1
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
2
|
Song J, Chen H, Sun Y, Liu Z. Layered MXene Films via Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406855. [PMID: 39396384 DOI: 10.1002/smll.202406855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Indexed: 10/15/2024]
Abstract
MXene has attracted significant attention as a 2D material family due to its metallic conductivity and abundant surface functional groups and has been extensively studied and applied as bulk materials and microscale thin films. MXene possesses ionizable surfaces and edges, as well as high surface area. Its customizable dispersibility demonstrates unique advantages in self-assembly solution processing. Recent studies have demonstrated the application value of layered MXene films at the nanoscale thickness and the reliance of processing on self-assembly techniques. However, this field currently lacks sufficient attention. Here, the regulatory mechanisms are summarized for the preparation of layered MXene films through self-assembly techniques, as well as introduce their applications. Moreover, the future challenges of large-scale applications of MXene self-assembly techniques are proposed. It is believed that this review would provide a dynamic and promising path for the development of layered MXene self-assembly techniques.
Collapse
Affiliation(s)
- Jiafeng Song
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongwu Chen
- Research Institute of Petroleum Processing, Sinopec, Beijing, 100728, China
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yilin Sun
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhifang Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Rostami S, Ghaffarkhah A, Hashemi SA, Wuttke S, Rojas OJ, Arjmand M. Crucial role of structural design on performance of cryogel-based EMI shields: an experimental review. NANOSCALE HORIZONS 2024. [PMID: 39385725 DOI: 10.1039/d4nh00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In the field of electromagnetic interference (EMI) shielding with materials based on highly porous constructs, such as foams, cryogels, aerogels and xerogels, a significant challenge lies in designing structures that primarily absorb rather than reflect incident electromagnetic waves (EMWs). This goal necessitates a dual focus on the electrical conductivity and the internal porosity of the given porous material. To explore these issues, we fabricated various graphene oxide (GO)-based cryogels by molding, emulsion templating, chemically-induced gelation, freeze-casting, and liquid-in-liquid streaming. Following thermal annealing to enhance electrical conductivity for effective EMI shielding, we assessed the physicochemical, mechanical and structural characteristics of these cryogels. Notably, the cryogels exhibited distinct EMI shielding behaviors, varying significantly in terms of primary shielding mechanisms and overall shielding effectiveness (SET). For example, chemically-crosslinked cryogels, which showed the highest electrical conductivity, predominantly reflected EMWs, achieving a reflectance of approximately 70% and a SET of 43.2 dB. In contrast, worm-like cryogels, despite having a similar SET of 42.9 dB, displayed a unique absorption-dominant shielding mechanism. This was attributed to their multi-scale porosities and numerous internal interfaces, which significantly enhanced their ability to absorb EMWs, reflected in an absorbance of 54.7%. Through these experiments, our aim is to provide key heuristic rules for the structural design of EMI shields.
Collapse
Affiliation(s)
- Sara Rostami
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| | - Stefan Wuttke
- Basque Centre for Materials, Applications & Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall Vancouver, Vancouver, BC, V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
4
|
Chu G, Nie Z, Peng Y, Xu H, Yang X, Guo X, Jiang M, Dong F, Guo Z, Qi S, Zhang J. Spin-coating ANF based multilayer symmetric composite films for enhanced electromagnetic interference shielding and thermal management. J Colloid Interface Sci 2024; 679:521-530. [PMID: 39378687 DOI: 10.1016/j.jcis.2024.09.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The demand for flexible composite films with electromagnetic interference (EMI) shielding capabilities is rapidly increasing. Balancing high EMI performance with flexibility and portability has become a critical research focus in practical applications. In this study, an optimized strategy for aramid nanofibers (ANF) films was developed using spin-coating and sol-gel techniques. The resulting film features a smooth surface and excellent mechanical properties. ANF, initially an insulator, was transformed into a conductor through the in-situ polymerization of ion-doped polypyrrole (PPy). Leveraging a multilayer structural strategy, we prepared a symmetric composite film, ANF@PPy-(TA-MXene)-AgNWs-(TA-MXene)-ANF@PPy (PMA), using vacuum-assisted filtration and lamination hot pressing. This film, composed of ANF@PPy (PA) as the matrix, tannic acid (TA) modified MXene, and silver nanowires (AgNWs) as fillers, exhibited multiple shielding mechanisms as electromagnetic wave (EMW) passed through its various layers. This multilayer configuration provides significant flexibility in EMW shielding. Moreover, TA-modified MXene expands the lamellar spacing, enhancing the scattering efficiency of EMWs within the film, and serves as a medium connecting the upper and lower layers. This results in the efficient integration of the multilayer structure, synergistically improving both EMI shielding performance and mechanical properties. When the ratio of PA/MXene/AgNWs was 1:3:1, the film demonstrated optimal properties, including an EMI shielding effectiveness of 70.2 dB, thermal conductivity of 4.62 W/(m•K), and tensile strength of 50.2 MPa. Due to the exceptional EMI shielding and thermal properties of the PMA composite film, it holds great potential for applications in artificial intelligence, wearable heaters, and military equipment.
Collapse
Affiliation(s)
- Guiyu Chu
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhuguang Nie
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yanmeng Peng
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huanyu Xu
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaonan Yang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaoli Guo
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Mingyu Jiang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Fanghong Dong
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zilu Guo
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shuhua Qi
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Junping Zhang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
5
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
6
|
Gu S, Wang D. Electrostatic Interaction-Driven Fabrication of Large-Area, Freestanding Nanoparticle Surfactant Membranes with Controllable Elastic Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45778-45787. [PMID: 39140693 DOI: 10.1021/acsami.4c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nanoparticle surfactants assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Understanding and actively tuning the mechanical properties of the generated membranes, which comprise the nanoparticle surfactants, are of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we present electrostatic interaction-driven fabrication of freestanding and close-packed SiO2 surfactant membranes with diameters up to 0.10 mm. The membranes of 20-30 nm in thickness were spanned over holes with a diameter of 2 μm, exhibiting a Young's modulus ranging from 1.5 to 5.9 GPa. The controllable elastic properties of the fabricated nanoparticle surfactant membranes are found to be dictated by the strength of interactions between nanoparticles and ligands, between ligands and ligands, and between the nanoparticle surfactants. The results present an efficient approach for fabricating and developing nanoparticle surfactant-based large-area, freestanding, and ultrathin membranes with finely tunable mechanical properties on a large scale.
Collapse
Affiliation(s)
- Sheng Gu
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Shrestha S, Barvenik KJ, Chen T, Yang H, Li Y, Kesavan MM, Little JM, Whitley HC, Teng Z, Luo Y, Tubaldi E, Chen PY. Machine intelligence accelerated design of conductive MXene aerogels with programmable properties. Nat Commun 2024; 15:4685. [PMID: 38824129 PMCID: PMC11144242 DOI: 10.1038/s41467-024-49011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Collapse
Affiliation(s)
- Snehi Shrestha
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kieran James Barvenik
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tianle Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Haochen Yang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yang Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Meera Muthachi Kesavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Little
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Hayden C Whitley
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zi Teng
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Yaguang Luo
- US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20725, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Robotics Center, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Kamada H, Hata Y, Sugiura K, Sawada T, Serizawa T. Interfacial jamming of surface-alkylated synthetic nanocelluloses for structuring liquids. Carbohydr Polym 2024; 331:121896. [PMID: 38388029 DOI: 10.1016/j.carbpol.2024.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.
Collapse
Affiliation(s)
- Hirotaka Kamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kai Sugiura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
9
|
Parale VG, Kim T, Choi H, Phadtare VD, Dhavale RP, Kanamori K, Park HH. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307772. [PMID: 37916304 DOI: 10.1002/adma.202307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Collapse
Affiliation(s)
- Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Varsha D Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
10
|
Wu B, Qi Q, Liu L, Liu Y, Wang J. Wearable Aerogels for Personal Thermal Management and Smart Devices. ACS NANO 2024; 18:9798-9822. [PMID: 38551449 DOI: 10.1021/acsnano.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Extreme climates have become frequent nowadays, causing increased heat stress in human daily life. Personal thermal management (PTM), a technology that controls the human body's microenvironment, has become a promising strategy to address heat stress. While effective in ordinary environments, traditional high-performance fibers, such as ultrafine, porous, highly thermally conductive, and phase change materials, fall short when dealing with harsh conditions or large temperature fluctuations. Aerogels, a third-generation superinsulation material, have garnered extensive attention among researchers for their thermal management applications in building energy conservation, transportation, and aerospace, attributed to their extremely low densities and thermal conductivity. While aerogels have historically faced challenges related to weak mechanical strength and limited secondary processing capacity, recent advancements have witnessed notable progress in the development of wearable aerogels for PTM. This progress underscores their potential applications within extremely harsh environments, serving as self-powered smart devices and sensors. This Review offers a timely overview of wearable aerogels and their PTM applications with a particular focus on their wearability and suitability. Finally, the discussion classifies five types of PTM applications based on aerogel function: thermal insulation, heating, cooling, adaptive regulation (involving thermal insulation, heating, and cooling), and utilization of aerogels as wearable smart devices.
Collapse
Affiliation(s)
- Bing Wu
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Qingjie Qi
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Ling Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingjie Liu
- Emergency Research Institute, Chinese Institute of Coal Science, Beijing 100013, P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Li M, Dai X, Wang M, Bai H. Bioinspired Macroporous Materials of MXene Nanosheets: Ice-Templated Assembly and Multifunctional Applications. SMALL METHODS 2024; 8:e2300213. [PMID: 37381683 DOI: 10.1002/smtd.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Biological macroporous materials, such as stems of the plants and bone of the animals, possess outstanding properties for powerful guarantee of creatures' survival through the well-aligned architecture constructed from limited components. Transition metal carbides or nitrides (MXenes), as novel 2D assemblies, have attracted numerous attentions in various applications due to their unique properties. Therefore, mimicking the bioinspired architecture with MXenes will boost the development of human-made materials with unparalleled properties. Freeze casting has been widely applied to fabricate bioinspired MXene-based materials and achieve the assembly of MXene nanosheets into 3D forms. This process solves the inherent restacking problems of MXenes, simultaneously preserving the unique properties of MXenes with a physical process. Here, the ice-templated assembly of MXene in terms of the freezing processes and their potential mechanisms is summarized. In addition, applications of MXene-based materials in electromagnetic interference shielding and absorption, energy storage and conversion, as well as piezoresistive pressure sensors are also reviewed. Finally, the current challenges and bottlenecks of ice-templated assembly of MXene are further discussed to guide the development of bioinspired MXene-based materials.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Xuangeng Dai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengning Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
12
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Lin YL, Zheng S, Chang CC, Lee LR, Chen JT. Light-responsive MXenegel via interfacial host-guest supramolecular bridging. Nat Commun 2024; 15:916. [PMID: 38296994 PMCID: PMC10831044 DOI: 10.1038/s41467-024-45188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Living in the global-changing era, intelligent and eco-friendly electronic components that can sense the environment and recycle or reprogram when needed are essential for sustainable development. Compared with solid-state electronics, composite hydrogels with multi-functionalities are promising candidates. By bridging the self-assembly of azobenzene-containing supramolecular complexes and MXene nanosheets, we fabricate a MXene-based composite gel, namely MXenegel, with reversible photo-modulated phase behavior. The MXenegel can undergo reversible liquefication and solidification under UV and visible light irradiations, respectively, while maintaining its conductive nature unchanged, which can be integrated into traditional solid-state circuits. The strategy presented in this work provides an example of light-responsive conducting material via supramolecular bridging and demonstrates an exciting platform for functional soft electronics.
Collapse
Affiliation(s)
- Yu-Liang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Sheng Zheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| |
Collapse
|
14
|
Bashir T, Zhou S, Yang S, Ismail SA, Ali T, Wang H, Zhao J, Gao L. Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
15
|
Ghaffarkhah A, Hashemi SA, Ahmadijokani F, Goodarzi M, Riazi H, Mhatre SE, Zaremba O, Rojas OJ, Soroush M, Russell TP, Wuttke S, Kamkar M, Arjmand M. Functional Janus structured liquids and aerogels. Nat Commun 2023; 14:7811. [PMID: 38016959 PMCID: PMC10684591 DOI: 10.1038/s41467-023-43319-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Janus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, Ti3C2Tx/GO, or GO suspensions. The resultant Janus liquids can be used as templates for versatile, responsive, and mechanically robust aerogels suitable for piezoresistive sensing, human motion monitoring, and electromagnetic interference (EMI) shielding with a tuned absorption mechanism. The EMI shields outperform their current counterparts in terms of wave absorption, i.e., SET ≈ 51 dB, SER ≈ 0.4 dB, and A = 0.91, due to their high porosity ranging from micro- to macro-scales along with non-interfering magnetic and conductive networks imparted by the Janus architecture.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Milad Goodarzi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Hossein Riazi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Sameer E Mhatre
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Orysia Zaremba
- Basque Center for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Milad Kamkar
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
16
|
Deng Z, Jiang P, Wang Z, Xu L, Yu ZZ, Zhang HB. Scalable Production of Catecholamine-Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304278. [PMID: 37431209 DOI: 10.1002/smll.202304278] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Processing transition metal carbides/nitrides (MXenes) inks into large-area functional coatings expects promising potential for electromagnetic interference (EMI) shielding and infrared stealth. However, the coating performances, especially for scalable fabrication techniques, are greatly constrained by the flake size and stacking manner of MXene. Herein, the large-area production of highly densified and oriented MXene coatings is demonstrated by engineering interfacial interactions of small MXene flakes with catecholamine molecules. The catecholamine molecules can micro-crosslink MXene nanosheets, significantly improving the ink's rheological properties. It favors the shear-induced sheet arrangement and inhibition of structural defects in the blade coating process, making it possible to achieve high orientation and densification of MXene assembly by either large-area coating or patterned printing. Interestingly, the MXene/catecholamine coating exhibits high conductivity of up to 12 247 S cm-1 and ultrahigh specific EMI shielding effectiveness of 2.0 ×10 5 dB cm2 g-1 , obviously superior to most of the reported MXene materials. Furthermore, the regularly assembled structure also endows the MXene coatings with low infrared emissivities for infrared stealth applications. Therefore, MXene/catecholamine coatings with ultraefficient EMI shielding and low infrared emissivity prove the feasibility of applications in aerospace, military, and wearable devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peizhu Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenguo Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Hashemi SA, Ghaffarkhah A, Goodarzi M, Nazemi A, Banvillet G, Milani AS, Soroush M, Rojas OJ, Ramakrishna S, Wuttke S, Russell TP, Kamkar M, Arjmand M. Liquid-Templating Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302826. [PMID: 37562445 DOI: 10.1002/adma.202302826] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Goodarzi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Amir Nazemi
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Abbas S Milani
- Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Stefan Wuttke
- Basque Centre for Materials, Applications & Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Milad Kamkar
- Multi-scale Materials Design Center, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
18
|
Choi J, Min J, Kim D, Kim J, Kim J, Yoon H, Lee J, Jeong Y, Kim CY, Ko SH. Hierarchical 3D Percolation Network of Ag-Au Core-Shell Nanowire-Hydrogel Composite for Efficient Biohybride Electrodes. ACS NANO 2023; 17:17966-17978. [PMID: 37668160 DOI: 10.1021/acsnano.3c04292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metal nanomaterials are highly valued for their enhanced surface area and electrochemical properties, which are crucial for energy devices and bioelectronics. However, their practical applications are often limited by challenges, such as scalability and dimensional constraints. In this study, we developed a synthesis method for highly porous Ag-Au core-shell nanowire foam (AACNF) using a one-pot process based on a simultaneous nanowelding synthesis method. The unique characteristics of AACNF as metal-based electrodes show the lowest density among metal-based electrodes while demonstrating high electrical conductivity (99.33-753.04 S/m) and mechanical stability. The AACNF's excellent mass transport properties enable multiscale hierarchical incorporation with functional materials including polymeric precursors and living cells. The enhanced mechanical stability at the nanowelded junctions allows AACNF-hydrogel composites to exhibit large stretching (∼700%) and 10,000 times higher electrical conductivity than hydrogel-nanowire composites without the junction. Large particles in the 1-10 μm scale, including fibroblast cells and exoelectrogenic microbes, are also successfully incorporated with AACNF. AACNF-based microbial fuel cells show high power density (∼330.1 W/m3) within the optimal density range. AACNF's distinctive ability to form a hierarchical structure with substances in various scales showcases its potential for advanced energy devices and biohybrid electrodes in the future.
Collapse
Affiliation(s)
- Joonhwa Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - JinKi Min
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dohyung Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinsol Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jinwoo Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
- Institute of Engineering Research, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
19
|
Gu P, Luo X, Zhou S, Wang D, Li Z, Chai Y, Zhang Y, Shi S, Russell TP. Stabilizing Liquids Using Interfacial Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202303789. [PMID: 37198522 DOI: 10.1002/anie.202303789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023]
Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure-property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Collapse
Affiliation(s)
- Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon, P. R. China
| | - Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
20
|
Sheshachala S, Huber B, Schuetzke J, Mikut R, Scharnweber T, Domínguez CM, Mutlu H, Niemeyer CM. Charge controlled interactions between DNA-modified silica nanoparticles and fluorosurfactants in microfluidic water-in-oil droplets. NANOSCALE ADVANCES 2023; 5:3914-3923. [PMID: 37496619 PMCID: PMC10367961 DOI: 10.1039/d3na00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.
Collapse
Affiliation(s)
- Sahana Sheshachala
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Birgit Huber
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Jan Schuetzke
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Chen J, Sun S, Wang Y, Feng W, Luo Y, Li M, Shi S. All-oil Constructs Stabilized by Cellulose Nanocrystal Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37247323 DOI: 10.1021/acsami.3c04539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Constructing all-oil systems with desired geometries and responsiveness would produce a new class of reconfigurable materials that can be used for applications that are not compatible with water or aqueous systems, a fascinating goal to achieve but severely limited by the lack of surfactants. Here, we demonstrate an efficient strategy to stabilize oil-oil interfaces by using the co-assembly between the cellulose nanocrystal and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2). Cellulose nanocrystal surfactants (CNCSs) form and assemble in situ at the interface, showing significantly enhanced binding energy and acid-dependent interfacial activity. When CNCSs jam at the interface, a robust assembly with exceptional mechanical properties can be achieved, allowing the 3D printing of all-oil devices on demand. Using CNCSs as emulsifiers, oil-in-oil high internal phase emulsions can be prepared by one-step homogenization and, when used as templates, porous materials that require water-sensitive monomers can be synthesized. These results open a new platform for stabilizing and structuring all-oil systems, providing numerous applications for microreactors, encapsulation, delivery, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyi Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weixiao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzheng Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Honaryar H, Amirfattahi S, Niroobakhsh Z. Associative Liquid-In-Liquid 3D Printing Techniques for Freeform Fabrication of Soft Matter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206524. [PMID: 36670057 DOI: 10.1002/smll.202206524] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
23
|
Park CE, Senthil RA, Jeong GH, Choi MY. Architecting the High-Entropy Oxides on 2D MXene Nanosheets by Rapid Microwave-Heating Strategy with Robust Photoelectrochemical Oxygen Evolution Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207820. [PMID: 36974611 DOI: 10.1002/smll.202207820] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3 C2 Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3 C2 Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3 C2 Tx -0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm-2 and a small Tafel slope of 71 mV dec-1 , which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm-2 ). In particular, the fabricated water electrolyzer with the HEO/Ti3 C2 Tx -0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm-2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3 C2 Tx MXene, the HEO/Ti3 C2 Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.
Collapse
Affiliation(s)
- Chae Eun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyoung Hwa Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
24
|
Hou S, Bai L, Lu D, Duan H. Interfacial Colloidal Self-Assembly for Functional Materials. Acc Chem Res 2023; 56:740-751. [PMID: 36920352 DOI: 10.1021/acs.accounts.2c00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
Collapse
Affiliation(s)
- Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 China
| | - Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
25
|
Zhang Y, Ye Z, Li C, Chen Q, Aljuhani W, Huang Y, Xu X, Wu C, Bell SEJ, Xu Y. General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis. Nat Commun 2023; 14:1392. [PMID: 36914627 PMCID: PMC10011407 DOI: 10.1038/s41467-023-37001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.
Collapse
Affiliation(s)
- Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Qinglu Chen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Wafaa Aljuhani
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yiming Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
26
|
Zhang H, Lin S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. MEMBRANES 2023; 13:315. [PMID: 36984702 PMCID: PMC10054763 DOI: 10.3390/membranes13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation. However, membrane shielding materials with general functions cannot effectively exert their shielding performance in all fields, and membrane shielding materials used in different fields must have specific functions under their use conditions. The aim of this review was to provide a comprehensive review of these issues. Firstly, the causes of electromagnetic/radiation pollution were briefly introduced and comprehensively identified and analyzed. Secondly, the strategic solutions offered by membrane shielding materials to address electromagnetic/radiation problems were discussed. Then, the design concept, technical innovation, and related mechanisms of the existing membrane shielding materials were expounded, the treatment methods adopted by scholars to study the environment and performance change laws were introduced, and the main difficulties encountered in this area of research were summarized. Finally, on the basis of a comprehensive analysis of the protection provided by membrane shielding materials against electromagnetic/radiation pollution, the action mechanism of membrane shielding materials was expounded in detail, and the research progress, structural design and performance characterization techniques for these materials were summarized. In addition, the future challenges were prospected. This review will help universities, research institutes, as well as scientific and technological enterprises engaged in related fields to fully understand the design concept and research progress of electromagnetic/radiation-contaminated membrane shielding materials. In addition, it is hoped that this review will facilitate efforts to accelerate the research and development of membrane shielding materials and offer potential applications in areas such as electronics, nuclear medicine, agriculture, and other areas of industry.
Collapse
Affiliation(s)
- Hengtong Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Popple D, Shekhirev M, Dai C, Kim P, Wang KX, Ashby P, Helms BA, Gogotsi Y, Russell TP, Zettl A. All-Liquid Reconfigurable Electronics Using Jammed MXene Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208148. [PMID: 36302090 DOI: 10.1002/adma.202208148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Rigid, solid-state components represent the current paradigm for electronic systems, but they lack post-production reconfigurability and pose ever-increasing challenges to efficient end-of-life recycling. Liquid electronics may overcome these limitations by offering flexible in-the-field redesign and separation at end-of-life via simple liquid phase chemistries. Up to now, preliminary work on liquid electronics has focused on liquid metal components, but these devices still require an encapsulating polymer and typically use alloys of rare elements like indium. Here, using the self-assembly of jammed 2D titanium carbide (Ti3 C2 Tx ) MXene nanoparticles at liquid-liquid interfaces, "all-liquid" electrically conductive sheets, wires, and simple functional devices are described including electromechanical switches and photodetectors. These assemblies combine the high conductivity of MXene nanosheets with the controllable form and reconfigurability of structured liquids. Such configurations can have applications not only in electronics, but also in catalysis and microfluidics, especially in systems where the product and substrate have affinity for solvents of differing polarity.
Collapse
Affiliation(s)
- Derek Popple
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mikhail Shekhirev
- Department of Materials Science & Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Chunhui Dai
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Kim
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | | | - Paul Ashby
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yury Gogotsi
- Department of Materials Science & Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Alex Zettl
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
28
|
Chen S, Huang W. A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 2023; 148:435-453. [PMID: 36468668 DOI: 10.1039/d2an01143c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MXenes have been flourishing over the last decade as a high-performance 2D material, which combines the advantages of high electrical conductivity, photothermal conversion, and easy dispersion. They have been used to create soft, highly conductive, self-healing, and tactile-simulating electronic skins (E-skins). However, these E-skins remain generally limited to one or two functions with a complex preparation process. Next-generation E-skins necessitate not only large-scale fabrication using simple and fast methods but also the integration of multiple sensing functions and signal analysis components in order to provide functionality that was not unattainable in the past. Starting with the synthesis of pure MXenes, we walk through the steps of designing MXene sensors, integrating electronic skin arrays, and determining the function of MXene-based electronic skins. We also summarise the problems with existing MXene-based E-skins and possible futuristic directions.
Collapse
Affiliation(s)
- Sha Chen
- Chengdu Techman Software Co., Ltd, Chengdu, China
| | - Wu Huang
- Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Li M, Sun S, Qin R, Wang M, Wang Y, Yang Y, Wu Z, Shi S. Structured liquids stabilized by polyethyleneimine surfactants. SOFT MATTER 2023; 19:609-614. [PMID: 36647672 DOI: 10.1039/d2sm01559e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using host-guest interactions between β-cyclodextrin-modified branched polyethyleneimine and ferrocene-terminated poly-L-lactide, the formation, assembly and jamming of polyethyleneimine surfactants (PEISs) at the liquid-liquid interface is presented. With PEIS, reconfigurable liquids with electrochemical redox responsiveness can be constructed. In conjunction with microfluidic methods, continuous, selective diffusion and purification of ionic species can be achieved in all-liquid constructs.
Collapse
Affiliation(s)
- Mingwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shuyi Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Rongrong Qin
- Beijing Xinfeng Aerospace Equipment Co., Ltd, Beijing, 100854, China
| | - Meng Wang
- Beijing Xinfeng Aerospace Equipment Co., Ltd, Beijing, 100854, China
| | - Yongkang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Preparation of 2D Materials and Their Application in Oil-Water Separation. Biomimetics (Basel) 2023; 8:biomimetics8010035. [PMID: 36648821 PMCID: PMC9844504 DOI: 10.3390/biomimetics8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The problems of environmental pollution are increasingly severe. Among them, industrial wastewater is one of the primary sources of pollution, so it is essential to deal with wastewater, especially oil and water mixtures. At present, biomimetic materials with special wettability have been proven to be effective in oil-water separation. Compared with three-dimensional (3D) materials, two-dimensional (2D) materials show unique advantages in the preparation of special wettable materials due to their high specific surface area, high porosity, controlled structure, and rich functional group rich on the surface. In this review, we first introduce oil-water mixtures and the common oil-water separation mechanism. Then, the research progress of 2D materials in oil-water separation is presented, including but not limited to their structure, types, preparation principles, and methods. In addition, it is still impossible to prepare 2D materials with large sizes because they are powder-like, which greatly limits the application in oil-water separation. Therefore, we provide here a review of several ways to transform 2D materials into 3D materials. In the end, the challenges encountered by 2D materials in separating oil-water are also clarified to promote future applications.
Collapse
|
31
|
Li L, Deng Z, Chen M, Yu ZZ, Russell TP, Zhang HB. 3D Printing of Ultralow-Concentration 2D Nanomaterial Inks for Multifunctional Architectures. NANO LETTERS 2023; 23:155-162. [PMID: 36562701 DOI: 10.1021/acs.nanolett.2c03821] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The direct 3D printing of ultralight architectures with ultralow-concentration 2D nanomaterial inks is necessary yet challenging. Here, we describe an emulsion-based ink for direct printing using 2D nanomaterials, i.e., MXene and graphene oxide (GO). The electrostatic interactions between the ligands in the oil phase and the 2D nanomaterials in the aqueous phase help form sheet-like surfactants at the interface. The interactions between the anchored ligands among different droplets dictate the rheological characteristics of inks, enabling a gel-like behavior ideally suitable for 3D printing at ultralow concentrations of 2D nanomaterials. The 3D printed foams possess lightweight structures with densities of 2.8 mg cm-3 (GO-based) and 4.1 mg cm-3 (MXene-based), and the latter integrates outstanding electrical conductivity, electromagnetic shielding performance, and thermal insulation comparable to air. This work describes a general approach for direct-printing ultralight porous structures that take advantage of the inherent properties of 2D building blocks.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjie Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P Russell
- Polymer Science and Engineering Department University of Massachusetts, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Wu N, Yang Y, Wang C, Wu Q, Pan F, Zhang R, Liu J, Zeng Z. Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207969. [PMID: 36281792 DOI: 10.1002/adma.202207969] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Ambient-pressure-dried (APD) preparation of transition metal carbide/nitrides (MXene) aerogels is highly desirable yet remains highly challenging. Here, ultrathin, high-strength-to-weight-ratio, renewable cellulose nanofibers (CNFs) are efficiently utilized to assist in the APD preparation of ultralight yet robust, highly conductive, large-area MXene-based aerogels via a facile, energy-efficient, eco-friendly, and scalable freezing-exchanging-drying approach. The strong interactions of large-aspect-ratio CNF and MXene as well as the biomimetic nacre-like microstructure induce high mechanical strength and stability to avoid the structure collapse of aerogels in the APD process. Abundant functional groups of CNFs facilitate the chemical crosslinking of MXene-based aerogels, significantly improving the hydrophobicity, water resistance, and even oxidation stability. The ultrathin, 1D nature of the CNF renders the minimal MXenes' interlayered gaps and numerous heterogeneous interfaces, yielding the excellent conductivity and electromagnetic interference (EMI) shielding performance of aerogels. The synergies of the MXene, CNF, and abundant pores efficiently improve the EMI shielding performance, photothermal conversion, and absorption of viscous crude oil. This work shows great promises of the APD, multifunctional MXene-based aerogels in electromagnetic protection or compatibility, thermal therapy, and oil-water separation applications.
Collapse
Affiliation(s)
- Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Changxian Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan, 430064, P.R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, BPR 1096, Switzerland
| | - Runa Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China
| |
Collapse
|
33
|
Wang B, Yin B, Yu H, Zhang Z, Wang G, Shi S, Gu X, Yang W, Tang BZ, Russell TP. Interfacial Assembly and Jamming of Soft Nanoparticle Surfactants into Colloidosomes and Structured Liquids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54287-54292. [PMID: 36440677 DOI: 10.1021/acsami.2c13414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoparticle surfactant (NPS) offers a powerful strategy to generate all-liquid constructs that integrate the inherent properties of the NPs into 3D architectures. Here, using the co-assembly of fluorescent polymeric nanoparticles and amine-functionalized polyhedral oligomeric silsesquioxane, the assembly and jamming behavior of a new type of NPS at the oil-water interface is uncovered. Unlike "solid" inorganic nanoparticles, "soft" polymeric nanoparticles can reorganize when jammed, leading to a relaxation and deformation of the interfacial assemblies, for example, the 3D printed sugar-coated haw stick-like liquid tubules. With NPS serving as emulsifiers, stable Pickering emulsions are prepared that can be converted into robust colloidosomes with pH responsiveness, showing numerous potential applications for encapsulation and controlled release.
Collapse
Affiliation(s)
- Beibei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bangqi Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wantai Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
34
|
He Y, Chen J, Qian Y, Wei Y, Wang C, Ye Z, Liu Y, Chen G. Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydr Polym 2022; 298:120132. [DOI: 10.1016/j.carbpol.2022.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
35
|
Li B, Yang Y, Wu N, Zhao S, Jin H, Wang G, Li X, Liu W, Liu J, Zeng Z. Bicontinuous, High-Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film. ACS NANO 2022; 16:19293-19304. [PMID: 36260760 DOI: 10.1021/acsnano.2c08678] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lightweight, thin, large-area, and ultraflexible chemical-cross-linked MXene/superaligned carbon nanotube composite films with a bicontinuous structure are manufactured. The films exhibit high mechanical strength, good electrical conductivity, hydrophobicity, and oxidation stability, as well as wearable multifunctionalities involving electromagnetic interference (EMI) shielding, electrothermal conversion, and photothermal antibacterial performance. An X-band EMI shielding effectiveness (SE) of 24 to 70 dB at the thickness of 8 to 28 μm and an SE of more than 60 dB in ultrabroadband frequency range of 8.2-40 GHz are accomplished. A surface specific SE of 122 368 dB·cm2·g-1 is achieved, significantly outperforming other typical shields reported. The good electro-/photothermal performance of the films leads to high-efficiency deicing and antibacterial performance. Combined with the efficient and scalable manufacturing approach, the multifunctional wearable bicontinuous films show great potential for applications in wearable devices, defense, antibacterials, and the Internet of Things.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093Zurich, Switzerland
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, 8600Dübendorf, Switzerland
| | - Hao Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Xinyang Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen518052, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong250061, China
| |
Collapse
|
36
|
Wang L, Ma Z, Qiu H, Zhang Y, Yu Z, Gu J. Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures. NANO-MICRO LETTERS 2022; 14:224. [PMID: 36378424 PMCID: PMC9666581 DOI: 10.1007/s40820-022-00949-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
High‑efficiency electromagnetic interference (EMI) shielding materials are of great importance for electronic equipment reliability, information security and human health. In this work, bidirectional aligned Ti3C2Tx@Fe3O4/CNF aerogels (BTFCA) were firstly assembled by bidirectional freezing and freeze-drying technique, and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins. Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect, when the mass fraction of Ti3C2Tx and Fe3O4 are 2.96 and 1.48 wt%, BTFCA/epoxy nanocomposites show outstanding EMI shielding effectiveness of 79 dB, about 10 times of that of blended Ti3C2Tx@Fe3O4/epoxy (8 dB) nanocomposites with the same loadings of Ti3C2Tx and Fe3O4. Meantime, the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability (Theat-resistance index of 198.7 °C) and mechanical properties (storage modulus of 9902.1 MPa, Young's modulus of 4.51 GPa and hardness of 0.34 GPa). Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security, aerospace and weapon manufacturing, etc.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, People's Republic of China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhonglei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
37
|
Sun S, Luo Y, Yang Y, Chen J, Li S, Wu Z, Shi S. Supramolecular Interfaces and Reconfigurable Liquids Derived from Cucurbit[7]uril Surfactants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204182. [PMID: 36148850 DOI: 10.1002/smll.202204182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle surfactants (NPSs) offer a powerful means to stabilize the oil-water interface and construct all-liquid devices with advanced functions. However, as the nanoparticle size decreases to molecular-scale, the binding energy of the NPS to the interface reduces significantly, leading to a dynamic adsorption of NPS and "liquid-like" state of the interfacial assemblies. Here, by using the host-guest recognition between a water-soluble small molecule, cucurbit[7]uril (CB[7]) and an oil-soluble polymer ligand, methyl viologen-terminated polystyrene, a supramolecular NPS model, termed CB[7] surfactant, is described. CB[7] surfactants form and assemble rapidly at the oil-water interface, generating an elastic film with excellent mechanical properties. The binding energy of CB[7] surfactant to the interface is sufficiently high to hold it in a jammed state, transforming the interfacial assemblies from a "liquid-like" to "solid-like" state, enabling the structuring of liquids. With CB[7] surfactants as the emulsifier, O/W, W/O and O/W/O emulsions can be prepared in one step. Owing to the guest-competitive responsiveness of CB[7] surfactants, the assembly/disassembly and jamming/unjamming of CB[7] surfactants can be well controlled, leading to the reconfiguration of all-liquid constructs.
Collapse
Affiliation(s)
- Shuyi Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuzheng Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuailong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
38
|
Yang Y, Li K, Wang Y, Wu Z, Russell TP, Shi S. MXene-Based Porous Monoliths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3792. [PMID: 36364567 PMCID: PMC9654234 DOI: 10.3390/nano12213792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, a thriving family of 2D nanomaterials, transition-metal carbides/nitrides (MXenes), have garnered tremendous interest due to its intriguing physical/chemical properties, structural features, and versatile functionality. Integrating these 2D nanosheets into 3D monoliths offers an exciting and powerful platform for translating their fundamental advantages into practical applications. Introducing internal pores, such as isotropic pores and aligned channels, within the monoliths can not only address the restacking of MXenes, but also afford a series of novel and, in some cases, unique structural merits to advance the utility of the MXene-based materials. Here, a brief overview of the development of MXene-based porous monoliths, in terms of the types of microstructures, is provided, focusing on the pore design and how the porous microstructure affects the application performance.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaijuan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaxin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhanpeng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Yang Y, Wu N, Li B, Liu W, Pan F, Zeng Z, Liu J. Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. ACS NANO 2022; 16:15042-15052. [PMID: 35984219 DOI: 10.1021/acsnano.2c06164] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing high-performance and functional hydrogels that mimic biological materials in nature is promising yet remains highly challenging. Through a facile, scalable unidirectional freezing followed by a salting-out approach, a type of hydrogels composed of "trashed" MXene sediment (MS) and biomimetic pores is manufactured. By integrating the honeycomb-like ordered porous structure, highly conductive MS, and water, the electromagnetic interference (EMI) shielding effectiveness is up to 90 dB in the X band and can reach more than 40 dB in the ultrabroadband gigahertz band (8.2-40 GHz) for the highly flexible hydrogel, outperforming previously reported porous EMI shields. Moreover, thanks to the stable framework of the MS-based hydrogel, the influences of water on shielding performance are quantitatively identified. Furthermore, the extremely low content of silver nanowire is embedded into the biomimetic hydrogels, leading to the significantly improved multiple reflection-induced microwave loss and thus EMI shielding performance. Last, the MS-based hydrogels allow sensitive and reliable detection of human motions and smart coding. This work thus not only achieves the control of EMI shielding performance via the interior porous structure of hydrogels, but also demonstrates a waste-free, low-cost, and scalable strategy to prepare multifunctional, high-performance MS-based biomimetic hydrogels.
Collapse
Affiliation(s)
- Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Bin Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Shandong 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518052, China
| | - Fei Pan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
40
|
Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets. Nat Commun 2022; 13:5615. [PMID: 36153310 PMCID: PMC9509325 DOI: 10.1038/s41467-022-33337-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Controlling the orientation of two-dimensional materials is essential to optimize or tune their functional properties. In particular, aligning MXene, a two-dimensional carbide and/or nitride material, has recently received much attention due to its high conductivity and high-density surface functional group properties that can easily vary based on its arranged directions. However, erecting 2D materials vertically can be challenging, given their thinness of few nanometres. Here, vertical alignment of Ti3C2Tx MXene sheets is achieved by applying an in-plane electric field, which is directly observed using polarised optical microscopy and scanning electron microscopy. The electric field-induced vertical alignment parallel to the applied alternating-current field is demonstrated to be reversible in the absence of a field, back to a random orientation distribution. Interdigitated electrodes with uniaxially aligned MXene nanosheets are demonstrated. These can be further modulated to achieve various patterns using diversified electrode substrates. Anisotropic electrical conductivity is also observed in the uniaxially aligned MXene nanosheet film, which is quite different from the randomly oriented ones. The proposed orientation-controlling technique demonstrates potential for many applications including sensors, membranes, polarisers, and general energy applications. In this work, authors demonstrate reversible vertical alignment of Ti3C2Tx MXene sheets induced by an applied in-plane electric field. Further modulation of the field can achieve programmed patterns onto various electrode substrates.
Collapse
|
41
|
Xu Z, Ding X, Li S, Huang F, Wang B, Wang S, Zhang X, Liu F, Zhang H. Oxidation-Resistant MXene-Based Melamine Foam with Ultralow-Percolation Thresholds for Electromagnetic-Infrared Compatible Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40396-40407. [PMID: 35998377 DOI: 10.1021/acsami.2c05544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To effectively avoid the drawbacks of conventional metal-based electromagnetic interference (EMI) shielding materials such as high density and susceptibility to corrosion, a multifunctional melamine foam (MF) consisting of MXene/polydimethylsiloxane (PDMS) layers with ultralow percolation thresholds was designed through the electrostatic self-assembly and impregnation strategies. The prepared lightweight foams simultaneously show multifunctional properties including EMI shielding, infrared (IR) stealth, oxidation-resistance, and compression stability. Typically, this multifunctional foam exhibits an excellent EMI shielding efficiency (EMI SE) of 45.2 dB at X-band (8.2-12.4 GHz) with only 1.131 vol % MXene filler. Moreover, the temperature difference between the upper and lower surfaces of the foam can be maintained at 45 °C due to its unique three-dimensional (3D) porous structure and low infrared emissivity. The MF skeleton with MXene/PDMS (MFMXP) displays high hydrophobicity, which remains stable in EMI SE after 60 days of exposure to air. Additionally, it shows outstanding mechanical stability after 100 cycles of compression experiments. The lightweight stealth nanocomposite foams can operate stably in complex environments and show high potential for applications in high-tech fields such as wearable electronics, the military, and semiconductors, etc.
Collapse
Affiliation(s)
- Zijie Xu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xin Ding
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shikuo Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Baojun Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Shipeng Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Xian Zhang
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Fenghua Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China
| |
Collapse
|
42
|
Luo Y, Yang Y, Wang Y, Wu Z, Russell TP, Shi S. Reconfigurable Liquids Constructed by Pillar[6]arene‐Based Nanoparticle Surfactants. Angew Chem Int Ed Engl 2022; 61:e202207199. [DOI: 10.1002/anie.202207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuzheng Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
43
|
Zheng Z, Zhao Y, Ye Z, Hu J, Wang H. Electrically conductive porous MXene-polymer composites with ultralow percolation threshold via Pickering high internal phase emulsion templating strategy. J Colloid Interface Sci 2022; 618:290-299. [PMID: 35344882 DOI: 10.1016/j.jcis.2022.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Constructing a segregated network in electrically conductive polymer composites (ECPCs) is an effective method to lower the electrical percolation threshold. The segregated network structure can be formed naturally via polymerizing Pickering high internal phase emulsions (HIPEs) because solid particles are assembled at water-oil interfaces. However, most Pickering stabilizers show poor electrical conductivity. In this work, we propose a facile method to prepare lightweight ECPCs with well-controlled segregated structure via Ti3C2Tx-stabilized HIPE templating. EXPERIMENTS Hydrophilic Ti3C2Tx flakes are delicately hydrophobized with a double-chain cation surfactant. The morphology of Ti3C2Tx flakes is investigated by transmission electron microscopy (TEM) and atom force microscopy (AFM). The surface properties of modified Ti3C2Tx are characterized by zeta potential and water contact angle tests. The stability of Ti3C2Tx-stabilized emulsions, and the structure of prepared ECPCs are systematically investigated. FINDINGS Surface modified Ti3C2Tx flakes are used to stabilize water-in-oil (w/o) HIPEs for the first time. After the polymerization of continuous oil phase, ECPCs are successfully prepared with closed-cell porous structure. The pore size and size distribution of porous composites can be tailored by varying the content of Ti3C2Tx flakes. The Ti3C2Tx flakes are mainly immobilized at the water-oil interface and eventually form the segregated network in composites. Combining the unique segregated network and the outstanding metallic conductivity of Ti3C2Tx, the prepared porous polymer composites exhibit good conductivity even with ultralow Ti3C2Tx content of 0.016 vol%.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yongliang Zhao
- Shanghai Dilato Materials Co., Ltd, Shanghai 200433, China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
44
|
Guo C, Zhang Y, Yao M, Cao Y, Feng Q, Wang Y. Boosted π-Li Cation Effect in the Stabilized Small Organic Molecule Electrode via Hydrogen Bonding with MXene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29974-29985. [PMID: 35758292 DOI: 10.1021/acsami.2c08366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high solubility of the small organic molecule materials in organic electrolytes hinders their development in rechargeable batteries. Hence, this work designs an ultrarobust hydrogen-bonded organic-inorganic hybrid material: the small organic unit of the 1,3,6,8-tetrakis (p-benzoic acid) pyrene (TBAP) molecule connected with the hydroxylated Ti3C2Tx MXene through hydrogen bonds between the terminal groups of -COOH and -OH. The robust and elastic hydrogen bonds can empower the TBAP, despite being a low-molecule organic chemical, with unusually low solubility in organic electrolytes and thermal stability. The alkali-treated Ti3C2Tx MXene provides a hydroxyl-rich conductive network, and the small organic molecule of TBAP reduces the restacking of MXene layers. Therefore, the combination of these two materials complements each other well, and this organic-inorganic TBAP@D-Ti3C2Tx electrode delivers large reversible capacities and long cyclic life. Notably, with the assistance of the in situ FT-IR characterization of the electrode within the fully lithiated (0.005 V) and the delithiated (3.0 V) states, it is revealed that a powerful π-Li cation effect mainly governs the lithium-storage mechanism with the highly activated benzene ring and each C6 aromatic ring, which can reversibly accept six Li-ions to form a 1:1 Li/C complex.
Collapse
Affiliation(s)
- Chaofei Guo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| | - Mengyao Yao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| | - Yingnan Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| | - Qin Feng
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444
| |
Collapse
|
45
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
46
|
Picomolar thrombin detection by orchestration of triple signal amplification strategy with hierarchically porous Ti3C2Tx MXene electrode material-catalytic hairpin assembly reaction-metallic nanoprobes. Biosens Bioelectron 2022; 208:114228. [DOI: 10.1016/j.bios.2022.114228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/20/2023]
|
47
|
Polyoxometalate‐Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angew Chem Int Ed Engl 2022; 61:e202203741. [DOI: 10.1002/anie.202203741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/07/2022]
|
48
|
Luo Y, Yang Y, Wang Y, Wu Z, Russell TP, Shi S. Reconfigurable Liquids Constructed by Pillar[6]arene‐based Nanoparticle Surfactants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuzheng Luo
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Yang Yang
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Yongkang Wang
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Zhanpeng Wu
- Beijing University of Chemical Technology State Key Laboratory of Organic–Inorganic Composites CHINA
| | - Thomas P. Russell
- University of Massachusetts Amherst Department of Polymer Science and Engineering UNITED STATES
| | - Shaowei Shi
- Beijing University of Chemical Technology College of Materials Science and Engineering Beijing city Chaoyang District North Third Ring Road 15 100029 Beijing CHINA
| |
Collapse
|
49
|
Kamkar M, Ghaffarkhah A, Ajdary R, Lu Y, Ahmadijokani F, Mhatre SE, Erfanian E, Sundararaj U, Arjmand M, Rojas OJ. Structured Ultra-Flyweight Aerogels by Interfacial Complexation: Self-Assembly Enabling Multiscale Designs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200220. [PMID: 35279945 DOI: 10.1002/smll.202200220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.
Collapse
Affiliation(s)
- Milad Kamkar
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Rubina Ajdary
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| | - Yi Lu
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Farhad Ahmadijokani
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sameer E Mhatre
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elnaz Erfanian
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Orlando J Rojas
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| |
Collapse
|
50
|
Xia Z, Lin C, Yang Y, Wang Y, Wu Z, Song Y, Russell TP, Shi S. Polyoxometalate‐Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqin Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Chang‐Gen Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yongkang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhanpeng Wu
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Yu‐Fei Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Thomas P. Russell
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|