1
|
Han TJ, Yang QL, Hu J, Wang MC, Mei GJ. Divergent Synthesis of Chiroptical Molecular Switches Based on 1,2-Diaxial Atropisomers. JACS AU 2024; 4:4445-4454. [PMID: 39610732 PMCID: PMC11600187 DOI: 10.1021/jacsau.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024]
Abstract
The development of chiroptical molecular switches for chiral sensing, data communication, optical displays, chiral logic gates, and asymmetric catalysis is currently a vibrant frontier of science and technology. Herein, we report a practical artificial dynamic system based on a 1,2-diaxial atropisomer. Organocatalytic parallel kinetic resolution allows the divergent synthesis of two sets of stereoisomers with vicinal C-C and N-N axes from the same racemic single-axis substrates. By simply varying the configuration of the single catalyst, all four stereoisomers are accessible. The successive conduction of covalent unlocking/locking and thermal-isomerization processes enables sequential switching between all four atropisomeric states with electronic circular dichroism signal reversal, providing an example of multistate chiroptical molecular switches.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Le Yang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaen Hu
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Can Wang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan
Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
2
|
Menke JM, Trapp O. Pronounced Self-Induced Diastereomeric Anisochronism in Anisidine Amino Acid Diamides. Chemistry 2024; 30:e202400623. [PMID: 38656599 DOI: 10.1002/chem.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The emergent properties resulting from selective supramolecular interactions are of significant importance for materials and chemical systems. For the directed use of such properties, a fundamental understanding of the interaction mechanism and the resulting mode of function is necessary for a tailored design. The self-induced diastereomeric anisochronism effect (SIDA), which occurs in the intermolecular interaction of chiral molecules, generates unique properties such as chiral self-recognition and nonlinear effects. Here we show that anisidine amino acid diamides lead to extraordinary signal splitting in NMR spectra through supramolecular interaction and homochiral self-recognition. By systematic experiments we have investigated the underlying SIDA effect, explored its limits and finally successfully utilized it in the determination of enantiomeric ratios by NMR spectroscopy of chiral 'SIDA-inactive' compounds such as thalidomide.
Collapse
Affiliation(s)
- Jan-Michael Menke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
3
|
Mayer LC, Heitsch S, Trapp O. Nonlinear Effects in Asymmetric Catalysis by Design: Concept, Synthesis, and Applications. Acc Chem Res 2022; 55:3345-3361. [PMID: 36351215 DOI: 10.1021/acs.accounts.2c00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asymmetric synthesis constitutes a key technology for the preparation of enantiomerically pure compounds as well as for the selective control of individual stereocenters in the synthesis of complex compounds. It is thus of extraordinary importance for the synthesis of chiral drugs, dietary supplements, flavors, and fragrances, as well as novel materials with tunable and reconfigurable chiroptical properties or the assembly of complex natural products. Typically, enantiomerically pure catalysts are used for this purpose. To prepare enantiomerically pure ligands or organocatalysts, one can make use of the natural chiral pool. Ligands and organocatalysts with an atropisomeric biphenyl and binaphthyl system have become popular, as they are configurationally stable and contain a C2-symmetric skeleton, which has been found to be particularly privileged. For catalysts with opposite configurations, both product enantiomers can be obtained. Configurationally flexible biphenyl systems initially appeared to be unsuitable for this purpose, as they racemize after successful enantiomer separation and thus are neither storable nor afford a reproducible enantioselectivity. However, there are strategies that exploit the dynamics of such ligands to stereoconvergently enrich one of the catalyst enantiomers. This can be achieved, for example, by coordinating an enantiomerically pure additive to a ligand-metal complex, which results in deracemization of the configurationally flexible biphenyl system, thereby enriching the thermodynamically preferred diastereomer. In this Account, we present our strategy to design stereochemically flexible catalysts that combine the properties of supramolecular recognition, stereoconvergent alignment, and catalysis. Such systems are capable to recognize the chirality of the target product, leading to an increase in enantioselectivity during asymmetric catalysis. We have systematically developed and investigated these smart catalyst systems and have found ways to specifically design and synthesize them for various applications. In addition to (i) reaction product-induced chiral amplification, we have developed systems with (ii) intermolecular and (iii) intramolecular recognition, and successfully applied them in asymmetric catalysis. Our results pave the way for new applications such as temperature-controlled enantioselectivity, controlled inversion of enantioselectivity with the same chirality of the recognition unit, generation of positive nonlinear effects, and targeted design of autocatalytic systems through dynamic formation of transient catalysts. Understanding such systems is of enormous importance for catalytic processes leading to symmetry breaking and amplification of small imbalances of enantiomers and offer a possible explanation of homochirality of biological systems. In addition, we are learning how to target supramolecular interactions to enhance enantioselectivities in asymmetric catalysis through secondary double stereocontrol. Configurationally flexible catalysts will enable future resource-efficient development of asymmetric syntheses, as enantioselectivities can be fully switched by stereoselective alignment of the stereochemically flexible ligand core on demand.
Collapse
Affiliation(s)
- Lena C Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Simone Heitsch
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
4
|
Golub TP, Feßner M, Engelage E, Merten C. Dynamic Stereochemistry of a Biphenyl-Bisprolineamide Model Catalyst and its Imidazolidinone Intermediates. Chemistry 2022; 28:e202201317. [PMID: 35611719 PMCID: PMC9545261 DOI: 10.1002/chem.202201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, we characterize the dynamic stereochemistry of a biphenyl-2,2'-bis(proline amide) catalyst in chloroform and DMSO as representative weakly and strongly hydrogen bonding solvents. Using vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) based spectra calculations, we show that the preferred axial stereochemistry of the catalyst is determined by solute-solvent interactions. Explicitly considering solvation with DMSO molecules is found to be essential to correctly predict the conformational preferences of the catalyst. Furthermore, we investigate the stereochemistry of the corresponding enamines and imidazolidinones that are formed upon reaction with isovaleraldehyde. The enamines are found to rapidly convert to endo-imidazolidinones and the thermodynamically favored exo-imidazolidinones are formed only slowly. The present study demonstrates that the stereochemistry of these imidazolidinones can be deduced directly from the VCD spectra analysis without any further detailed analysis of NMR spectra. Hence, we herein exemplify the use of VCD spectroscopy for an in situ characterization of intermediates relevant in asymmetric catalysts.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Malte Feßner
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
5
|
Menke JM, Trapp O. Controlling the Enantioselectivity in an Adaptable Ligand by Biomimetic Intramolecular Interlocking. J Org Chem 2022; 87:11165-11171. [PMID: 35939525 DOI: 10.1021/acs.joc.2c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For the preparation of chiral drugs, both stereochemically stable and flexible catalysts in combination with chiral auxiliaries can be used. Here, chiral induction plays an important role in generating an enantiomerically pure catalyst. We demonstrate a successful approach to the spontaneous deracemization of tropos ligands for asymmetric catalysis. Three different constitutional isomers of a bisphosphinite ligand decorated with l-valine moieties (interaction units) linked to the flexible biphenyl system by a phenylene bridge for inducing a chiral switch were prepared. The substitution pattern's influence on the attached intermolecular recognition sites was systematically investigated. We can show that biomimetic intramolecular hydrogen bonding leads to a pronounced diastereoselective enrichment of one of the ligand stereoisomers. As a result, in the asymmetric Rh-catalyzed hydrogenation of prochiral olefins using these ligands, enantiomeric ratios of up to 95.8:4.2 (S) were obtained. Of particular note is the inversion of enantioselectivity relative to the previously reported BIBIPHOS-Rh catalyst due to the altered orientation of the biphenyl moiety from (Rax) to (Sax). The enantioselectivities achieved by appropriate intramolecular interlocking are remarkable for a tropos ligand/catalyst. The strategy presented here represents a powerful approach for the spontaneous alignment of tropos ligands, yielding high enantioselectivities in asymmetric catalysis.
Collapse
Affiliation(s)
- Jan-Michael Menke
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
6
|
Makino S, Horiuchi T, Ishida T, Sano N, Yajima T, Sogawa H, Sanda F. Synthesis of Platinum-Containing Conjugated Polymers Bearing Chiral Phosphine Ligands. Study of Geometries and Intermolecular Interactions Leading to Aggregation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soya Makino
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takashi Horiuchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Takahiro Ishida
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Natsuhiro Sano
- R&D Division, Nippon Chemical Industrial Co., LTD., 9-11-1 Kameido, Koto-ku, Tokyo 136-8515, Japan
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
7
|
Betzenbichler G, Huber L, Kräh S, Morkos MLK, Siegle AF, Trapp O. Chiral stationary phases and applications in gas chromatography. Chirality 2022; 34:732-759. [PMID: 35315953 DOI: 10.1002/chir.23427] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Chiral compounds are ubiquitous in nature and play a pivotal role in biochemical processes, in chiroptical materials and applications, and as chiral drugs. The analysis and determination of the enantiomeric ratio (er) of chiral compounds is of enormous scientific, industrial, and economic importance. Chiral separation techniques and methods have become indispensable tools to separate chiral compounds into their enantiomers on an analytical as well on a preparative level to obtain enantiopure compounds. Chiral gas chromatography and high-performance liquid chromatography have paved the way and fostered several research areas, that is, asymmetric synthesis and catalysis in organic, medicinal, pharmaceutical, and supramolecular chemistry. The development of highly enantioselective chiral stationary phases was essential. In particular, the elucidation and understanding of the underlying enantioselective supramolecular separation mechanisms led to the design of new chiral stationary phases. This review article focuses on the development of chiral stationary phases for gas chromatography. The fundamental mechanisms of the recognition and separation of enantiomers and the selectors and chiral stationary phases used in chiral gas chromatography are presented. An overview over syntheses and applications of these chiral stationary phases is presented as a practical guidance for enantioselective separation of chiral compound classes and substances by gas chromatography.
Collapse
Affiliation(s)
| | - Laura Huber
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabrina Kräh
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexander F Siegle
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
8
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate‐Selective Silylation of Primary Alcohols via Remote Functional‐Group Discrimination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida Kyoto, Sakyo-ku 606-8501 Kyoto Japan
| | - Takeo Kawabata
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
- Current address: Department of Pharmaceutical Sciences International University of Health and Welfare 137-1 Enokizu Okawa Fukuoka 831-8501 Japan
| |
Collapse
|
9
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate-Selective Silylation of Primary Alcohols via Remote Functional-Group Discrimination. Angew Chem Int Ed Engl 2021; 61:e202114118. [PMID: 34942061 DOI: 10.1002/anie.202114118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Silylation of alcohols has generally been known to take place at the sterically most accessible less-hindered hydroxy group. However, we report here the catalyst-controlled substrate-selective silylation of primary alcohols, where the selectivity was controlled independent of the innate reactivity of the hydroxy group based on the steric environment. The chain-length-selective silylation of 1, n- amino alcohol derivatives was achieved, where 1,5-amino alcohol derivatives showed outstanding high reactivity in the presence of analogues with a shorter or longer chain length under catalyst-controlled conditions. A highly substrate-selective catalytic silylation of pentanol analogues was also developed, in which the remote functionality at C(5) from the reacting hydroxy groups was effectively discriminated on silylation.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida Kyoto, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
- Current address: Department of Pharmaceutical Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| |
Collapse
|
10
|
Menke J, Scholz K, Trapp O. Synthesis of Stereochemically Flexible Cyclic Biphenylbisphosphinite Ligands: Control of the Dynamics and Selectivity. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jan‐Michael Menke
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5–13 DE-81377 Munich Germany
| | - Katharina Scholz
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5–13 DE-81377 Munich Germany
| | - Oliver Trapp
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5–13 DE-81377 Munich Germany
| |
Collapse
|
11
|
Auras S, Trapp O. Scorpio‐Ligand: Synthesis of Biphenyl‐Dihydroazepine Phosphoramidite Ligands for Asymmetric Hydrogenation. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefanie Auras
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5–13 DE-81377 Munich Germany
| | - Oliver Trapp
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5–13 DE-81377 Munich Germany
| |
Collapse
|
12
|
Ikai T, Ando M, Ito M, Ishidate R, Suzuki N, Maeda K, Yashima E. Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. J Am Chem Soc 2021; 143:12725-12735. [PMID: 34347469 DOI: 10.1021/jacs.1c05620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Any polymers composed of racemic repeating units are obviously optically inactive and hence chiral functions, such as asymmetric catalysis, will not be expected at all. Contrary to such a preconceived notion, we report an unprecedented helical polymer-based highly enantioselective organocatalyst prepared by polymerization of a racemic monomer with no catalytic activity. Both the right- and left-handed helical poly(biarylylacetylene)s (PBAs) composed of dynamically racemic 2-arylpyridyl-N-oxide monomer units with N-oxide moieties located in the vicinity of the helical polymer backbone can be produced by noncovalent interaction with a chiral alcohol through deracemization of the biaryl pendants. The macromolecular helicity and the axial chirality induced in the PBAs are retained ("memorized") after complete removal of the chiral alcohol. Accordingly, the helical PBAs with dual static memory of the helicity and axial chirality show remarkable enantioselectivity (86% ee) for the asymmetric allylation of benzaldehyde. The enantioselectivity is slightly lower than that (96% ee) of the homochiral PBAs prepared from the corresponding enantiopure (R)- and (S)-monomers, but is comparable to that (88% ee) of the helical PBA composed of nonracemic monomers of ca. 60% ee.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuka Ando
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masaki Ito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryoma Ishidate
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
13
|
Abstract
Biological systems have often served as inspiration for the design of synthetic catalysts. The lock and key analogy put forward by Emil Fischer in 1894 to explain the high substrate specificity of enzymes has been used as a general guiding principle aimed at enhancing the selectivity of chemical processes by optimizing attractive and repulsive interactions in molecular recognition events. However, although a perfect fit of a substrate to a catalytic site may enhance the selectivity of a specific catalytic reaction, it inevitably leads to a narrow substrate scope, excluding substrates with different sizes and shapes from efficient binding. An ideal catalyst should instead be able to accommodate a wide range of substrates-it has indeed been recognized that enzymes also are often highly promiscuous as a result of their ability to change their conformation and shape in response to a substrate-and preferentially be useful in various types of processes. In biological adaptation, the process by which species become fitted to new environments is crucial for their ability to cope with changing environmental conditions. With this in mind, we have been exploring catalytic systems that can adapt their size and shape to the environment with the goal of developing synthetic catalysts with wide scope.In this Account, we describe our studies aimed at elucidating how metal catalysts with flexible structural units adapt their binding pockets to the reacting substrate. Throughout our studies, ligands equipped with tropos biaryl units have been explored, and the palladium-catalyzed allylic alkylation reaction has been used as a suitable probe to study the adaptability of the catalytic systems. The conformations of catalytically active metal complexes under different conditions have been studied by both experimental and theoretical methods. By the design of ligands incorporating two flexible units, the symmetry properties of metal complexes could be used to facilitate conformational analysis and thereby provide valuable insight into the structures of complexes involved in the catalytic cycle. The importance of flexibility was convincingly demonstrated when a phosphine group in a privileged ligand that is well-known for its versatility in a number of processes was exchanged for a tropos biaryl phosphite unit: the result was a truly self-adaptive ligand with dramatically increased scope.
Collapse
Affiliation(s)
- Montserrat Diéguez
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Oscar Pàmies
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Christina Moberg
- Organic
Chemistry, Department of Chemistry, KTH
Royal Institute of Technology, SE 10044 Stockholm, Sweden
| |
Collapse
|
14
|
Metlushka KE, Sadkova DN, Nikitina KA, Zinnatullin RG, Yamaleeva ZR, Ivshin KA, Kiiamov AG, Kataeva ON. Chiral recognition of N-thiophosphorylated thioureas via nickel(ii) coordination assisted by 4-dimethylaminopyridine. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Dašková V, Buter J, Schoonen AK, Lutz M, de Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021; 60:11120-11126. [PMID: 33605523 PMCID: PMC8252365 DOI: 10.1002/anie.202014955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Indexed: 01/22/2023]
Abstract
The origin of biomolecular homochirality continues to be one of the most fascinating aspects of prebiotic chemistry. Various amplification strategies for chiral compounds to enhance a small chiral preference have been reported, but none of these involves phosphorylation, one of nature's essential chemical reactions. Here we present a simple and robust concept of phosphorylation-based chiral amplification of amines and amino acids in water. By exploiting the difference in solubility of a racemic phosphoramidate and its enantiopure form, we achieved enantioenrichment in solution. Starting with near racemic, phenylethylamine-based phosphoramidates, ee's of up to 95 % are reached in a single amplification step. Particularly noteworthy is the enantioenrichment of phosphorylated amino acids and their derivatives, which might point to a potential role of phosphorus en-route to prebiotic homochirality.
Collapse
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jeffrey Buter
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Martin Lutz
- Crystal and Structural ChemistryBijvoet Centre for Biomolecular ResearchUtrecht UniversityPadualaan 83584CHUtrechtThe Netherlands
| | - Folkert de Vries
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
16
|
Dašková V, Buter J, Schoonen AK, Lutz M, Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Folkert Vries
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
17
|
Trapp O. Efficient Amplification in Soai's Asymmetric Autocatalysis by a Transient Stereodynamic Catalyst. Front Chem 2020; 8:615800. [PMID: 33363117 PMCID: PMC7755983 DOI: 10.3389/fchem.2020.615800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Mechanisms leading to a molecular evolution and the formation of homochirality in nature are interconnected and a key to the underlying principles that led to the emergence of life. So far proposed mechanisms leading to a non-linear reaction behavior are based mainly on the formation of homochiral and heterochiral dimers. Since homochiral and heterochiral dimers are diastereomers of each other, the minor enantiomer is shifted out of equilibrium with the major enantiomer by dimer formation and thus a reaction or catalysis can be dominated by the remaining molecules of the major enantiomer. In this article a mechanism is shown that leads to homochirality by the formation of a highly catalytically active transient intermediate in a stereodynamically controlled reaction. This is demonstrated by Soai's asymmetric autocatalysis, in which aldehydes are transformed into the corresponding alcohols by addition of dialkylzinc reagents. The mechanism of chirogenesis proposed here shows that an apparently inefficient reaction is the best prerequisite for a selection mechanism. In addition, stereodynamic control offers the advantage that the minor diastereomeric intermediate can be interconverted into the major diastereomer and thus be stereoeconomically efficient. This is supported by computer simulation of reaction kinetics.
Collapse
Affiliation(s)
- Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
- Max-Planck-Institute for Astronomy, Heidelberg, Germany
| |
Collapse
|
18
|
Perić B, Szalontai G, Borovina M, Vikić-Topić D, Kirin SI. Symmetry breaking in the solid state of 9,10-anthracene amino acid conjugates as seen by X-ray diffraction and NMR spectroscopy. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Trapp O, Scholtes JF. Asymmetric Induction and Amplification in Stereodynamic Catalytic Systems by Noncovalent Interactions. Synlett 2020. [DOI: 10.1055/a-1274-2777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractThe local transmission of chiral information by noncovalent interactions is one of the most fundamental processes broadly found in nature, i.e. in complex biochemical systems. This review summarizes our accomplishments in investigating chiral induction in stereodynamic ligands and catalysts by weak intermolecular interactions. It includes our efforts to characterize numerous stereodynamic compounds in detail with respect to their thermodynamic and kinetic properties. Furthermore, many stereolabile ligands for enantioselective catalysis are described, where directed stereoinduction afforded highly enantio- or diastereoenriched catalysts for subsequent selective asymmetric transformations. Various approaches for the dynamic enrichment of one of the catalyst’s conformers are presented, such as noncovalent interaction of the ligand with a chiral environment or a chiral solute. Finally, successful chemical systems are presented in which a process of chiral induction can be coupled with an autoinductive mechanism triggered by the chirality of its own reaction product, realizing Nature-inspired feedback loops resulting in self-amplifying, enantioselective catalytic reactions.1 Introduction2 Mapping the Stereodynamic Landscape3 Chiral Induction by Noncovalent Interactions4 Autoinduction and Chiral Amplification5 Self-Alignment and Emergence of Chirality6 Conclusion
Collapse
|
20
|
Liu X, Wen J, Yao L, Nie H, Jiang R, Chen W, Zhang X. Highly Chemo- and Enantioselective Hydrogenation of 2-Substituted-4-oxo-2-alkenoic Acids. Org Lett 2020; 22:4812-4816. [PMID: 32519872 DOI: 10.1021/acs.orglett.0c01618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly chemo- and enantioselective hydrogenation of (E)-2-substituted-4-oxo-2-alkenoic acids was established for the first time using the Rh/JosiPhos complex, affording a series of chiral α-substituted-γ-keto acids with excellent results (up to 99% yield and >99% ee) and high efficiency (up to 3000 TON). In addition, the importance of this methodology was further demonstrated by a concise and gram-scale synthesis of the anti-inflammatory drug (R)-flobufen.
Collapse
Affiliation(s)
- Xian Liu
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Yao
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Huifang Nie
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ru Jiang
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Weiping Chen
- School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Baumann AN, Reiners F, Siegle AF, Mayer P, Trapp O, Didier D. Thiete Dioxides as Templates Towards Twisted Scaffolds and Macrocyclic Structures. Chemistry 2020; 26:6029-6035. [PMID: 32119146 PMCID: PMC7318563 DOI: 10.1002/chem.201905751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Indexed: 11/07/2022]
Abstract
Thiete dioxide units have been employed as a template for further functionalization through C-H activation strategies. Using simple thiete dioxide building blocks, a new library of axially chiral molecules has been synthesized that owe their stability to electrostatic interactions in the solid state. Similar starting materials were further engaged in the formation of cyclic trimeric structures, opening the pathway to unprecedented macrocyclic ring systems.
Collapse
Affiliation(s)
- Andreas N. Baumann
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| | - Felix Reiners
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| | - Alexander F. Siegle
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| | - Oliver Trapp
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| | - Dorian Didier
- Department of ChemistryLudwig-Maximilians UniversityButenandtstraße 5–1381377MunichGermany
| |
Collapse
|
22
|
Wang H, Xiao ZJ. The crystal structure of bis( N-oxy-2-(1 H-tetrazol-1-yl) acetamide κ 2
O, O′)-diaqua-zinc(II), C 6H 12ZnN 10O 6. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
[Zn(C3H4N5O2)2(H2O)2], orthorhombic, Pbcn (no. 60), a = 19.6175(12) Å, b = 7.2887(5) Å, c = 9.3499(6) Å, V = 1336.9(2) Å3, Z = 4, R
gt(F) = 0.0276, wR
ref(F
2) = 0.0605, T = 293(2) K.
Collapse
Affiliation(s)
- Hui Wang
- College of Materials Science and Engineering, Huaqiao University , Xiamen 361021 , Fujian , P.R. China
| | - Zi-Jing Xiao
- College of Materials Science and Engineering, Huaqiao University , Xiamen 361021 , Fujian , P.R. China
| |
Collapse
|
23
|
Li Y, Liu C, Bai X, Tian F, Hu G, Sun J. Enantiomorphic Microvortex‐Enabled Supramolecular Sensing of Racemic Amino Acids by Using Achiral Building Blocks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yike Li
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Xuan Bai
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
- The State Key Laboratory of Nonlinear MechanicsInstitute of MechanicsChinese Academy of Sciences Beijing 100190 China
| | - Fei Tian
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Guoqing Hu
- Department of Engineering MechanicsZhejiang University Hangzhou 310027 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
24
|
Li Y, Liu C, Bai X, Tian F, Hu G, Sun J. Enantiomorphic Microvortex‐Enabled Supramolecular Sensing of Racemic Amino Acids by Using Achiral Building Blocks. Angew Chem Int Ed Engl 2020; 59:3486-3490. [DOI: 10.1002/anie.201913882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Yike Li
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Xuan Bai
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
- The State Key Laboratory of Nonlinear MechanicsInstitute of MechanicsChinese Academy of Sciences Beijing 100190 China
| | - Fei Tian
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| | - Guoqing Hu
- Department of Engineering MechanicsZhejiang University Hangzhou 310027 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
25
|
Scholtes JF, Trapp O. Design and synthesis of a stereodynamic catalyst with reversal of selectivity by enantioselective self-inhibition. Chirality 2019; 31:1028-1042. [PMID: 31646689 DOI: 10.1002/chir.23132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Chirality plays a pivotal role in an uncountable number of biological processes, and nature has developed intriguing mechanisms to maintain this state of enantiopurity. The strive for a deeper understanding of the different elements that constitute such self-sustaining systems on a molecular level has sparked great interest in the studies of autoinductive and amplifying enantioselective reactions. The design of these reactions remains highly challenging; however, the development of generally applicable principles promises to have a considerable impact on research of catalyst design and other adjacent fields in the future. Here, we report the realization of an autoinductive, enantioselective self-inhibiting hydrogenation reaction. Development of a stereodynamic catalyst with chiral sensing abilities allowed for a chiral reaction product to interact with the catalyst and change its selectivity in order to suppress its formation, which caused a reversal of selectivity over time.
Collapse
Affiliation(s)
- Jan Felix Scholtes
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany.,Max-Planck-Institute for Astronomy, Heidelberg, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany.,Max-Planck-Institute for Astronomy, Heidelberg, Germany
| |
Collapse
|
26
|
Scholtes JF, Trapp O. Enantioselectivity Induced by Stereoselective Interlocking: A Novel Core Motif for Tropos Ligands. Chemistry 2019; 25:11707-11714. [PMID: 31336015 PMCID: PMC7522685 DOI: 10.1002/chem.201902017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Well-defined supramolecular interactions are a powerful tool to control the stereochemistry of a catalytic reaction. In this paper, we report a novel core motif for fluxional 2,2'-biphenyl ligands carrying (S)-amino acid-derived interaction sites in 5,5'-position that cause spontaneous enrichment of the Rax rotamer. The process is based on strong non-covalent interlocking between interaction sites, which causes diastereoselective formation of a supramolecular ligand dimer, in which the axial chirality of the two subunits is dictated by the stereochemical information in the amino acid residues. The detailed structure of the dimer was elucidated by NMR spectroscopy and single-crystal X-ray analysis. Three different phosphorus-based ligand types, namely a bisphosphine, a bisphosphinite and a phosphoramidite were synthesized and characterized. Whereas the first one was found to exist in a strongly weighted equilibrium, the two others each exhibited stereoconvergent behavior transforming into the diastereopure Rax rotamer. Enriched ligands were used in rhodium-mediated asymmetric hydrogenation reactions of prochiral olefins in which very high enantioselectivities of up to 96:4 were achieved.
Collapse
Affiliation(s)
- Jan Felix Scholtes
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Max-Planck-Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Max-Planck-Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| |
Collapse
|
27
|
Scholtes JF, Trapp O. Supramolecular Interlocked Biphenyl Ligands for Enantioselective Ti-Catalyzed Alkylation of Aromatic Aldehydes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jan Felix Scholtes
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Max-Planck-Institute for Astronomy, 69117 Heidelberg, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Max-Planck-Institute for Astronomy, 69117 Heidelberg, Germany
| |
Collapse
|