone, nitro, olefin, alkyne and heterocycle, which are usually susceptible to common hydride-type reductive protocols.
Collapse
Affiliation(s)
- Zelong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silin Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China
| | - Chao Chen
- Wuyi University, School of Biotechnology and Health Sciences, Jiangmen, 529020, China.,Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yunhui Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Oates CL, Goodfellow AS, Bühl M, Clarke ML. Rational Design of a Facially Coordinating P,N,N Ligand for Manganese-Catalysed Enantioselective Hydrogenation of Cyclic Ketones. Angew Chem Int Ed Engl 2023; 62:e202212479. [PMID: 36341982 PMCID: PMC10107995 DOI: 10.1002/anie.202212479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
DFT calculations on the full catalytic cycle for manganese catalysed enantioselective hydrogenation of a selection of ketones have been carried out at the PBE0-D3PCM //RI-BP86PCM level. Mn complexes of an enantiomerically pure chiral P,N,N ligand have been found to be most reactive when adopting a facial coordination mode. The use of a new ligand with an ortho-substituted dimethylamino-pyridine motif has been calculated to completely transform the levels of enantioselectivity possible for the hydrogenation of cyclic ketones relative to the first-generation Mn catalysts. In silico evaluation of substrates has been used to identify those likely to be reduced with high enantiomer ratios (er), and others that would exhibit less selectivity; good agreements were then found in experiments. Various cyclic ketones and some acetophenone derivatives were hydrogenated with er's up to 99 : 1.
Collapse
Affiliation(s)
- Conor L. Oates
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Alister S. Goodfellow
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Michael Bühl
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Matthew L. Clarke
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| |
Collapse
|
29
|
Manganese(I)-Catalyzed Asymmetric (Transfer) Hydrogenation of Ketones: An Insight into the Effect of Chiral PNN and NN ligands. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Mondal A, Karattil Suresh A, Sivakumar G, Balaraman E. Sustainable and Affordable Synthesis of (Deuterated) N-Methyl/Ethyl Amines from Nitroarenes. Org Lett 2022; 24:8990-8995. [DOI: 10.1021/acs.orglett.2c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
31
|
Shabade AB, Sharma DM, Bajpai P, Gonnade RG, Vanka K, Punji B. Room temperature chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds by using a well-defined mixed donor Mn(i) pincer catalyst. Chem Sci 2022; 13:13764-13773. [PMID: 36544725 PMCID: PMC9710210 DOI: 10.1039/d2sc05274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,β-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,β-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.
Collapse
Affiliation(s)
- Anand B. Shabade
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Dipesh M. Sharma
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Priyam Bajpai
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Centre for Material Characterization, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India,Physical and Material Chemistry Division, CSIR-NCLDr Homi Bhabha RoadPuneIndia
| | - Benudhar Punji
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL)Dr Homi Bhabha RoadPune 411008India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| |
Collapse
|
32
|
Ribeiro Gouveia L, Ison EA. Well-Defined ENENES Re and Mn Complexes and Their Application in Catalysis: The Role of Potassium tert-Butoxide. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liana Ribeiro Gouveia
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Elon A. Ison
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
33
|
Wang L, Lin J, Xia C, Sun W. Manganese-catalyzed asymmetric transfer hydrogenation of hydrazones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Jayaprakash H, Coburger P, Wörle M, Togni A, Grützmacher H. Recyclable Mn(I) Catalysts for Base-Free Asymmetric Hydrogenation: Mechanistic, DFT and Catalytic Studies. Chemistry 2022; 28:e202201522. [PMID: 35652608 PMCID: PMC9540457 DOI: 10.1002/chem.202201522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/07/2022]
Abstract
We report here a mechanistic, DFT and catalytic study on a series of Mn(I) complexes 1, 2(a-d), 3, 4. The studies apprehended the requirements for Mn(I) complexes to be active in both asymmetric direct (AH) and transfer hydrogenations (ATH). The investigations disclosed 6 vital factors accelerating the formation of a resting species, which plays a significant role in lowering the activities of the Mn(I) complex 1 in ATH and AH, respectively. In addition, we also report here a base free Mn(I) catalyzed ATH of aryl alkyl ketones with high enantioselectivity (up to 98 % ee) and improved activity. More significantly, a novel and simple single-step process for recycling the resting species from the catalytic leftover has been discovered. Notably, the studies provide evidence for the existence of two different temperature dependent mechanisms for AH and ATH, in contrast to previous studies on related systems.
Collapse
Affiliation(s)
- Harikrishnan Jayaprakash
- Department of Chemistry and Applied BiosiencesSwiss Federal Institute of Technology (ETH) Zürich8093ZürichSwitzerland
| | - Peter Coburger
- Department of Chemistry and Applied BiosiencesSwiss Federal Institute of Technology (ETH) Zürich8093ZürichSwitzerland
| | - Michael Wörle
- Department of Chemistry and Applied BiosiencesSwiss Federal Institute of Technology (ETH) Zürich8093ZürichSwitzerland
| | - Antonio Togni
- Department of Chemistry and Applied BiosiencesSwiss Federal Institute of Technology (ETH) Zürich8093ZürichSwitzerland
| | - Hansjorg Grützmacher
- Department of Chemistry and Applied BiosiencesSwiss Federal Institute of Technology (ETH) Zürich8093ZürichSwitzerland
| |
Collapse
|
35
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
36
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
37
|
Császár Z, Kovács R, Fonyó M, Simon J, Bényei A, Lendvay G, Bakos J, Farkas G. Testing the role of the backbone length using bidentate and tridentate ligands in manganese-catalyzed asymmetric hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Wan YB, Hu XP. Highly Enantioselective Iridium-Catalyzed Hydrogenation of o-Amidophenyl Ketones Enabled by 1,2-Diphenylethylenediamine-Derived P,N,N-Ligands with Tertiary Amine Terminus. Org Lett 2022; 24:5797-5801. [PMID: 35912453 DOI: 10.1021/acs.orglett.2c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A readily available and highly modular class of chiral P,N,N-ligands based on a structurally flexible nonchiral phosphine-amine framework with an optically active 1,2-diphenylethylenediamine unit bearing a tertiary amine terminus as the chiral source have been developed and successfully applied in the Ir-catalyzed asymmetric hydrogenation of o-amidophenyl ketones. These tridentate P,N,N-ligands exhibited excellent activity, enantioselectivity, and substrate tolerance, thus furnishing various optically active o-amidobenzhydrols in up to 99% yields and with >99% ee. The utility of this protocol has been proven by synthetically diverse product transformation and highly enantioselective production of a rice plant growth regulator, (S)-inabenfide.
Collapse
Affiliation(s)
- Yin-Bo Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
39
|
Shimbayashi T, Ito H, Shimizu M, Sano H, Sakaki S, Fujita KI. Effect of Substituents in Functional Bipyridonate Ligands on Ruthenium‐Catalyzed Dehydrogenative Oxidation of Alcohols: An Experimental and Computational Study. ChemCatChem 2022. [DOI: 10.1002/cctc.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Shimbayashi
- Kyoto University Graduate School of Human and Environmental Studies Yoshidanihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Hajime Ito
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Mineyuki Shimizu
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Hayato Sano
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Shigeyoshi Sakaki
- Kyoto University: Kyoto Daigaku Element Strategy Initiative for Catalysts and Batteries Goryo-Ohara, Nishikyo-ku 615-8245 Kyoto JAPAN
| | - Ken-ichi Fujita
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies Yoshidanihonmatsucho, Sakyo-ku 606-8501 Kyoto JAPAN
| |
Collapse
|
40
|
Li F, Long L, He YM, Li Z, Chen H, Fan QH. Manganese-Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022; 61:e202202972. [PMID: 35438237 DOI: 10.1002/anie.202202972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/23/2022]
Abstract
A unique family of chiral peraza N6 -macrocyclic ligands, which are conformationally rigid and have a tunable saddle-shaped cavity, is described. Utilizing their manganese(I) complexes, the first example of earth-abundant transition metal-catalyzed asymmetric formal anti-Markovnikov hydroamination of allylic alcohols was realized, providing a practical access to synthetically important chiral γ-amino alcohols in excellent yields and enantioselectivities (up to 99 % yield and 98 % ee). The single-crystal structure of a MnI complex indicates that the manganese atom coordinates with the chiral dialkylamine moiety in a bidentate fashion. Further DFT calculations revealed that five of the six nitrogen atoms in the ligand were engaged in multiple noncovalent interactions with Mn, an isopropanol molecule, and a β-amino ketone intermediate via coordination, hydrogen bonding, and/or CH⋅⋅⋅π interactions in the transition state, showing a remarkable role of the macrocyclic framework.
Collapse
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
41
|
Fessard TC, Gospodinov I, Klapötke TM, Stierstorfer J, Voggenreiter M. Energetic but insensitive
spiro
‐tetrahydrotetrazines based on oxetane‐3‐one. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ivan Gospodinov
- Spirochem AG, WRO‐1047‐3, Mattenstrasse 24 Basel Switzerland
| | - Thomas M. Klapötke
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| | - Jörg Stierstorfer
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| | - Michael Voggenreiter
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| |
Collapse
|
42
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
43
|
Ma C, Tang J, Yu L, Wen K, Gan Q. Optimization of an Asymmetric Reaction in the Cavity of Chiral Aromatic Oligoamide Foldamers. Chemistry 2022; 28:e202200834. [DOI: 10.1002/chem.202200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chunmiao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Jie Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Lu Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Kehan Wen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Quan Gan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
44
|
Zhang L, Chen Q, Li L, Jiang J, Sun H, Li L, Liu T, Zhang L, Li C. Ruthenium-catalyzed asymmetric hydrogenation of aromatic and heteroaromatic ketones using cinchona alkaloid-derived NNP ligands. RSC Adv 2022; 12:14912-14916. [PMID: 35702223 PMCID: PMC9115770 DOI: 10.1039/d2ra02211g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
A series of cinchona alkaloid-based NNP ligands, including a new one, have been employed for the asymmetric hydrogenation of ketones. By combining ruthenium complexes, various aromatic and heteroaromatic ketones were smoothly reacted, yielding valuable chiral alcohols with extremely high 99.9% ee. Moreover, a proposed reaction mechanism was discussed and verified by NMR.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Jian Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University 550004 Guiyang China
| |
Collapse
|
45
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Li F, Long L, He Y, Li Z, Chen H, Fan Q. Manganese‐Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
47
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
48
|
Deng CQ, Liu J, Luo JH, Gan LJ, Deng J, Fu Y. Proton-Promoted Nickel-Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022; 61:e202115983. [PMID: 35099846 DOI: 10.1002/anie.202115983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
A robust and highly active homogeneous chiral nickel-phosphine complex for the asymmetric hydrogenation of aliphatic γ- and δ-ketoacids has been discovered. The hydrogenation could proceed smoothly in the presence of 0.0133 mol% catalyst loading (S/C=7500). The coordination chemistry and catalytic behavior of Ni(OTf)2 with (S,S)-Ph-BPE were explored by 1 H NMR and HRMS. The mechanistic studies revealed that a proton promoted the activation of the substrate C=O bond and controlled the stereoselectivity through hydrogen bonds. A series of chiral γ- and δ-alkyl substituted lactones were obtained in high yields with excellent enantioselectivities (up to 98 % yield and 99 % ee). In addition, this catalytic system also demonstrated that levulinic acid produced from a biomass feedstock was converted into chiral γ-valerolactone without loss of ee value.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia-Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
49
|
Wang Q, Zhong KB, Xu H, Li SN, Zhu WK, Ye F, Xu Z, Lan Y, Xu LW. Enantioselective Nickel-Catalyzed Si–C(sp 2) Bond Activation and Migratory Insertion to Aldehydes: Reaction Scope and Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Kang-Bao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shi-Nan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
50
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|