1
|
Selikhov AN, Nelyubina YV, Aysin RR, Trifonov AA. Low-coordinate potassium alkoxide - an efficient trap for arenes: the role of η n non-covalent bonding in substrate activation for C-H bond metalation. Dalton Trans 2025; 54:4503-4517. [PMID: 39930831 DOI: 10.1039/d4dt03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Metalation of bulky tris(2-(piperidin-1-yl-methyl)phenyl)methanol [(C5H10N)CH2C6H4-o]3COH with (Me3Si)2NK in Et2O results in a dimeric potassium alkoxide {[(C5H10N)CH2C6H4-o]3C(μ2-O)K(Et2O)}2 (1). The Et2O molecule can be removed from the K+ coordination sphere affording coordinatively unsaturated alkoxide species which readily traps π-donor molecules. In the presence of excess arene, the reactions result in ηn-π-complexes, retaining in the crystal state a dimeric core {[(C5H10N)CH2C6H4-o]3C(μ2-O)K(ηn-arene)}2 (arene = C6H6 (2), CH3C6H5 (3), C10H8 (4)). With C6H5OMe and C6H5NMe2 molecules containing competing n- and π-donating sites, the reactions proceed differently: the former coordinates to K+ through an oxygen lone pair resulting in {[(C5H10N)CH2C6H4-o]3C(μ2-O)K(κ1-O(Me)C6H5)}2 (5) while for the latter, π-arene interaction turns out to be preferable, yielding {[(C5H10N)CH2C6H4-o]3C(μ2-O)K(η2-C6H5NMe2)}2 (6). The reactions with equimolar amounts of benzene or thiophene afford coordination polymers [{[(C5H10N)CH2C6H4-o]3C(μ2-O)K}2(μ-C6H6)]n (7) and [{[(C5H10N)CH2C6H4-o]3C(μ2-O)K}2(μ-C4H4S)]n (8), in which benzene and thiophene molecules are μ-bridging two K+ ions. The treatment of {[(C5H10N)CH2C6H4-o]3C(μ2-O)K(η2-CH3C6H5))}2 with Me3SiCH2Li or n-BuLi (1.2 eq.) in hexane at 20 °C results in the facile metalation of the Me group of toluene, forming [PhCH2K]n and lithium alkoxide. This model reaction provides a deeper insight into the probable mechanism of metalation of CH bonds under Lochmann-Schlosser superbasic conditions, and the role and the nature of the synergistic effect of two metals. The calculations and QTAIM analysis were performed for 1-8 and model molecules as well.
Collapse
Affiliation(s)
- Alexander N Selikhov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603137, 49 Tropinina str., Nizhny Novgorod, GSP-445, Russia.
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia
| | - Rinat R Aysin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia
| | - Alexander A Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences 603137, 49 Tropinina str., Nizhny Novgorod, GSP-445, Russia.
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, GSP-1, Russia
| |
Collapse
|
2
|
Haynes MD, O'Reilly A, Poole AJM, Roper AF, Thum S, Morris LJ, Coles MP, Fulton JR, Harder S, Turner ZR, O'Hare D. Heavier alkaline earth and heterobimetallic s-block "ate" complexes of a di(amido)siloxane ligand: solid-state structure and dynamic solution-phase behaviour. Dalton Trans 2025; 54:4542-4555. [PMID: 39937123 DOI: 10.1039/d5dt00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The diverse solid-state structures and solution-phase dynamics of both neutral and heterometallic s-block "ate" complexes of the heavier alkaline earth metals (Ae; Ca-Ba) supported by a chelating and flexible di(amido)siloxane ligand ([NON-DippL]2- = [O(SiMe2NDipp)2]2-) are described, enabling comparison with those of closely related di(amido) ligands based on either flexible aliphatic or rigid xanthene-based backbones. Three dimeric alkaline earth complexes [(NON-DippL)Ae]2 (Ae = Ca (2), Sr (3) and Ba (4)) which feature a κ3-N,O,N'-κ1-N'-tridentate coordination mode were prepared from protonolysis reactions between NON-DippLH2 with (Ae = Ca, Sr and Ba); N'' = [N(SiMe3)2]-. In tetrahydrofuran, these complexes were readily converted into the monomeric adducts [(NON-DippL)Ae(thf)n] (n = 2, Ae = Ca (5); n = 3, Ae = Sr (6) and Ba (7)). Heterometallic Ae/K amide "ate" complexes were afforded through two routes: reaction of previously reported [(NON-DippL)Mg]2 (1) with two equivalents of KN'' at elevated temperatures resulted in [(NNO-DippL)Mg(μ-N'')K]n (8; NNO-DippL = [OSiMe2NDippSiMe2NDipp]2-), whereas the equimolar reaction of NON-DippLH2 with led to [(NON-DippL)Ae(μ-N'')K]n (Ae = Ca (9), Sr (10) and Ba (11)). Complexes 8-11 exist as one-dimensional coordination polymers propagated by K+-aryl π-facial interactions in the solid-state. The mixed amide/siloxide "NNO" ligand in 8 results from a 1,3-silyl retro-Brook rearrangement of the original di(amido)siloxane ligand, while the larger Ae2+ congeners readily accommodate the coordination of KN'' with the di(amido)siloxane ligand retaining a κ3-N,O,N'-tridentate motif in 9-11. Finally, the solution-phase behaviour of 8-11 in both toluene and thf were investigated indicating the reversible dissociation of KN'' from 9-11 and the thermodynamic parameters of this process were elucidated.
Collapse
Affiliation(s)
- Matthew D Haynes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Alice J M Poole
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Aisling F Roper
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Stefan Thum
- Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| | - Louis J Morris
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Sjoerd Harder
- Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| | - Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
3
|
Cai Y, Rao L, Wang Y, Chang F, He T, Zhao Y, Yu J, Wen H, Hao J, Wu A, Guan BT, Guo J, Chen P. Fabrication of atomically dispersed barium hydride catalysts for the synthesis of deuterated alkylarenes. Nat Commun 2025; 16:1868. [PMID: 39984486 PMCID: PMC11845449 DOI: 10.1038/s41467-025-57207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Marvelous natures of alkali and alkaline earth metal hydrides in catalyzing chemical transformations are being discovered. However, the synthesis of (sub)nanostructured metal hydrides, critically important to enhance their catalytic performances, is yet a very challenging task. Herein, we develop a highly reactive heterogeneous catalyst comprising atomically dispersed barium hydrides on MgO support with an ultrahigh barium loading of up to 20 wt% via a convenient preparation method involving liquid-ammonia impregnation followed by hydrogenation. The surface barium hydride species not only exhibits extraordinary reactivity toward H2 activation at room temperature, but also enables the highly efficient hydrogen isotope exchange (HIE) of both sp3 C-H and sp2 C-H bonds in nonactivated alkylarenes using D2 as the deuterium source under mild conditions. The deuteration rate at benzylic site is two orders of magnitude higher than that of bulk BaH2. This study offers an alternative synthetic route for the manufacture of deuterium-labeled compounds using a heterogenous transition metal-free hydride catalyst beyond the widely studied molecular metal complexe catalysts.
Collapse
Affiliation(s)
- Yongli Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Rao
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yun Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Fei Chang
- Yongjiang Laboratory, Ningbo, China.
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hong Wen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jingai Hao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Anan Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
4
|
Winkler L, Hinz A. Stabilisation of a Strontium Hydride with a Monodentate Carbazolyl Ligand and its Reactivity. Angew Chem Int Ed Engl 2025; 64:e202418558. [PMID: 39611319 PMCID: PMC11773309 DOI: 10.1002/anie.202418558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
The molecular strontium hydride 2 [(dtbpCbz)SrH(L)]2 (L=benzene, toluene) was isolated and stabilized by employing a sterically demanding carbazole ligand (dtbpCbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). Compound 2 was synthesized via phenylsilane metathesis with the corresponding amide (dtbpCbz)SrN(SiMe3)2 and characterized by 1H NMR, XRD and vibrational spectroscopy methods. We further investigated the stoichiometric reactivity of 2 towards carbon monoxide, azobenzene and trimethylsilylacetylene, showing three distinct reactivity pathways: addition, reduction and deprotonation. The reaction of 2 with carbon monoxide yields the ethenediolate complex 4 via addition, while with azobenzene reduction of the N-N double bond and release of hydrogen were observed, affording a heteroleptic strontium complex with a radical azobenzenyl ligand (5). The terminal alkyne is deprotonated by the hydride moiety to give the acetylide complex 6.
Collapse
Affiliation(s)
- Lucas Winkler
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry (AOC)Engesserstr. 15, Geb. 30.45KarlsruheGermany
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT)Institute of Inorganic Chemistry (AOC)Engesserstr. 15, Geb. 30.45KarlsruheGermany
| |
Collapse
|
5
|
Liu W, Wu P, Liang Y, Wei J, Luo G, Zhang WX. Rare-Earth Metal-Enabled Ring-Opening Metathesis of Benzene. J Am Chem Soc 2025; 147:1300-1306. [PMID: 39665414 DOI: 10.1021/jacs.4c15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Activation and transformation of inert C-C bonds within arenes are challenging and important topics in synthetic chemistry. While there have been some reports on the activation of C-C bonds in arene rings, the realm of metathesis reactions involving arene C-C bonds remains unexplored. Here, we report a rare-earth metal-enabled intramolecular metathesis reaction of one benzene C-C bond and another C-C single bond, assisted by the high reactivity and unique synergistic effect of rare-earth metallacycles. Mechanistic studies disclose an intriguing pathway that forms a fused tricyclic intermediate bearing a 4-membered ring through stepwise [2 + 2] cycloaddition, followed by stepwise [2 + 2] cycloreversion. The distinct reaction discovered here extends the reactivity of arenes and is expected to inspire the development of aromatic ring-opening metathesis reactions.
Collapse
Affiliation(s)
- Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yibo Liang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Gong X, Shi X, Deng P, Cheng J. Reactivity of Strontium Hydride Supported by the Superbulky Hydrotris(pyrazolyl)borate Ligand. Inorg Chem 2024; 63:20654-20663. [PMID: 39421973 PMCID: PMC11523258 DOI: 10.1021/acs.inorgchem.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Hydrogenolysis of [(TpAd,iPr)Sr{CH(SiMe3)2}] (1) (TpAd,iPr = hydrotris(3-adamantyl-5-isopropyl-pyrazolyl)borate) in hexane solution under 20 atm of H2 allowed for the isolation of strontium hydride [(TpAd,iPr)Sr(μ-H)]2 (2) in good yield. Complex 2 exhibits the dimeric nature in solid state, featuring two different bond modes between the Sr center and TpAd,iPr ligand. Treatment of complex 2 with PhC(H)═NtBu or PhCH2Bpin (Bpin = pinacolateborane) afforded the strontium amide complex [(TpAd,iPr)Sr{N(CH2Ph)(tBu)}] (4) and hydroborate complex [(TpAd,iPr)Sr{μ-HBpin(CH2Ph)}] (5), respectively. Reactions of complex 2 with 2-picoline, 2-phenylquinoline, or 2-phenylpyridine led to the formation of strontium 2-pyridylmethylene/2-picoline complex [(TpAd,iPr)Sr(2-CH2-Py)(2-picoline)] (6), reductively coupling diphenyl-biquinolide complex [{(TpAd,iPr)Sr}2(2,2'-Ph2-4,4'-dihydro-4,4'-biquinolide)] (7), and diphenyl-bipyridyl radical complex [(TpAd,iPr)Sr(6,6'-Ph2-2,2'-bipyridyl)] (8), separately. All of the complexes have been well characterized, including NMR spectrum and single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Xun Gong
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianghui Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
| | - Peng Deng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhua Cheng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Kennedy DB, Evans MJ, Jones DDL, Parr JM, Hill MS, Jones C. A series of neutral alkaline earth metal hydride complexes supported by a bulky, unsymmetrical β-diketiminate ligand, [{( Dip/TCHPNacnac)M(μ-H)} 2] (M = Mg, Ca, Sr or Ba). Chem Commun (Camb) 2024; 60:10894-10897. [PMID: 39253901 DOI: 10.1039/d4cc04286g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A bulky, unsymmetrical β-diketiminate ligand, [HC{MeCN(Dip)}{MeCN(TCHP)}]- (Dip/TCHPNacnac; Dip = 2,6-diisopropylphenyl, TCHP = 2,4,6-tricyclohexylphenyl), has been utilised in the preparation of a series of magnesium alkyl and calcium, strontium and barium amide complexes. Reaction of these with PhSiH3 afforded the first complete series of β-diketiminato heavier group 2 metal hydride complexes, [{(Dip/TCHPNacnac)M(μ-H)}2] (M = Mg, Ca, Sr or Ba). The unsymmetrical nature of the β-diketiminate ligand seemingly promotes stabilising interactions of ligand Dip groups with the metal centres in the Ca, Sr and Ba hydride complexes.
Collapse
Affiliation(s)
- Dominic B Kennedy
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Dafydd D L Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
8
|
Sengupta S, Krieck S, Westerhausen M. In situ generation of organocalcium compounds for a calcium-based Grignard-type chemistry. Dalton Trans 2024; 53:14961-14965. [PMID: 39140331 DOI: 10.1039/d4dt02035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Organocalcium compounds are highly reactive reagents whereas the alkaline-earth metal itself is a weak reductant. This discrepancy hampered a straightforward development of an organocalcium chemistry. The in situ generation of the highly reactive organocalcium reagent and immediate metalation of a H-acidic compound (iGMM) or addition onto a polar π-system (iGAM) offers not only a loophole to organocalcium reagents but opens the entry to a rich organic chemistry of this non-toxic and globally abundant alkaline-earth metal, being competitive to the organolithium chemistry.
Collapse
Affiliation(s)
- Simon Sengupta
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Sven Krieck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| |
Collapse
|
9
|
Shi X, Deng P, Rajeshkumar T, Maron L, Cheng J. Multi-electron redox reactivity of a samarium(ii) hydrido complex. Chem Sci 2024; 15:11965-11971. [PMID: 39092133 PMCID: PMC11290423 DOI: 10.1039/d4sc03104k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Well-defined low-valent molecular rare-earth metal hydrides are rare, and limited to Yb2+ and Eu2+ centers. Here, we report the first example of the divalent samarium(ii) hydrido complex [(CpAr5)SmII(μ-H)(DABCO)]2 (4) (CpAr5 = C5Ar5, Ar = 3,5-iPr2-C6H3; DABCO = 1,4-diazabicyclooctane) supported by a super-bulky penta-arylcyclopentadienyl ligand, resulting from the hydrogenolysis of the samarium(ii) alkyl complex [(CpAr5)SmII{CH(SiMe3)2}(DABCO)] (3). Complex 4 exhibits multi-electron redox reactivity toward a variety of substrates. Exposure of complex 4 to CO2 results in the formation of the trivalent samarium(iii) mixed-bis-formate/carbonate complex [(CpAr5)SmIII(μ-η2:η1-O2CH)(μ-η2:η2-CO3)(μ-η1:η1-O2CH)SmIII(CpAr5)(DABCO)] (8), mediated by hydride insertion and reductive disproportionation reactions. Complex 4 shows four-electron reduction toward four equivalents of CS2 to afford the trivalent samarium(iii) bis-trithiocarbonate complex [(CpAr5)SmIII(μ-η2:η2-CS3)(DABCO)]2 (9). A mechanistic study of the formation of complex 8 was carried out using DFT calculations.
Collapse
Affiliation(s)
- Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
| | - Peng Deng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA, UPS, Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse France
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences No. 5625, Renmin Street Changchun 130022 China
- School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
10
|
Evans MJ, Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem Soc Rev 2024; 53:5054-5082. [PMID: 38595211 DOI: 10.1039/d4cs00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
11
|
Richardson GM, Evans MJ, Rajeshkumar T, McCone JAJ, Cameron SA, Maron L, Jones C, Anker MD. Synthesis and Reactivity of Discrete Europium(II) Hydride Complexes. Chemistry 2024; 30:e202400681. [PMID: 38417144 DOI: 10.1002/chem.202400681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
The bulky β-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(μ-H)]2, [(BDIDipp/DCHP)Eu(μ-H)]2 and [(BDIDipp/TCHP)Eu(μ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of β-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.
Collapse
Affiliation(s)
- Georgia M Richardson
- School of Chemical and Physical Sciences/Ferrier Institute, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Matthew J Evans
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Thayalan Rajeshkumar
- Université de Toulouse et CNRS, INSA UPS, UMR5215, LPCNO, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Jordan A J McCone
- School of Chemical and Physical Sciences/Ferrier Institute, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Scott A Cameron
- School of Chemical and Physical Sciences/Ferrier Institute, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA UPS, UMR5215, LPCNO, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Cameron Jones
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Mathew D Anker
- School of Chemical and Physical Sciences/Ferrier Institute, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
12
|
Huo R, Armstrong AJ, Nelmes GR, Lawes DJ, Edwards AJ, McMullin CL, Hicks J. Stabilisation of the [SiH 6] 2- Anion within a Supramolecular Assembly. Chemistry 2024; 30:e202400662. [PMID: 38376067 DOI: 10.1002/chem.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
The hypercoordinate [SiH6]2- anion is not stable in solution. Here, we report the room temperature, solution stable molecular [SiH6]2- complex, [{KCa(NON)(OEt2)}2][SiH6] (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene)), where the [SiH6]2- anion is stabilised within a supramolecular assembly that mimics the solid-state environment of the anion in the lattice of K2SiH6. Solution-state reactivity of the complex towards carbon monoxide, benzaldehyde, azobenzene and acetonitrile is reported, yielding a range of reduction and C-C coupled products.
Collapse
Affiliation(s)
- Ryan Huo
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Alicia J Armstrong
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Gareth R Nelmes
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Douglas J Lawes
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Alison J Edwards
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
13
|
Mondal S, Sarkar S, Mandal C, Mallick D, Mukherjee D. Fluorenyl-tethered N-heterocyclic carbene (NHC): an exclusive C-donor ligand for heteroleptic calcium and strontium chemistry. Chem Commun (Camb) 2024; 60:4553-4556. [PMID: 38568715 DOI: 10.1039/d4cc00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Exclusive C-donating ligands are rarely used with kinetically labile heavier alkaline earths (Ca, Sr, Ba). We report herein the aptitude of a combination of NHC with fluorenyl connected by a flexible -(CH2)2- linker as a ligand support for heteroleptic Ca- and Sr-N(SiMe3)2 and iodides. The Ca-N(SiMe3)2 complex even catalyzes the intramolecular hydroamination of aminoalkenes to showcase the effectiveness of this ligand framework.
Collapse
Affiliation(s)
- Sumana Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Subham Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
14
|
Hadlington TJ. An anionic beryllium hydride dimer with an exceedingly short Be⋯Be distance. Dalton Trans 2024; 53:882-886. [PMID: 38168968 DOI: 10.1039/d3dt03976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Heteroleptic hydride complexes of the group 2 metals have seen considerable attention as Earth-abundant synthetic tools, yet anionic derivatives are exceedingly rare. We described the facile synthesis and in-depth characterisation of an anionic beryllium hydride dimer, featuring a dynamic [Be2H3] cluster at its core with a short Be⋯Be distance. Despite this, there is no formal Be-Be bond in this complex, with only hydride bridging interactions leading to this remarkable structural attribute.
Collapse
Affiliation(s)
- Terrance J Hadlington
- Fakultät für Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany.
| |
Collapse
|
15
|
Townrow OPE, Färber C, Zenneck U, Harder S. Metal Vapour Synthesis of an Organometallic Barium(0) Synthon. Angew Chem Int Ed Engl 2023:e202318428. [PMID: 38078903 DOI: 10.1002/anie.202318428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/23/2023]
Abstract
A hydrocarbon-soluble barium anthracene complex was prepared by means of metal vapour synthesis. Reaction of 9,10-bis(trimethylsilyl)anthracene (Anth'') with barium vapour gave deep purple Ba(Anth'') which after extraction with diethyl ether crystallised as the cyclic octamer [Ba(Anth'')⋅Et2 O]8 . Dissolution in benzene or toluene led to replacement of the Et2 O ligand with a softer arene ligand and isolation of Ba(Anth'')⋅arene. Diffusion ordered spectroscopy (DOSY NMR ) measurements in benzene-d6 indicate solution species with a molecular weight that equals a trimeric constitution. Natural population analysis (NPA) assigned charges of +1.70 and -1.70 to Ba and Anth'', respectively, relating to highly ionic Ba2+ /Anth''2- bonding. Preliminary reactivity studies with air, Ph2 C=NPh, or H2 show that the complex reacts as a Ba0 synthon by release of neutral Anth''. This soluble molecular Ba0 /BaII redox synthon provides new routes for the syntheses of barium complexes under mild conditions.
Collapse
Affiliation(s)
- Oliver P E Townrow
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Christian Färber
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Ulrich Zenneck
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
16
|
Harder S, Langer J. Opportunities with calcium Grignard reagents and other heavy alkaline-earth organometallics. Nat Rev Chem 2023; 7:843-853. [PMID: 37935796 DOI: 10.1038/s41570-023-00548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
More than a century old, magnesium Grignard reagents remain essential to the toolbox of organic chemists. Although similar reagents with the neighbouring group 2 metal Ca have been explored, the considerably higher polarity and reactivity of the Ca-C bond result in undesired decomposition pathways. Ca Grignard reagents have found academic interest but have never fully developed into an established synthetic tool. Recent research activities, however, provide facile access to these highly reactive organocalcium species, including in situ preparation and ball milling approaches to tackle the challenge of controlling their extreme sensitivity. Heavier Grignard reagents are not just more reactive but profit from unique chemical transformations. Insight into the transition metal-like properties of Ca, Sr and Ba is only just emerging. Considering the rapidly developing field of alkaline-earth metal-mediated catalysis, heavy Grignard reagents will probably have a bright future.
Collapse
Affiliation(s)
- Sjoerd Harder
- Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Jens Langer
- Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Pearce KG, Dinoi C, Schwamm RJ, Maron L, Mahon MF, Hill MS. Variable Ca-C aryl Hapticity and its Consequences in Arylcalcium Dimers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304765. [PMID: 37715248 PMCID: PMC10625118 DOI: 10.1002/advs.202304765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Indexed: 09/17/2023]
Abstract
The dimeric β-diketiminato calcium hydride, [(Dipp BDI)CaH]2 (Dipp BDI = HC{(Me)CN-2,6-i-Pr2 C6 H3 }2 ), reacts with ortho-, meta- or para-tolyl mercuric compounds to afford hydridoarylcalcium compounds, [(Dipp BDI)2 Ca2 (μ-H)(μ-o-,m-,p-tolyl)], in which dimer propagation occurs either via μ2 -η1 -η1 or μ2 -η1 -η6 bridging between the calcium centers. In each case, the orientation and hapticity of the aryl units is dependent upon the position of the methyl substituent. While wholly organometallic meta- and para-tolyl dimers, [(Dipp BDI)Ca(m-tolyl)]2 and [(Dipp BDI)Ca(p-tolyl)]2 , can be prepared and are stable, the ortho-tolyl isomer is prone to isomerization to a calcium benzyl analog. Computational analysis of this latter process with density functional theory (DFT) highlights an unusual mechanism invoking the generation of an intermediate dicalcium species in which the group 2 centers are bridged by a toluene dianion formed by the formal attachment of the original hydride anion to the initially generated ortho-tolyl substituent. Use of a more sterically encumbered aryl substituent, {3,5-t-Bu2 C6 H3 }, facilitates the selective formation of [(Dipp BDI)Ca(μ-H)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)], which can be converted into the unsymmetrically-substituted σ-aryl calcium complexes, [(Dipp BDI)Ca(μ-Ph)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] and [(Dipp BDI)Ca(μ-p-tolyl)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] by reaction with the appropriate mercuric diaryl. Conversion of [(Dipp BDI)Ca(H)(Ph)Ca(Dipp BDI)] to afford [{{(Dipp BDI)Ca}2 (μ2 -Cl)}2 (C6 H5 -C6 H5 )], comprising a biphenyl dianion, is also reported. Although this latter transformation is serendipitous, AIM analysis highlights that, in a related manner to the ortho-tolyl to benzyl isomerization, the requisite C-C coupling may be facilitated in an "across dimer" fashion by the experimentally-observed polyhapto engagement of the aryl substituents with each calcium.
Collapse
Affiliation(s)
- Kyle G. Pearce
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Chiara Dinoi
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilToulouseF‐31077France
| | - Ryan J. Schwamm
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Laurent Maron
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilToulouseF‐31077France
| | - Mary F. Mahon
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Michael S. Hill
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
18
|
Liu HY, Hill MS, Mahon MF, McMullin CL, Schwamm RJ. Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C-H Activation of Arenes. Organometallics 2023; 42:2881-2892. [PMID: 37829511 PMCID: PMC10565898 DOI: 10.1021/acs.organomet.3c00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 10/14/2023]
Abstract
Like the previously reported potassium-based system, rubidium and cesium reduction of [{SiNDipp}AlI] ({SiNDipp} = {CH2SiMe2NDipp}2) with the heavier alkali metals [M = Rb and Cs] provides dimeric group 1 alumanyl derivatives, [{SiNDipp}AlM]2. In contrast, similar treatment with sodium results in over-reduction and incorporation of a formal equivalent of [{SiNDipp}Na2] into the resultant sodium alumanyl species. The dimeric K, Rb, and Cs compounds display a variable efficacy toward the C-H oxidative addition of arene C-H bonds at elevated temperatures (Cs > Rb > K, 110 °C) to yield (hydrido)(organo)aluminate species. Consistent with the synthetic experimental observations, computational (DFT) assessment of the benzene C-H activation indicates that rate-determining attack of the Al(I) nucleophile within the dimeric species is facilitated by π-engagement of the arene with the electrophilic M+ cation, which becomes increasingly favorable as group 1 is descended.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Michael S. Hill
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Mary F. Mahon
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Claire L. McMullin
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| | - Ryan J. Schwamm
- Department of Chemistry, University
of Bath, Claverton
Down, Bath BA2 7AY, U.K.
| |
Collapse
|
19
|
Parr JM, Crimmin MR. Carbon-Carbon Bond Formation from Carbon Monoxide and Hydride: The Role of Metal Formyl Intermediates. Angew Chem Int Ed Engl 2023; 62:e202219203. [PMID: 36795352 PMCID: PMC10962544 DOI: 10.1002/anie.202219203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
Current examples of carbon chain production from metal formyl intermediates with homogeneous metal complexes are described in this Minireview. Mechanistic aspects of these reactions as well as the challenges and opportunities in using this understanding to develop new reactions of CO and H2 are also discussed.
Collapse
Affiliation(s)
- Joseph M. Parr
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneShepherds Bush, LondonW12 0BZUK
| | - Mark R. Crimmin
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneShepherds Bush, LondonW12 0BZUK
| |
Collapse
|
20
|
Mai J, Morasch M, Jędrzkiewicz D, Langer J, Rösch B, Harder S. Alkaline-Earth Metal Mediated Benzene-to-Biphenyl Coupling. Angew Chem Int Ed Engl 2023; 62:e202212463. [PMID: 36426597 PMCID: PMC10107259 DOI: 10.1002/anie.202212463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Complex [(DIPeP BDI)Ca]2 (C6 H6 ), with a C6 H6 2- dianion bridging two Ca2+ ions, reacts with benzene to yield [(DIPeP BDI)Ca]2 (biphenyl) with a bridging biphenyl2- dianion (DIPeP BDI=HC[C(Me)N-DIPeP]2 ; DIPeP=2,6-CH(Et)2 -phenyl). The biphenyl complex was also prepared by reacting [(DIPeP BDI)Ca]2 (C6 H6 ) with biphenyl or by reduction of [(DIPeP BDI)CaI]2 with KC8 in presence of biphenyl. Benzene-benzene coupling was also observed when the deep purple product of ball-milling [(DIPP BDI)CaI(THF)]2 with K/KI was extracted with benzene (DIPP=2,6-CH(Me)2 -phenyl) giving crystalline [(DIPP BDI)Ca(THF)]2 (biphenyl) (52 % yield). Reduction of [(DIPeP BDI)SrI]2 with KC8 gave highly labile [(DIPeP BDI)Sr]2 (C6 H6 ) as a black powder (61 % yield) which reacts rapidly and selectively with benzene to [(DIPeP BDI)Sr]2 (biphenyl). DFT calculations show that the most likely route for biphenyl formation is a pathway in which the C6 H6 2- dianion attacks neutral benzene. This is facilitated by metal-benzene coordination.
Collapse
Affiliation(s)
- Jonathan Mai
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Michael Morasch
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Dawid Jędrzkiewicz
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Jens Langer
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Bastian Rösch
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Sjoerd Harder
- Inorganic and Organometallic ChemistryUniversität Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| |
Collapse
|
21
|
Qu ZW, Zhu H, Streubel R, Grimme S. Organo-Group 2 Metal-Mediated Nucleophilic Alkylation of Benzene: Crucial Role of Strong Cation−π Interaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstreet 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstreet 4, 53115 Bonn, Germany
- Institut für Anorganische Chemie, University of Bonn, Gerhard-Domagk Straße 1, D-53121 Bonn, Germany
| | - Rainer Streubel
- Institut für Anorganische Chemie, University of Bonn, Gerhard-Domagk Straße 1, D-53121 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstreet 4, 53115 Bonn, Germany
| |
Collapse
|
22
|
Sekiguchi Y, Pang JH, Ng JS, Chen J, Watanabe K, Takita R, Chiba S. Base-Induced Dehydrogenative and Dearomative Transformation of 1-Naphthylmethylamines to 1,4-Dihydronaphthalene-1-carbonitriles. JACS AU 2022; 2:2758-2764. [PMID: 36590271 PMCID: PMC9795570 DOI: 10.1021/jacsau.2c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Solvothermal treatment of 1-naphthylmethylamine with potassium hydride (KH) or n-butyllithium (n-BuLi)-potassium t-butoxide (t-BuOK) in THF induces unusual two consecutive β-hydride eliminations to form 1-naphthonitrile and KH. The freshly generated KH is hydridic enough to undergo dearomative hydride addition to the resultant 1-naphthonitrile regioselectively at the C4 position to afford α-cyano benzylic carbanion, which could be functionalized by a series of electrophiles, liberating the corresponding 1,4-dihydronaphthalene-1-carbonitriles having a quaternary carbon center.
Collapse
Affiliation(s)
- Yoshiya Sekiguchi
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jia Hao Pang
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jia Sheng Ng
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiahua Chen
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Kohei Watanabe
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Takita
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- School
of Pharmaceutical Sciences, University of
Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shunsuke Chiba
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
23
|
Cai Y, Liu W, Yu Y, Liu L, Pei Q, Wu H, He T, Guo J, Wu A, Chen P. Transition Metal-Free Hydrogenolysis of Anilines to Arenes Mediated by Lithium Hydride. J Am Chem Soc 2022; 144:17441-17448. [DOI: 10.1021/jacs.2c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongli Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Yang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ligao Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Qijun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Mulvey RE, Lynch JR, Kennedy AR, Barker J, Reid J. Crystallographic Characterisation of Organolithium and Organomagnesium Intermediates in Reactions of Aldehydes and Ketones. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Robert E. Mulvey
- University of Strathclyde Pure and Applied Chemistry 295 Cathedral Street G1 1XL Glasgow UNITED KINGDOM
| | | | - Alan R. Kennedy
- University of Strathclyde Pure and Applied Chemistry UNITED KINGDOM
| | - Jim Barker
- Innospec Ltd Research and Technology UNITED KINGDOM
| | | |
Collapse
|
25
|
Pearce KG, Dinoi C, Hill MS, Mahon MF, Maron L, Schwamm RS, Wilson ASS. Synthesis of Molecular Phenylcalcium Derivatives: Application to the Formation of Biaryls. Angew Chem Int Ed Engl 2022; 61:e202200305. [PMID: 35212128 PMCID: PMC9315018 DOI: 10.1002/anie.202200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Hydrocarbon-soluble β-diketiminato phenylcalcium derivatives, which display various modes of Ca-μ2 -Ph-Ca bridging, are accessible from reactions of Ph2 Hg and [(BDI)CaH]2 . Although the resultant compounds are inert toward the C-H bonds of benzene, they yield selective and uncatalyzed biaryl formation when reacted with readily available aryl bromides.
Collapse
Affiliation(s)
- Kyle G. Pearce
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Chiara Dinoi
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de Rangueil31077ToulouseFrance
| | - Michael S. Hill
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Mary F. Mahon
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Laurent Maron
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de Rangueil31077ToulouseFrance
| | - Ryan S. Schwamm
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | | |
Collapse
|
26
|
Höllerhage T, Ghana P, Spaniol TP, Carpentier A, Maron L, Englert U, Okuda J. Formation and Reactivity of a Hexahydridosilicate [SiH 6 ] 2- Coordinated by a Macrocycle-Supported Strontium Cation. Angew Chem Int Ed Engl 2022; 61:e202115379. [PMID: 34874085 PMCID: PMC9303417 DOI: 10.1002/anie.202115379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/12/2022]
Abstract
The cationic benzyl complex [(Me4 TACD)Sr(CH2 Ph)][A] (Me4 TACD=1,4,7,10-tetramethyltetraazacyclododecane; A=B(C6 H3 -3,5-Me2 )4 ) reacted with two equivalents of phenylsilane to give the bridging hexahydridosilicate complex [(Me4 TACD)2 Sr2 (thf)4 (μ-κ3 : κ3 -SiH6 )][A]2 (3 a). Rapid phenyl exchange between phenylsilane molecules is assumed to generate monosilane SiH4 that is trapped by two strontium hydride cations [(Me4 TACD)SrH(thf)x ]+ . Complex 3 a decomposed in THF at room temperature to give the terminal silanide complex [(Me4 TACD)Sr(SiH3 )(thf)2 ][A], with release of H2 . Upon reaction with a weak Brønsted acid, CO2 , and 1,3,5,7-cyclooctatetraene SiH4 was released. The reaction of a 1 : 2 mixture of cationic benzyl and neutral dibenzyl complex with phenylsilane gave the trinuclear silanide complex [(Me4 TACD)3 Sr3 (μ2 -H)3 (μ3 -SiH3 )2 ][A], while n OctSiH3 led to the trinuclear (n-octyl)pentahydridosilicate complex [(Me4 TACD)3 Sr3 (μ2 -H)3 (μ3 -SiH5 n Oct)][A].
Collapse
Affiliation(s)
- Thomas Höllerhage
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Priyabrata Ghana
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Ambre Carpentier
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Laurent Maron
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Ulli Englert
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
27
|
Hill MS, Pearce KG, Dinoi C, Mahon MF, Maron L, Schwamm RS, Wilson ASS. Synthesis of Molecular Phenylcalcium Derivatives: Application to the Formation of Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Stephen Hill
- University of Bath Chemistry Department of ChemistryUniversity of BathClaverton Down BA2 7AY Bath UNITED KINGDOM
| | | | - Chiara Dinoi
- Toulouse 3 University: Universite Toulouse III Paul Sabatier Chemistry FRANCE
| | | | - Laurent Maron
- Toulouse 3 University: Universite Toulouse III Paul Sabatier Chemistry FRANCE
| | | | | |
Collapse
|
28
|
Höllerhage T, Spaniol TP, Carpentier A, Maron L, Okuda J. Strontium Hydride Cations Supported by a Large NNNNN Type Macrocycle: Synthesis, Structure, and Hydrofunctionalization Catalysis. Inorg Chem 2022; 61:3309-3316. [PMID: 35139301 DOI: 10.1021/acs.inorgchem.1c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of the 15-membered NNNNN macrocyclic ligand Me5PACP (Me5PACP = 1,4,7,10,13-pentamethyl-1,4,7,10,13-pentaazacyclopentadecane) allowed the isolation of two cationic strontium hydride complexes by hydrogenolysis of benzyl precursors. Treatment of sparingly soluble [(Me5PACP)Sr(CH2Ph)2] with dihydrogen gave free Me5PACP, toluene, and oligomeric strontium hydride [SrH2]n, while hydrogenolysis in the presence of 1 equiv of the benzyl cation [(Me5PACP)Sr(CH2Ph)][B(C6H3-3,5-Me2)4] enabled isolation of the thermally unstable trihydride cation [(Me5PACP)2Sr2(μ-H)3][B(C6H3-3,5-Me2)4]. When the benzyl cation [(Me5PACP)Sr(CH2Ph)][BAr4]2 (Ar = C6H3-3,5-Me2 or C6H4-4-nBu) was reacted with dihydrogen or n-octylsilane, dihydride complexes [(Me5PACP)2Sr2(μ-H)2][BAr4]2 containing a dinuclear core bridged by two hydride ligands were obtained. The soluble dihydride complex [(Me5PACP)2Sr2(μ-H)2][B(C6H4-4-nBu)4]2 was tested in olefin hydrogenation and hydrosilylation catalysis. Kinetic analyses for [(Me5PACP)2Sr2(μ-H)2]2+ showed lower catalytic activity as compared to that of the isostructural calcium homologue [(Me5PACP)2Ca2(μ-H)2]2+. This is explained by a shift in the monomer-dimer equilibrium which precedes the catalytic cycle.
Collapse
Affiliation(s)
- Thomas Höllerhage
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ambre Carpentier
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse 135, avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse 135, avenue de Rangueil, 31077 Toulouse, France
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
29
|
Höllerhage T, Ghana P, Spaniol TP, Carpentier A, Maron L, Englert U, Okuda J. Bildung und Reaktivität eines Hydridosilikats [SiH
6
]
2−
, koordiniert an einem durch einen Makrozyklus stabilisierten Strontiumkation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Höllerhage
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52056 Aachen Deutschland
| | - Priyabrata Ghana
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52056 Aachen Deutschland
| | - Thomas P. Spaniol
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52056 Aachen Deutschland
| | - Ambre Carpentier
- CNRS INSA UPS UMR 5215 LPCNO Université de Toulouse 135 avenue de Rangueil 31077 Toulouse Frankreich
| | - Laurent Maron
- CNRS INSA UPS UMR 5215 LPCNO Université de Toulouse 135 avenue de Rangueil 31077 Toulouse Frankreich
| | - Ulli Englert
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52056 Aachen Deutschland
| | - Jun Okuda
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52056 Aachen Deutschland
| |
Collapse
|
30
|
Baguli S, Mondal S, Mandal C, Goswami S, Mukherjee D. Cyclopentadienyl Complexes of the Alkaline Earths in Light of the Periodic Trends. Chem Asian J 2022; 17:e202100962. [PMID: 34825506 DOI: 10.1002/asia.202100962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/02/2021] [Indexed: 11/09/2022]
Abstract
The electron-rich cyclopentadienyl and the analogous indenyl and fluorenyl ligands (collectively denoted here as Cp') have been impactful in stabilizing electron-deficient metal centers including the highly electropositive alkaline earths. Being in the s-block, the group 2 metals follow a major periodic variation in their atomic and ionic properties which is reflected in those Cp' compounds. This article presents an overview of this class of compounds for all the five metals from beryllium to barium (radium is excluded for its radioactivity), highlighting their systematic variation.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Sumana Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Santu Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| |
Collapse
|
31
|
van Velzen NJC, Harder S. Synthesis and reactivity of a β-diketiminate SmII complex†. Aust J Chem 2022. [DOI: 10.1071/ch21296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Maitland B, Stasch A, Jones C. Extremely bulky β-diketiminate complexes of calcium(ii) and ytterbium(ii)†. Aust J Chem 2022. [DOI: 10.1071/ch21283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Watanabe K, Pang JH, Takita R, Chiba S. Generation of organo-alkaline earth metal complexes from non-polar unsaturated molecules and their synthetic applications. Chem Sci 2021; 13:27-38. [PMID: 35059147 PMCID: PMC8694335 DOI: 10.1039/d1sc05724c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Organomagnesium compounds, represented by the Grignard reagents, are one of the most classical yet versatile carbanion species which have widely been utilized in synthetic chemistry. These reagents are typically prepared via oxidative addition of organic halides to magnesium metals, via halogen-magnesium exchange between halo(hetero)arenes and organomagnesium reagents or via deprotonative magnesiation of prefunctionalized (hetero)arenes. On the other hand, recent studies have demonstrated that the organo-alkaline earth metal complexes including those based on heavier alkaline earth metals such as calcium, strontium and barium could be generated from readily available non-polar unsaturated molecules such as alkenes, alkynes, 1,3-enynes and arenes through unique metallation processes. Nonetheless, the resulting organo-alkaline earth metal complexes could be further functionalized with a variety of electrophiles in various reaction modes. In particular, organocalcium, strontium and barium species have shown unprecedented reactivity in the downstream functionalization, which could not be observed in the reactivity of organomagnesium complexes. This perspective will focus on the newly emerging protocols for the generation of organo-alkaline earth metal complexes from non-polar unsaturated molecules and their applications in chemical synthesis and catalysis.
Collapse
Affiliation(s)
- Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jia Hao Pang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
34
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
35
|
Rösch B, Harder S. New horizons in low oxidation state group 2 metal chemistry. Chem Commun (Camb) 2021; 57:9354-9365. [PMID: 34528959 DOI: 10.1039/d1cc04147a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the seminal report on Mg in the +I oxidation state in 2007, low-valent complexes featuring a MgI-MgI bond developed from trophy molecules to state-of-the-art reducing agents. Despite increasing interest in low-valency of the other group 2 metals, this area was restricted for a long time to a rare example of a CaI(arene)CaI inverse sandwich. This feature article focuses on the most recent developments in the field, highlighting recent breakthroughs for Be, Mg and Ca. The more exotic metal Be was the first to be isolated as a zero-valent complex which could be oxidized to a BeI species. There also has been interest in breaking the MgI-MgI bond with superbulky β-diketiminate ligands (BDI) that suppress (BDI)Mg-Mg(BDI) bond formation. This led to Mg-Mg bond elongation or Mg-N bond cleavage. Several reports on attempts to isolate (BDI)Mg˙ radicals by combinations of ligand bulk, addition of neutral ligands or UV(vis) irradiation led to reduction of the aromatic solvents, underscoring the high reactivity of these open shell species. Only recently, zero-valent complexes of Mg were introduced. Double reduction of a (BDI)MgI complex with Na gave [(BDI)Mg-]Na+. This Mg0 complex crystallized as a dimer in which the Na+ cations bridge the two (BDI)Mg- anions which react as Mg nucleophiles. Thermal decomposition led to spontaneous formation of Na0 and a trinuclear (BDI)MgMgMg(BDI) complex. This mixed-valence Mg3-complex is a prime example of the fleeting multinuclear Mgn intermediates discussed on the way from Mg metal to Grignard reagent. Attempts to prepare low-valent CaI compounds by reduction of (BDI)CaI led to dearomatization of the arene solvents: (BDI)Ca(arene)Ca(BDI). Reduction in alkanes prevented this decomposition pathway but led to N2 reduction and isolation of (BDI)Ca(N2)Ca(BDI), representing the first example of molecular nitrogen fixation with an early main group metal. As the N22- anion reacts in most cases as a very strong two-electron reductant, LCa(N2)CaL could be seen as a synthon for hitherto elusive CaI-CaI complexes. Theoretical calculations suggest that participation of Ca d-orbitals is relevant for N2 activation. These most recent developments in low-valent group 2 metal chemistry will revive this area and undoubtly lead to new reactivities and applications.
Collapse
Affiliation(s)
- Bastian Rösch
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| |
Collapse
|
36
|
Wiesinger M, Knüpfer C, Elsen H, Mai J, Langer J, Harder S. Heterometallic Mg−Ba Hydride Clusters in Hydrogenation Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wiesinger
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Christian Knüpfer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Mai
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
37
|
Wiesinger M, Rösch B, Knüpfer C, Mai J, Langer J, Harder S. Carbon‐Halogen Bond Activation with Powerful Heavy Alkaline Earth Metal Hydrides. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Wiesinger
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Bastian Rösch
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Christian Knüpfer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Mai
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
38
|
Höllerhage T, Carpentier A, Spaniol TP, Maron L, Englert U, Okuda J. Cationic strontium hydride complexes supported by an NNNN-type macrocycle. Chem Commun (Camb) 2021; 57:6316-6319. [PMID: 34076652 DOI: 10.1039/d1cc02040d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A trinuclear strontium hydride [(Me4TACD)3Sr3(μ2-H)4(thf)][B(C6H3-3,5-Me2)4]2 (Me4TACD = 1,4,7,10-tetramethyltetraazacyclododecane) and a mixed calcium strontium hydride [(Me4TACD)2CaSr(μ-H)2(thf)][B(C6H3-3,5-Me2)4]2 were isolated by hydrogenolysis of cationic benzyl precursors. A solution of [(Me4TACD)2CaSr(μ-H)2(thf)][B(C6H3-3,5-Me2)4]2 shows hydride ligand exchange between calcium and strontium centers and higher affinity of the hydride ligand toward calcium.
Collapse
Affiliation(s)
- Thomas Höllerhage
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | - Ambre Carpentier
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse 135 avenue de Rangueil, 31077 Toulouse, France.
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse 135 avenue de Rangueil, 31077 Toulouse, France.
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.
| |
Collapse
|
39
|
Richardson GM, Douair I, Cameron SA, Bracegirdle J, Keyzers RA, Hill MS, Maron L, Anker MD. Hydroarylation of olefins catalysed by a dimeric ytterbium(II) alkyl. Nat Commun 2021; 12:3147. [PMID: 34035284 PMCID: PMC8149703 DOI: 10.1038/s41467-021-23444-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
Although the nucleophilic alkylation of aromatics has recently been achieved with a variety of potent main group reagents, all of this reactivity is limited to a stoichiometric regime. We now report that the ytterbium(II) hydride, [BDIDippYbH]2 (BDIDipp = CH[C(CH3)NDipp]2, Dipp = 2,6-diisopropylphenyl), reacts with ethene and propene to provide the ytterbium(II) n-alkyls, [BDIDippYbR]2 (R = Et or Pr), both of which alkylate benzene at room temperature. Density functional theory (DFT) calculations indicate that this latter process operates through the nucleophilic (SN2) displacement of hydride, while the resultant regeneration of [BDIDippYbH]2 facilitates further reaction with ethene or propene and enables the direct catalytic (anti-Markovnikov) hydroarylation of both alkenes with a benzene C-H bond.
Collapse
Affiliation(s)
- Georgia M Richardson
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iskander Douair
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, Toulouse, France
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Joe Bracegirdle
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, Toulouse, France.
| | - Mathew D Anker
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
40
|
Thum K, Martin J, Elsen H, Eyselein J, Stiegler L, Langer J, Harder S. Lewis Acidic Cationic Strontium and Barium Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katharina Thum
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Johannes Martin
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Eyselein
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Lena Stiegler
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Chair of Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
41
|
Rösch B, Martin J, Eyselein J, Langer J, Wiesinger M, Harder S. Application of a Stable and Soluble Dibenzylbarium Reagent in the Synthesis of a Barium Imido Cluster. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bastian Rösch
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Johannes Martin
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Wiesinger
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
42
|
Khristolyubov DO, Lyubov DM, Trifonov AA. Alkyl complexes of divalent lanthanides and heavy alkaline earth metals. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Chapple PM, Cartron J, Hamdoun G, Kahlal S, Cordier M, Oulyadi H, Carpentier JF, Saillard JY, Sarazin Y. Metal-metal bonded alkaline-earth distannyls. Chem Sci 2021; 12:7098-7114. [PMID: 34123338 PMCID: PMC8153243 DOI: 10.1039/d1sc00436k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/19/2021] [Indexed: 01/23/2023] Open
Abstract
The first families of alkaline-earth stannylides [Ae(SnPh3)2·(thf) x ] (Ae = Ca, x = 3, 1; Sr, x = 3, 2; Ba, x = 4, 3) and [Ae{Sn(SiMe3)3}2·(thf) x ] (Ae = Ca, x = 4, 4; Sr, x = 4, 5; Ba, x = 4, 6), where Ae is a large alkaline earth with direct Ae-Sn bonds, are presented. All complexes have been characterised by high-resolution solution NMR spectroscopy, including 119Sn NMR, and by X-ray diffraction crystallography. The molecular structures of [Ca(SnPh3)2·(thf)4] (1'), [Sr(SnPh3)2·(thf)4] (2'), [Ba(SnPh3)2·(thf)5] (3'), 4, 5 and [Ba{Sn(SiMe3)3}2·(thf)5] (6'), most of which crystallised as higher thf solvates than their parents 1-6, were established by XRD analysis; the experimentally determined Sn-Ae-Sn' angles lie in the range 158.10(3)-179.33(4)°. In a given series, the 119Sn NMR chemical shifts are slightly deshielded upon descending group 2 from Ca to Ba, while the silyl-substituted stannyls are much more shielded than the phenyl ones (δ 119Sn/ppm: 1', -133.4; 2', -123.6; 3', -95.5; 4, -856.8; 5, -848.2; 6', -792.7). The bonding and electronic properties of these complexes were also analysed by DFT calculations. The combined spectroscopic, crystallographic and computational analysis of these complexes provide some insight into the main features of these unique families of homoleptic complexes. A comprehensive DFT study (Wiberg bond index, QTAIM and energy decomposition analysis) points at a primarily ionic Ae-Sn bonding, with a small covalent contribution, in these series of complexes; the Sn-Ae-Sn' angle is associated with a flat energy potential surface around its minimum, consistent with the broad range of values determined by experimental and computational methods.
Collapse
Affiliation(s)
| | | | - Ghanem Hamdoun
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038) 76000 Rouen France
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Hassan Oulyadi
- Normandie Université, UNIROUEN, INSA de Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038) 76000 Rouen France
| | | | | | - Yann Sarazin
- Univ Rennes, CNRS, ISCR-UMR 6226 35000 Rennes France
| |
Collapse
|
44
|
Höllerhage T, Schuhknecht D, Mistry A, Spaniol TP, Yang Y, Maron L, Okuda J. Calcium Hydride Catalysts for Olefin Hydrofunctionalization: Ring-Size Effect of Macrocyclic Ligands on Activity. Chemistry 2021; 27:3002-3007. [PMID: 33185286 PMCID: PMC7898310 DOI: 10.1002/chem.202004931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/27/2022]
Abstract
The fifteen-membered NNNNN macrocycle Me5 PACP (Me5 PACP=1,4,7,10,13-pentamethyl-1,4,7,10,13-pentaazacyclopentadecane) stabilized the [CaH]+ fragment as a dimer with a distorted pentagonal bipyramidal coordination geometry at calcium. The hydride complex was prepared by protonolysis of calcium dibenzyl with the conjugate acid of Me5 PACP followed by hydrogenolysis or treating with n OctSiH3 of the intermediate calcium benzyl cation. The calcium hydride catalyzed the hydrogenation and hydrosilylation of unactivated olefins faster than the analogous calcium complex stabilized by the twelve-membered NNNN macrocycle Me4 TACD (Me4 TACD=1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). Kinetic investigations indicate that higher catalytic efficiency for the Me5 PACP stabilized calcium hydride is due to easier dissociation of the dimer in solution when compared to the Me4 TACD analogue.
Collapse
Affiliation(s)
- Thomas Höllerhage
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Danny Schuhknecht
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Alisha Mistry
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Yan Yang
- CNRS, INSA, UPS, UMR 5215, LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNOUniversité de Toulouse135 avenue de Rangueil31077ToulouseFrance
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
45
|
Wilson AS, Hill MS, Mahon MF, Dinoi C, Maron L. Dehydrohalogenation of halobenzenes and C(sp3)-X (X = F, OPh) bond activation by a molecular calcium hydride. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Sample HC, Senge MO. Nucleophilic Aromatic Substitution (S NAr) and Related Reactions of Porphyrinoids: Mechanistic and Regiochemical Aspects. European J Org Chem 2021; 2021:7-42. [PMID: 33519299 PMCID: PMC7821298 DOI: 10.1002/ejoc.202001183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
The nucleophilic substitution of aromatic moieties (SNAr) has been known for over 150 years and found wide use for the functionalization of (hetero)aromatic systems. Currently, several "types" of SNAr reactions have been established and notably the area of porphyrinoid macrocycles has seen many uses thereof. Herein, we detail the SNAr reactions of seven types of porphyrinoids with differing number and type of pyrrole units: subporphyrins, norcorroles, corroles, porphyrins, azuliporphyrins, N-confused porphyrins, and phthalocyanines. For each we analyze the substitution dependent upon: a) the type of nucleophile and b) the site of substitution (α, β, or meso). Along with this we evaluate this route as a synthetic strategy for the generation of unsymmetrical porphyrinoids. Distinct trends can be identified for each type of porphyrinoid discussed, regardless of nucleophile. The use of nucleophilic substitution on porphyrinoids is found to often be a cost-effective procedure with the ability to yield complex substituent patterns, which can be conducted in non-anhydrous solvents with easily accessible simple porphyrinoids.
Collapse
Affiliation(s)
- Harry C. Sample
- School of ChemistryTrinity Biomedical Sciences InstituteThe University of Dublin152‐160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM‐IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| |
Collapse
|
47
|
Yuvaraj K, Douair I, Maron L, Jones C. Activation of Ethylene by N-Heterocyclic Carbene Coordinated Magnesium(I) Compounds. Chemistry 2020; 26:14665-14670. [PMID: 32542741 DOI: 10.1002/chem.202002380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Reactions of a series of magnesium(I) compounds with ethylene, in the presence of an N-heterocyclic carbene (NHC), have been explored. Treating [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[HC(MeCNMes)2 ]- , Mes=mesityl) with an excess of ethylene in the presence of two equivalents of :C{(MeNCMe)2 } (TMC) leads to the formal reductive coupling of ethylene, and formation of the 1,2-dimagnesiobutane complex, [{(Mes Nacnac)(TMC)Mg}2 (μ-C4 H8 )]. In contrast, when the reaction is repeated in the presence of three equivalents of TMC, a mixture of the β-diketiminato magnesium ethyl, [(Mes Nacnac)(TMC)MgEt], and the NHC coordinated magnesium diamide, [(Mes Nacnac-H )Mg(TMC)2 ], results. Four related products, [(Ar Nacnac)(TMC)MgEt] (Ar=2,6-dimethylphenyl (Xyl) or 2,6-diisopropylphenyl (Dip)) and [(Ar Nacnac-H )Mg(TMC)2 ] (Ar=Xyl or Dip), were similarly synthesised and crystallographically characterized. Computational studies have been employed to investigate the mechanisms of the two observed reaction types, which appear dependent on the substitution pattern of the magnesium(I) compound, and the stoichiometric equivalents of TMC used in the reactions.
Collapse
Affiliation(s)
- K Yuvaraj
- School of Chemistry, Monash University, PO Box 23, VIC 3800, Melbourne, Australia
| | - Iskander Douair
- INSA, UPS, UMR 5215, LPCNO, Université de Toulouse et CNRS, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Laurent Maron
- INSA, UPS, UMR 5215, LPCNO, Université de Toulouse et CNRS, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, VIC 3800, Melbourne, Australia
| |
Collapse
|
48
|
Li X, Fu B, Zhang Q, Yuan X, Zhang Q, Xiong T, Zhang Q. Copper‐Catalyzed Defluorinative Hydroarylation of Alkenes with Polyfluoroarenes. Angew Chem Int Ed Engl 2020; 59:23056-23060. [DOI: 10.1002/anie.202010492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaohong Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
49
|
Li X, Fu B, Zhang Q, Yuan X, Zhang Q, Xiong T, Zhang Q. Copper‐Catalyzed Defluorinative Hydroarylation of Alkenes with Polyfluoroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaohong Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qiao Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
50
|
Martin J, Langer J, Elsen H, Harder S. Alkaline Earth Metal Imido Complexes with Doubly Deprotonated Amidine and β‐Diketimine Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Johannes Martin
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|