1
|
Sang Y, Li H, Sun M, Ren J, Qu X. Persistent Luminescence-Based Nanoreservoir for Benign Photothermal-Reinforced Nanozymatic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49114-49123. [PMID: 39241120 DOI: 10.1021/acsami.4c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Adjusting the catalytic activity of nanozymes for enhanced oncotherapy has attracted significant interest. However, it remains challenging to engineer regulatory tactics with a minimal impact on normal tissues. By exploiting the advantages of energy storage, photostimulated, and long afterglow luminescence of persistent nanoparticles (PLNPs), a persistent luminescence-based nanoreservoir was produced to improve its catalytic activity for benign oncotherapy. In the study, PLNPs in a nanoreservoir with the ability to store photons served as a self-illuminant to promote its peroxidase-like activity and therapeutic efficacy by persistently motivating its photothermal effect before and after external irradiation ceased. The photostimulated and persistent luminescence of PLNPs and spatiotemporal controllability of exogenous light jointly alleviated adverse effects induced by prolonged irradiation and elevated the catalytic capability of the nanoreservoir. Ultimately, the system fulfilled benign photothermal-intensive nanozymatic therapy. This work provides new insights into boosting the catalytic activity of nanozymes for secure disease treatment.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huimin Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q, Zheng Y, Hu J, Yuan Y, Wu Z, Zhang J, Tang C. Scale-Up Preparation of Manganese-Iron Prussian Blue Nanozymes as Potent Oral Nanomedicines for Acute Ulcerative Colitis. Adv Healthc Mater 2024; 13:e2400083. [PMID: 38447228 DOI: 10.1002/adhm.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.
Collapse
Affiliation(s)
- Chengyun Hu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ronghua Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Provincial Key Laboratory of Oral Diseases Research, Anhui Medical University, Hefei, 230032, China
| | - Chuang Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qingjun Zhu
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanmin Zheng
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
3
|
Wu GL, Tan X, Yang Q. Recent Advances on NIR-II Light-Enhanced Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303451. [PMID: 37983596 DOI: 10.1002/adhm.202303451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Chemodynamic therapy (CDT) is a particular oncological therapeutic strategy by generates the highly toxic hydroxyl radical (•OH) from the dismutation of endogenous hydrogen peroxide (H2O2) via Fenton or Fenton-like reactions. However, single CDT therapies have been limited by unsatisfactory efficacy. Enhanced chemodynamic therapy (ECDT) triggered by near-infrared (NIR) is a novel therapeutic modality based on light energy to improve the efficiency of Fenton or Fenton-like reactions. However, the limited penetration and imaging capability of the visible (400-650 nm) and traditional NIR-I region (650-900 nm) light-amplified CDT restrict the prospects for its clinical application. Combined with the high penetration/high precision imaging characteristics of the second near-infrared (NIR-II,) nanoplatform, it is expected to kill deep tumors efficiently while imaging the treatment process in real-time, and more notably, the NIR-II region radiation with wavelengths above 1000 nm can minimize the irradiation damage to normal tissues. Such NIR-II ECDT nanoplatforms have greatly improved the effectiveness of CDT therapy and demonstrated extraordinary potential for clinical applications. Accordingly, various strategies have been explored in the past years to improve the efficiency of NIR-II Enhanced CDT. In this review, the mechanisms and strategies used to improve the performance of NIR-II-enhanced CDT are outlined.
Collapse
Affiliation(s)
- Gui-Long Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
5
|
Zeng Q, Jiang X, Chen M, Deng C, Li D, Wu H. Dual chemodynamic/photothermal therapeutic nanoplatform based on DNA-functionalized prussian blue. Bioorg Chem 2024; 143:106981. [PMID: 37995645 DOI: 10.1016/j.bioorg.2023.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The combination of chemodynamic therapy and photothermal therapy has a promising application owing to its impressive anti-cancer effects. However, the degradability of the material and the lack of targeting severely limit its further clinical application. Herein, DNAs containing nucleolin aptamer (AS1411) and different bases sequences were used to functionalize PB NPs for the targeted treatment. Compared to prussian blue, DNA-functionalized prussian blue does not reduce the photothermal properties of prussian blue. Moreover, DNA confers DNA-functionalized prussian blue targeting and higher enzymatic activity, thereby achieving a more effective combination of chemodynamic and photothermal treatment. The therapeutic efficacy of this nanoplatform was evaluated in vivo and in vitro experiments, exhibiting that DNA-functionalized prussian blue nanozyme can maximize the precise control of the therapeutic effect, reduce the toxic and side effects caused by non-specific accumulation on other normal cells, and effectively achieve targeted killing of cancer cells. This work demonstrates that DNA-functionalized prussian blue can improve the efficiency of combined tumor treatment and enhance the application value of prussian blue in tumor treatment, which is expected to provide theoretical support for clinical application.
Collapse
Affiliation(s)
- Qin Zeng
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, PR China
| | - Xiaolian Jiang
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, PR China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, PR China
| | - Chunyan Deng
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, PR China.
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Hunan, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Huiyun Wu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, PR China.
| |
Collapse
|
6
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Tian C, Sun A, Liang J, Zhang Z, Zheng Y, Wu X, Liu Y, Tang C, Chen CC. Inhibiting Interfacial Diffusion in Heterojunction Perovskite Solar Cells by Replacing Low-Dimensional Perovskite with Uniformly Anchored Quaternized Polystyrene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301091. [PMID: 37069780 DOI: 10.1002/smll.202301091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Surface heterojunction has been regarded as an effective method to improve the device efficiency of perovskite solar cells. Nevertheless, the durability of different heterojunction under thermal stress is rarely investigated and compared. In this work, benzylammonium chloride and benzyltrimethylammonium chloride are utilized to construct 3D/2D and 3D/1D heterojunctions, respectively. A quaternized polystyrene is synthesized to construct a three-dimensional perovskite/amorphous ionic polymer (3D/AIP) heterojunction. Due to the migration and volatility of organic cations, severe interfacial diffusion is found among 3D/2D and 3D/1D heterojunctions, in which the quaternary ammonium cations in the 1D structure are less volatile and mobile than the primary ammonium cations in the 2D structure. 3D/AIP heterojunction remains intact under thermal stress due to the strong ionic bond anchoring at the interface and the ultra-high molecular weight of AIP. Furthermore, the dipole layer formed by AIP can further reduce the voltage loss caused by nonradiative recombination at the interface by 0.088 V. Therefore, the devices based on the 3D/AIP heterojunction achieve a champion power conversion efficiency of 24.27% and maintain 90% of its initial efficiency after either thermal aging for 400 h or wet aging for 3000 h, showing a great promise for polymer/perovskite heterojunction towards real applications.
Collapse
Affiliation(s)
- Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
8
|
Shao K, Xie W, Ling Q, Wang T, Zhang H, Teng Y, Ye S, Yuan X, Pan Z. Dumbbell-like upconversion nanoparticles synthesized by controlled epitaxial growth for light-heat-color tri-modal sensing of carcinoembryonic antigen. Biosens Bioelectron 2023; 228:115186. [PMID: 36898169 DOI: 10.1016/j.bios.2023.115186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Accurate quantitative analysis of tumor markers in a wide linear range has important practical significance towards complex clinical samples in cancer identification and monitoring of tumor development stages, but remains challenging. Herein, three-layer dumbbell-like upconversion nanoparticles NaErF4:Tm@NaYF4@NaNdF4 (labeled as UCNPs) combined with G-quadruplex (G4) DNAzyme are reported for tri-modal sensing of carcinoembryonic antigen (CEA) in a wide range using upconversion luminescence (UCL), photothermal and catalysis signal readouts. Initially, dumbbell-like UCNPs were controlled synthesized by a three-dimensional epitaxial growth strategy through tuning the concentration of Nd precursors. After surface functionalization, G4zyme-UCNPs-cDNA/Apt-MB was subsequently fabricated by biotin-streptavidin interaction and DNA hybridization. Quantitative detection of CEA was achieved by competitive interaction and magnetic separation, and the intensities of tri-modal signals (light, heat and catalysis-based chrominance) of dissociative probes are linearly related to the concentration of CEA. The results showed that the tri-modal sensing method exhibited a wide linear range (0.005-2000 ng/mL) and low limit of detection (LOD) across three models: the luminescence model (0.005-50 ng/mL, LOD = 0.910 pg/mL), the catalysis model (10-1000 ng/mL, LOD = 0.387 ng/mL), and the temperature model (50-2000 ng/mL, LOD = 1.114 ng/mL). These findings suggest that the tri-modal sensing platform is suitable for use in the analysis of a wide range of complex and diverse clinical samples.
Collapse
Affiliation(s)
- Kang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wuyan Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qingqing Ling
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Research Institute of Chemical Industry, Hangzhou, Zhejiang, 310023, China
| | - Tao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongxi Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanjie Teng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310002, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Kang D, Kim HS, Han S, Lee Y, Kim YP, Lee DY, Lee J. A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma. Nat Commun 2023; 14:2755. [PMID: 37179387 PMCID: PMC10183012 DOI: 10.1038/s41467-023-38451-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the strong absorption of water in the near-infrared (NIR) region near 1.0 μm, this wavelength is considered unsuitable as an imaging and analytical signal in biological environments. However, 1.0 μm NIR can be converted into heat and used as a local water-molecular heating strategy for the photothermal therapy of biological tissues. Herein, we describe a Nd-Yb co-doped nanomaterial (water-heating nanoparticles (NPs)) as strong 1.0 μm emissive NPs to target the absorption band of water. Furthermore, introducing Tm ions into the water-heating NPs improve the NIR lifetime, enabling the development of a NIR imaging-guided water-heating probe (water-heating NIR NPs). In the glioblastoma multiforme male mouse model, tumor-targeted water-heating NIR NPs reduce the tumor volume by 78.9% in the presence of high-resolution intracranial NIR long-lifetime imaging. Hence, water-heating NIR NPs can be used as a promising nanomaterial for imaging and photothermal ablation in deep-tissue-bearing tumor therapy.
Collapse
Affiliation(s)
- Dongkyu Kang
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohyun Han
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonju Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Pil Kim
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Tang K, Li X, Hu Y, Zhang X, Lu N, Fang Q, Shao J, Li S, Xiu W, Song Y, Yang D, Zhang J. Recent advances in Prussian blue-based photothermal therapy in cancer treatment. Biomater Sci 2023. [PMID: 37067845 DOI: 10.1039/d3bm00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaonan Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Nan Lu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
11
|
Wang Z, Zhao S, Xiao S, Liu S, Yao R, Li Y, Wang Y, Li Y, Tan H. Heteropoly Blue/Carbon Nanotubes Nanocomposites as High-Performance Photothermal Conversion Materials. Chemistry 2023; 29:e202203419. [PMID: 36396601 DOI: 10.1002/chem.202203419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
To realize the direct and full use of the widely distributed solar energy, developing novel materials with superb photothermal conversion capability is essential. Although heteropoly blue has intrinsic outstanding solar absorption and photothermal conversion properties, its spectral absorption in the infrared region is weak. Here, composites of heteropoly blue and carbon nanotubes (HPB/CNTs) are synthesized depending on electrostatic interactions by facile microwave sonication and freeze-drying. The doped CNTs can dramatically improve the spectral absorption performance of HPB ontology in the infrared region. As a result, the light absorption of the optimized HPB/CNTs (20 %) reaches more than 95 % in the range of 200-2400 nm, showing promising prospects as high-performance photothermal conversion material in the applications of solar desalination and wastewater treatment.
Collapse
Affiliation(s)
- Zhilin Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Songying Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Shanshan Xiao
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, Jilin, 130118, P. R. China
| | - Shanping Liu
- ICGM, Univ. Montpellier CNRS, ENSCM, Montpellier, France
| | - Ruiqi Yao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yonghui Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
12
|
Wang Y, Li X, Chen H, Gao Y. Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1432-1444. [PMID: 36530516 PMCID: PMC9727275 DOI: 10.3762/bjnano.13.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles with large size exhibit preferable properties for photothermal therapy (PTT). However, the prolonged tissue retention and slow elimination of gold nanoparticles limit their therapeutic applications. Previously, gold nanoclusters carrying lipid nanoparticles (Au-LNPs) have been reported after simply mixing Au3+ with preformed diethylenetriaminepentaacetic acid lipid nanoparticles to solve this contradiction. Au-LNPs demonstrated enhanced photothermal effects in comparison to neat gold nanoparticles. To further improve the photothermal activity, we introduced the organic photothermal agent boron dipyrromethene (BODIPY) to Au-LNPs for synergistic PTT. Au- and BODIPY-grafted LNPs (AB-LNPs) were formed by simply mixing Au-LNPs with BODIPY. The BODIPY could be associated stably to Au-LNPs, and the release of BODIPY from AB-LNPs could be accelerated by laser irradiation. AB-LNPs are scalable and showed excellent photothermal effects. AB-LNPs showed enhanced cellular uptake efficiency compared to free BODIPY in 4T1 breast cancer cells. Under laser irradiation, AB-LNPs exhibited synergistic photothermal effects with significantly reduced dosage compared to monotherapy (treatments with Au-LNPs or free BODIPY alone). This study thus provides a facile and adaptive strategy for the development of a scalable and safe high-performance nanoplatform for synergistic PTT in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
13
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
14
|
Zhang X, Peng F, Wang D. MOFs and MOF-Derived Materials for Antibacterial Application. J Funct Biomater 2022; 13:215. [PMID: 36412856 PMCID: PMC9680240 DOI: 10.3390/jfb13040215] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial infections pose a serious threat to people's health. Efforts are being made to develop antibacterial agents that can inhibit bacterial growth, prevent biofilm formation, and kill bacteria. In recent years, materials based on metal organic frameworks (MOFs) have attracted significant attention for various antibacterial applications due to their high specific surface area, high enzyme-like activity, and continuous release of metal ions. This paper reviews the recent progress of MOFs as antibacterial agents, focusing on preparation methods, fundamental antibacterial mechanisms, and strategies to enhance their antibacterial effects. Finally, several prospects related to MOFs for antibacterial application are proposed, aiming to provide possible research directions in this field.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
15
|
Chu Z, Tian T, Tao Z, Yang J, Chen B, Chen H, Wang W, Yin P, Xia X, Wang H, Qian H. Upconversion nanoparticles@AgBiS 2 core-shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers. Bioact Mater 2022; 17:71-80. [PMID: 35386437 PMCID: PMC8958283 DOI: 10.1016/j.bioactmat.2022.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
UCNPs@AgBiS2 core-shell nanoparticles that AgBiS2 coated on the surface of upconversion nanoparticles (UCNPs) was successfully prepared through an ion exchange reaction. The photothermal conversion efficiency of AgBiS2 can be improved from 14.7% to 45% due to the cross relaxation between Nd ions and AgBiS2. The doping concentration of Nd ions played a critical role in the production of reactive oxygen species (ROS) and enhanced the photothermal conversion efficiency. The NaYF4:Yb/Er/Nd@NaYF4:Nd nanoparticles endows strong upconversion emissions when the doped concentration of Nd ions is 1% in the inner core, which excites the AgBiS2 shell to produce ROS for photodynamic therapy (PDT) of cancer cells. As a result, the as-prepared NaYF4:Yb/Er/Nd@NaYF4:Nd@AgBiS2 core-shell nanoparticles showed combined photothermal/photodynamic therapy (PTT/PDT) against malignant tumors. This work provides an alternative near-infrared light-active multimodal nanostructures for applications such as fighting against cancers.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Tian Tian
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Zhenchao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Juan Yang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Benjin Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Hao Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Wanni Wang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Peiqun Yin
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Children's Hospital of Anhui Medical University, Anhui Provincial Children's Hospital, Hefei, Anhui, 230051, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| |
Collapse
|
16
|
|
17
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
18
|
Germanene-modified chitosan hydrogel for treating bacterial wound infection: An ingenious hydrogel-assisted photothermal therapy strategy. Int J Biol Macromol 2022; 221:1558-1571. [PMID: 36126816 DOI: 10.1016/j.ijbiomac.2022.09.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The elaborate design of an ingenious hydrogel-assisted photothermal therapy (PTT) platform is a promising strategy for treating bacterial wound infections. Herein, a new generation of germanene nanocrystals (Ge NCs) with excellent photothermal performance are prepared via an ice-bath sonication liquid-phase exfoliation technique. Whereafter, by crosslinking interaction between chitosan and zinc acetate, as well as self-assembly property between Ge NCs and chitosan, we successfully construct an innovative germanene-modified chitosan antimicrobial hydrogel (CS/Ge NCs0.8) integrating capture and killing bacteria performances. When co-cultured with bacteria, CS/Ge NCs0.8 hydrogel with the positive charge can adsorb and restrict bacteria in the range of PTT destruction. Once the near-infrared laser is introduced, CS/Ge NCs0.8 hydrogel will effectively convert light energy into localized heat, further inducing bacterial death. By this entirely novel modality, CS/Ge NCs0.8 hydrogel exhibits marvelous antibacterial property against E. coli and S. aureus in vitro. Furthermore, in vivo studies demonstrate that CS/Ge NCs0.8 hydrogel possesses the ability to significantly rescue S. aureus-induced skin wound infections, suggesting CS/Ge NCs0.8 hydrogel can be served as an antibacterial dressing. Strikingly, this is the first-ever report of CS/Ge NCs0.8 hydrogel in the antibacterial field, which may spur a wave of developing Ge-based biomaterials to benefit biomedical applications.
Collapse
|
19
|
Cui S, Tao L, Chan WK, Zhou D, Yu Z, Xu W. Tunable concentration-dependent upconversion and downconversion luminescence in NaYF 4: Yb 3+, Er 3+@ NaYF 4: Yb 3+, Nd 3+ core-shell nanocrystals for a dual-mode anti-counterfeiting imaging application. OPTICS LETTERS 2022; 47:2814-2817. [PMID: 35648937 DOI: 10.1364/ol.452089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-doped luminescent nanocrystals display both upconversion luminescence (UCL) and downconversion luminescence (DCL) properties, which offer potential applications in the second near-infrared window (NIR-II) images and biology sensors. Both UCL and DCL are sensitive to concentrations of activators. However, few works reveal the mechanism of concentration-dependent UCL and DCL. Herein, we synthesize core-shell upconversion nanocrystals (UCNCs) NaYF4: Yb3+(20%), Er3+ (2%)@NaYF4: Yb3+ (x%), Nd3+ (y%) with varying concentration of Nd and Yb ions. The UCL and DCL spectra are recorded under excitation of 980 nm and 808 nm lasers. The results indicate that the luminescence of core-shell UCNCs is influenced by the non-radiative rate between activators (Yb3+ and Nd3+) and the back energy transfer rate from Er3+ ions to activators. UCL tends to be obtained at a relatively low concentration of Yb3+ and Nd3+ ions (about 5%), whereas NIR emission tends to be obtained at a relatively high concentration of Yb3+ and Nd3+ ions (not higher than 20%). Dual-mode anti-counterfeiting imaging is successfully fabricated using core-shell UCNCs, which can be detected and distinguished by visible and infrared detectors. The visible versus infrared brightness of dual-mode anti-counterfeiting imaging can be tuned by varying the concentration of activators (Yb3+, Nd3+). Our work demonstrates concentration-dependent UCL and DCL in core-shell UCNCs, which provides reference to obtain NIR emission in the NIR-II region and adds encrypted dimensions for anti-counterfeiting patterns in the field of file encryption.
Collapse
|
20
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
22
|
Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics. Nat Commun 2022; 13:539. [PMID: 35087022 PMCID: PMC8795193 DOI: 10.1038/s41467-021-27835-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Metallic and semimetallic mesoporous frameworks are of great importance owing to their unique properties and broad applications. However, semimetallic mesoporous structures cannot be obtained by the traditional template-mediated strategies due to the inevitable hydrolytic reaction of semimetal compounds. Therefore, it is yet challenging to fabricate mesoporous semimetal nanostructures, not even mention controlling their pore sizes. Here we develop a facile and robust selective etching route to synthesize monodispersed mesoporous antimony nanospheres (MSbNSs). The pore sizes of MSbNSs are tunable by carefully controlling the partial oxidation of Sb nuclei and the selective etching of the as-formed Sb2O3. MSbNSs show a wide absorption from visible to second near-infrared (NIR-II) region. Moreover, PEGylated MSbNSs are degradable and the degradation mechanism is further explained. The NIR-II photothermal performance of MSbNSs is promising with a high photothermal conversion efficiency of ~44% and intensive NIR-II photoacoustic signal. MSbNSs show potential as multifunctional nanomedicines for NIR-II photoacoustic imaging guided synergistic photothermal/chemo therapy in vivo. Our selective etching process would contribute to the development of various semimetallic mesoporous structures and efficient multimodal nanoplatforms for theranostics.
Collapse
|
23
|
Wu Z, Ke J, Liu Y, Sun P, Hong M. Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Yeow E, Wu X. Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions. Phys Chem Chem Phys 2022; 24:11455-11470. [DOI: 10.1039/d2cp00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-based nanocrystals possess three unique physical properties that make them attractive for facilitating photoreactions, namely photon upconversion, Lewis acid catalytic activity and photothermal effect. When co-doped with suitable sensitizer and...
Collapse
|
26
|
Su PR, Wang T, Zhou PP, Yang XX, Feng XX, Zhang MN, Liang LJ, Tang Y, Yan CH. Self-assembly-induced luminescence of Eu 3+-complexes and application in bioimaging. Natl Sci Rev 2022; 9:nwab016. [PMID: 35070324 PMCID: PMC8776545 DOI: 10.1093/nsr/nwab016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room-temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly-induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.
Collapse
Affiliation(s)
- Ping-Ru Su
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xia Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mei-Na Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Juan Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Xu H, Jia M, Wang Z, Wei Y, Fu Z. Enhancing the Upconversion Luminescence and Sensitivity of Nanothermometry through Advanced Design of Dumbbell-Shaped Structured Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61506-61517. [PMID: 34910472 DOI: 10.1021/acsami.1c17900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The core-shell engineering of lanthanide-doped nanoparticles has captured considerable attention because it can safeguard the luminescence intensity of the core by reducing surface defects. However, the limited surface area of the traditional spherical core-shell structure hinders the further breakthrough of the brightness. Herein, a unique NaYF4:Yb3+/RE3+@NaYF4:Yb3+/RE3+@NaNdF4:Yb3+ (RE3+ = Ho3+ or Er3+) dumbbell-shaped multilayer nanoparticle featuring a high surface area is reported. Its upconversion luminescence intensity is higher than that of the conventional spherical core-shell structure. A thorough investigation is performed on the luminescence and thermometric mechanisms of Ho3+/Er3+ distributed in the core and the first shell. Remarkably, when Ho3+/Er3+ ions are distributed in the first shell, the relative sensitivity of the biological luminescence nanothermometer composed of downshifting near-infrared emissions is increased to 2.543% K-1 (328 K), which considerably exceeds most reported values. The increased value is attributed to the more thermal-sensitive phonon-assisted energy transfer. For potential biological applications, dumbbell-shaped nanoparticles (DSNPs) with hydrophilic modification show excellent thermometric performance and high tissue penetration depth. Overall, the insights provided by this work will broaden the scope of novel DSNPs in the fields of luminescence and nanothermometry.
Collapse
Affiliation(s)
- Hanyu Xu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Mochen Jia
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiying Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Yanling Wei
- Faculty of Applied Sciences, Jilin Engineering Normal University, Changchun 130062, China
| | - Zuoling Fu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021; 50:5086-5125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.
Collapse
Affiliation(s)
- Qiyao Zheng
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
29
|
An NIR dual-emitting/absorbing inorganic compact pair: A self-calibrating LRET system for homogeneous virus detection. Biosens Bioelectron 2021; 190:113369. [PMID: 34098357 DOI: 10.1016/j.bios.2021.113369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Many conventional optical biosensing systems use a single responsive signal in the visible light region. This limits their practical applications, as the signal can be readily perturbed by various external environmental factors. Herein, a near-infrared (NIR)-based self-calibrating luminescence resonance energy transfer (LRET) system was developed for background-free detection of analytes in homogeneous sandwich-immunoassays. The inorganic LRET pair was comprised of NIR dual-emitting lanthanide-doped nanoparticles (LnNPs) as donors and NIR-absorbing LnNPs as acceptors, which showed a narrow absorption peak (800 nm) and long-term stability, enabling stable LRET with a built-in self-calibrating signal. Screened single-chain variable fragments (scFvs) were used as target avian influenza virus (AIV)-binding antibodies to increase the LRET efficiency in sandwich-immunoassays. The compact sensor platform successfully detected AIV nucleoproteins with a 0.38 pM limit of detection in buffer solution and 64 clinical samples. Hence, inorganic LnNP pairs may be effective for self-calibrating LRET systems in the background-free NIR region.
Collapse
|
30
|
Li ZH, Chen Y, Sun Y, Zhang XZ. Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS NANO 2021; 15:5189-5200. [PMID: 33703878 DOI: 10.1021/acsnano.0c10388] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Developing appropriate photothermal agents to meet complex clinical demands is an urgent challenge for photothermal therapy of tumors. Here, platinum-doped Prussian blue (PtPB) nanozymes with tunable spectral absorption, high photothermal conversion efficiency, and good antioxidative catalytic activity are developed by one-step reduction. By controlling the doping ratio, PtPB nanozymes exhibit tunable localized surface plasmon resonance (LSPR) frequency with significantly enhanced photothermal conversion efficiency and allow multiwavelength photoacoustic/infrared thermal imaging guided photothermal therapy. Experimental band gap and density functional theory calculations further reveal that the decrement of free carrier concentrations and increase in circuit paths of electron transitions co-contribute to the enhanced photothermal conversion efficiency of PtPB with tunable LSPR frequency. Benefiting from antioxidative catalytic activity, PtPB can simultaneously relieve inflammation caused by hyperthermia. Moreover, PtPB nanozymes exhibited good biosafety after intravenous injection. Our findings provide a paradigm for designing safe and efficient photothermal agents to treat complex tumor diseases.
Collapse
Affiliation(s)
- Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yunxia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
31
|
Guan W, Tan L, Liu X, Cui Z, Zheng Y, Yeung KWK, Zheng D, Liang Y, Li Z, Zhu S, Wang X, Wu S. Ultrasonic Interfacial Engineering of Red Phosphorous-Metal for Eradicating MRSA Infection Effectively. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006047. [PMID: 33349987 DOI: 10.1002/adma.202006047] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/11/2020] [Indexed: 05/18/2023]
Abstract
Sonodynamic therapy (SDT) is considered to be a potential treatment for various diseases including cancers and bacterial infections due to its deep penetration ability and biosafety, but its SDT efficiency is limited by the hypoxia environment of deep tissues. This study proposes creating a potential solution, sonothermal therapy, by developing the ultrasonic interfacial engineering of metal-red phosphorus (RP), which has an obviously improved sonothermal ability of more than 20 °C elevation under 25 min of continuous ultrasound (US) excitation as compared to metal alone. The underlying mechanism is that the mechanical energy of the US activates the motion of the interfacial electrons. US-induced electron motion in the RP can efficiently transfer the US energy into phonons in the forms of heat and lattice vibrations, resulting in a stronger US absorption of metal-RP. Unlike the nonspecific heating of the cavitation effect induced by US, titanium-RP can be heated in situ when the US penetrates through 2.5 cm of pork tissue. In addition, through a sonothermal treatment in vivo, bone infection induced by multidrug-resistant Staphylococcus aureus (MRSA) is successfully eliminated in under 20 min of US without tissue damage. This work provides a new strategy for combating MRSA by strong sonothermal therapy through US interfacial engineering.
Collapse
Affiliation(s)
- Wei Guan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Dong Zheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xianbao Wang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
32
|
Zhang Y, He S, Chen W, Liu Y, Zhang X, Miao Q, Pu K. Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew Chem Int Ed Engl 2021; 60:5921-5927. [PMID: 33305425 DOI: 10.1002/anie.202015116] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Development of real-time non-invasive imaging probes to assess infiltration and activation of cytotoxic T cells (CTLs) is critical to predict the efficacy of cancer immunotherapy, which however remains challenging. Reported here is an activatable semiconducting polymer nanoprobe (SPNP) for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of a biomarker (granzyme B) associated with activation of CTLs. SPNP comprises a semiconducting polymer (SP) conjugated with a granzyme B cleavable and dye-labeled peptide as the side chain, both of which emit NIRF and PA signals. After systemic administration, SPNP passively targets the tumor and in situ reacts with granzyme B to release the dye-labeled peptide, leading to decreased NIRF and PA signals from the dye but unchanged signals from the polymer. Such ratiometric NIRF and PA signals of SPNP correlate well with the expression level of granzyme B and intratumoral population of CTLs. Thus, this study not only presents the first PA probes for in vivo imaging of immune activation but also provides a molecular design strategy that can be generalized for molecular imaging of other immune-related biomarkers.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Yinghua Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Xuefei Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
33
|
Zhang Y, He S, Chen W, Liu Y, Zhang X, Miao Q, Pu K. Activatable Polymeric Nanoprobe for Near‐Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015116] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Yinghua Liu
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Xuefei Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
34
|
Mamontova E, Rodríguez-Castillo M, Oliviero E, Guari Y, Larionova J, Monge M, Long J. Designing heterostructured core@satellite Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00008j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity.
Collapse
Affiliation(s)
| | - Maria Rodríguez-Castillo
- Departamento de Química
- Universidad de La Rioja
- Centro de Investigación en Síntesis Química (CISQ)
- Complejo Científico-Tecnológico
- Logroño
| | | | | | | | - Miguel Monge
- Departamento de Química
- Universidad de La Rioja
- Centro de Investigación en Síntesis Química (CISQ)
- Complejo Científico-Tecnológico
- Logroño
| | | |
Collapse
|
35
|
Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6905. [PMID: 33287186 PMCID: PMC7730465 DOI: 10.3390/s20236905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Prussian blue nanoparticles (PBNPs) have attracted increasing research interest in immunosensors, bioimaging, drug delivery, and application as therapeutic agents due to their large internal pore volume, tunable size, easy synthesis and surface modification, good thermal stability, and favorable biocompatibility. This review first outlines the effect of tumor markers using PBNPs-based immunosensors which have a sandwich-type architecture and competitive-type structure. Metal ion doped PBNPs which were used as T1-weight magnetic resonance and photoacoustic imaging agents to improve image quality and surface modified PBNPs which were used as drug carriers to decrease side effects via passive or active targeting to tumor sites are also summarized. Moreover, the PBNPs with high photothermal efficiency and excellent catalase-like activity were promising for photothermal therapy and O2 self-supplied photodynamic therapy of tumors. Hence, PBNPs-based multimodal imaging-guided combinational tumor therapies (such as chemo, photothermal, and photodynamic therapies) were finally reviewed. This review aims to inspire broad interest in the rational design and application of PBNPs for detecting and treating tumors in clinical research.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (X.G.); (Q.W.); (S.L.); (T.L.); (C.L.); (X.H.)
| | | | | | | | | |
Collapse
|
36
|
Lanthanide-semiconductor probes for precise imaging-guided phototherapy and immunotherapy. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Qi Y, Ye J, Ren S, Wang G, Lv J, Zhang S, Che Y, Li Y, Chen B, Ning G. Temperature Feedback-Controlled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF 4 :Er,Yb@NaGdF 4 :Nd@Cu-BIF Nanoassemblies. Adv Healthc Mater 2020; 9:e2001205. [PMID: 33000903 DOI: 10.1002/adhm.202001205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Indexed: 01/10/2023]
Abstract
The intelligent design of multifunctional nanoplatforms is critical for cancer therapy. Herein, NaGdF4 :Er,Yb@NaGdF4 :Nd@Cu(II) boron-imidazolate frameworks (denoted as CSNPs@Cu-BIF) nanoassemblies are designed and fabricated. Upon a single 808 nm laser irradiation, the nanoassemblies not only show the outstanding photothermal conversion capacity (η = 41.7%) but also generate cytotoxic reactive oxygen species through an in situ Fenton-like reaction and fluorescence resonance energy transfer. Importantly, the nanoassemblies simultaneously introduce remarkable antitumor efficacy via photothermal/photodynamic/chemodynamic combination therapy both in vitro and in vivo. To improve the therapeutic effect of solid tumor ablation, it is highly desirable to monitor the treatment process in real-time. Multiclinical imaging modalities of ultrasonography are employed to systematically investigate the ablation mechanism of solid tumors in vivo. Furthermore, the significant difference between the eigen temperature of CSNPs@Cu-BIF nanoassemblies obtained by the temperature-sensitive emission bands signal changes and the apparent temperature recorded by the thermal imaging camera is 14.55 K at equilibrium. This current work therefore supplies an alternative strategy in temperature feedback-controlled accurate cancer therapy.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Shuangsong Ren
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Jialin Lv
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Ying Che
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology School of Public Health Dalian Medical University 9 West Section Lvshun South Road Dalian Liaoning 116044 P. R. China
| | - Baojiu Chen
- College of Science Dalian Maritime University 1 Linghai Road Dalian Liaoning 116026 P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| |
Collapse
|
38
|
Yu Z, Chan WK, Zhang Y, Tan TTY. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials 2020; 269:120459. [PMID: 33139071 DOI: 10.1016/j.biomaterials.2020.120459] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 12/29/2022]
Abstract
The emergence of near-infrared-II (NIR-II) activated photomedicines has extended the penetration depth for noninvasive theranostics, especially for photothermal nanomedicines. The current early development stage for NIR-II activated photomedicines has focused on creating a greater variety of photothermal agents (PTAs) with superior photothermal conversion ability. However, there is no thorough review for NIR-II inorganic PTAs and most comparisons of the photothermal performances of NIR-II inorganic PTAs are made with NIR-I PTAs. This review will first discuss about the key mechanisms of NIR-II absorption and photothermal conversion. Subsequently, this review will summarize recently developed advanced NIR-II inorganic PTAs based on the dominant inorganic elements and provide a comparison of their NIR-II photothermal performances. The nanostructure design, enhancement strategies and potential biomedical applications will be listed and discussed. We hope this review will further inspire active development and study of NIR-II activated inorganic PTAs with good photothermal conversion ability, multifunctionality, biocompatibility or biodegradability, and disease targeting ability.
Collapse
Affiliation(s)
- Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459.
| | - Wen Kiat Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459.
| |
Collapse
|
39
|
Chen F, Teng L, Lu C, Zhang C, Rong Q, Zhao Y, Yang Y, Wang Y, Song G, Zhang X. Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging In Vivo via Prussian Blue Nanoprobe. Anal Chem 2020; 92:13452-13461. [DOI: 10.1021/acs.analchem.0c02859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fangfang Chen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lili Teng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiming Rong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yue Yang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
40
|
Gao Y, Yu G, Xing K, Gorin D, Kotelevtsev Y, Tong W, Mao Z. Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. J Mater Chem B 2020; 8:7121-7134. [PMID: 32648878 DOI: 10.1039/d0tb01248c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Prussian blue (PB) based nanostructure is a mixed-valence coordination network with excellent biosafety, remarkable photothermal effect and multiple enzyme-mimicking behaviours. Compared with other nanomaterials, PB-based nanoparticles (NPs) exhibit several unparalleled advantages in biomedical applications. This review begins with the chemical composition and physicochemical properties of PB-based NPs. The tuning strategies of PB-based NPs and their biomedical properties are systemically demonstrated. Afterwards, the biomedical applications of PB-based NPs are comprehensively recounted, mainly focusing on treatment of tumors, bacterial infection and inflammatory diseases. Finally, the challenges and future prospects of PB-based NPs and their application in disease treatment are discussed.
Collapse
Affiliation(s)
- Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuoran Xing
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Russian Federation
| | - Yuri Kotelevtsev
- Functional Genomics and RNAi Therapy CREI, Skolkovo Institute for Science and Technology, 3 Nobel Street, Skolkovo Moscow region, 143026, Russian Federation
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| |
Collapse
|
41
|
Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Indexed: 05/24/2023]
Abstract
Therapeutic systems with site-specific pharmaceutical activation hold great promise to enhance therapeutic efficacy while reducing systemic toxicity in cancer therapy. With operational flexibility, noninvasiveness, and high spatiotemporal resolution, photoactivatable nanomedicines have drawn growing attention. Distinct from traditional controlled release systems relying on the difference of biomarker concentrations between disease and healthy tissues, photoactivatable nanomedicines capitalize on the interaction between nanotransducers and light to either trigger photochemical reactions or generate reactive oxygen species (ROS) or heat effect to remotely induce pharmaceutical actions in living subjects. Herein, the recent advances in the development of photoactivatable protherapeutic nanoagents for oncology are summarized. The design strategies and therapeutic applications of these nanoagents are described. Representative examples of each type are discussed in terms of structure, photoactivation mechanism, and preclinical models. Last, potential challenges and perspectives to further develop photoactivatable protherapeutic nanoagents in cancer nanomedicine are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Xiangliang Yang
- National Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
42
|
Li D, Bao A, Chen X, Li S, Wang T, Zhang L, Ji J, Li Q, Wang C, Gao Y, Yang Y, Dong X. Prussian Blue@Polyacrylic Acid/Au Aggregate Janus Nanoparticles for CT Imaging‐guided Chemotherapy and Enhanced Photothermal Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dan Li
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Aomin Bao
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Xiangjun Chen
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Shengnan Li
- Hebei University of Technology Xiping Road No. 5340, Beichen District Tianjin 300401 P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Jingyu Ji
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Qianqian Li
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Chungang Wang
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin 130024 P. R. China
| | - Yuzhou Gao
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences No. 88, Keling Road, Suzhou New District Jiangsu 215163 P. R. China
| | - Ying Yang
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| | - Xiangting Dong
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun Jilin 130022 P. R. China
| |
Collapse
|
43
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
44
|
Recent progress in NIR-II emitting lanthanide-based nanoparticles and their biological applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Zhang Y, Zhang W, Zeng K, Ao Y, Wang M, Yu Z, Qi F, Yu W, Mao H, Tao L, Zhang C, Tan TTY, Yang X, Pu K, Gao S. Upconversion Nanoparticles-Based Multiplex Protein Activation to Neuron Ablation for Locomotion Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906797. [PMID: 32003923 DOI: 10.1002/smll.201906797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)-based multiplex proteins activation tool to ablate deep-tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300-fold enhancement of blue (450-470 nm) and red (590-610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light-induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep-tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single- and multiple-cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wanmei Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanghua Zeng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanxiao Ao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Fukang Qi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Weiwei Yu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Heng Mao
- LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing, 100871, P. R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
46
|
Yu Z, Chan WK, Tan TTY. Neodymium-Sensitized Nanoconstructs for Near-Infrared Enabled Photomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905265. [PMID: 31782909 DOI: 10.1002/smll.201905265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Neodymium (Nd3+ )-sensitized nanoconstructs have gained increasing attention in recent decades due to their unique properties, especially optical properties. The design of various Nd3+ -sensitized nanosystems is expected to contribute to medical and health applications, due to their advantageous properties such as high penetration depth, excellent photostability, non-photobleaching, low cytotoxicity, etc. However, the low conversion efficiency and potential long-term toxicity of Nd3+ -sensitized nanoconstructs are huge obstacles to their clinical translations. This review article summarizes three energy transfer pathways of all kinds of Nd3+ -sensitized nanoconstructs focusing on the properties of Nd3+ ions and discusses their recent potential applications as near-infrared (NIR) enabled photomedicine. This review article will contribute to the design and fabrication of novel Nd3+ -sensitized nanoconstructs for NIR-enabled photomedicine, aiming for potentially safer and more efficient designs to get closer to clinical usage.
Collapse
Affiliation(s)
- Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Wen Kiat Chan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
47
|
Jiang R, Yang J, Meng Y, Yan D, Liu C, Xu C, Liu Y. X-ray/red-light excited ZGGO:Cr,Nd nanoprobes for NIR-I/II afterglow imaging. Dalton Trans 2020; 49:6074-6083. [DOI: 10.1039/d0dt00247j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NIR-I/II afterglow nanoprobes for deep-tissue autofluorescence-free bioimaging were developed based on the persistent energy transfer.
Collapse
Affiliation(s)
- Rongyun Jiang
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Jian Yang
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Yangqi Meng
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Duanting Yan
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Chunguang Liu
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Changshan Xu
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| | - Yuxue Liu
- School of Physics
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
48
|
Ge X, Wei R, Sun L. Lanthanide nanoparticles with efficient near-infrared-II emission for biological applications. J Mater Chem B 2020; 8:10257-10270. [DOI: 10.1039/d0tb01745k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss designing efficient NIR-II-emitting lanthanide NPs and summarize their recent progress in bioimaging, therapy, and biosensing, as well as their limitations and future opportunities.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Ruoyan Wei
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
49
|
Wang X, Li H, Li F, Han X, Chen G. Prussian blue-coated lanthanide-doped core/shell/shell nanocrystals for NIR-II image-guided photothermal therapy. NANOSCALE 2019; 11:22079-22088. [PMID: 31720650 DOI: 10.1039/c9nr07973d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lanthanide-doped nanoparticles have long been stereotyped for optical luminescence bioimaging. However, they are known to be unable to produce therapeutic abilities. Here, we describe a lanthanide-based theranostic agent, namely, prussian blue (PB)-coated NaErF4@NaYF4@NaNdF4 core/shell/shell nanocrystals encapsulated in a phospholipid PEG micelle (PEG-CSS@PB), which showed switched imaging and hyperthermia abilities under distinct near infrared (NIR) light activation. The erbium (Er3+)-enriched inner core nanocrystals (NaErF4) enabled the emission of tissue-penetrating luminescence (1525 nm) in the second biological window (NIR-II, 1000-1700 nm), which endowed high-resolution optical imaging of the blood vessels and tumors under ∼980 nm excitation. High neodymium (Nd3+) concentrations in the epitaxial outer NaNdF4 shell introduced maximum cross relaxation processes that converted the absorbed NIR light (∼808 nm) into heat at high efficiencies, thus providing abilities for photothermal therapy (PTT). Importantly, the coated Prussian blue (PB) increased light absorption by about 10-fold compared to the composite free of PB, thus entailing a high light-to-heat conversion efficiency of ∼50.5%. This commensurated with that of well-established gold nanorods. As a result, the PEG-CSS@PB nanoparticles with MTT-determined low toxicities resulted in ∼80% death of HeLa cells at a dose of 600 μg mL-1 under 808 nm laser irradiance (1 W cm-2) for 10 min. Moreover, utilizing the same light dose, a single PTT treatment in tumor-bearing BALB/c mice shrunk the tumor size by ∼12-fold compared to the tumors without treatment. Our results, here, constituted a solid step forward to entitle lanthanide-based nanoparticles as theranostic agents in nanomedicine studies.
Collapse
Affiliation(s)
- Xin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | | | | | | | | |
Collapse
|
50
|
Wang K, Zhang F, Zhu G, Zhang H, Zhao Y, She L, Yang J. Surface Anchoring Approach for Growth of CeO 2 Nanocrystals on Prussian Blue Capsules Enable Superior Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33082-33090. [PMID: 31418549 DOI: 10.1021/acsami.9b11212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prussian blue (PB) and its analogues (PBAs) have been acknowledged as promising materials for the catalysis, energy storage, and bioapplications because of different constructions and tunable composition. The approach for surface modification with metal oxides for boosting the performance, however, is rarely reported. Herein, a facile surface anchoring strategy has been proposed to realize CeO2 nanocrystals uniformly depositing on the surface of PB. Besides, the size, thickness, and depositing density of CeO2 nanocrystals can be regulated by adjusting the amount of the precursor and the proportion of ethanol and deionized water. Furthermore, after a step of confined pyrolysis treatment under an air atmosphere, CeO2 nanocrystals with an encapsulated iron oxide structure have been obtained. This shows a remarkable cycling and rate performance when evaluated as an anode of the lithium-ion battery. The surface anchoring approach of the CeO2 nanocrystals may not only promote the various applications of PB-based materials but also provide an opportunity for developing the architecture of other CeO2-based core-shell nanostructures.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Guanjia Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Hui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Yuye Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Lan She
- Department of Inorganic Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai 200433 , China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering , Donghua University , Shanghai 201620 , China
| |
Collapse
|