1
|
Zhang X, Zhang JQ, Sun ZH, Shan HM, Su JC, Ma XP, Su GF, Xu LP, Mo DL. Copper-Catalyzed Enantioselective Skeletal Editing through a Formal Nitrogen Insertion into Indoles to Synthesize Atropisomeric Aminoaryl Quinoxalines. Angew Chem Int Ed Engl 2024:e202420390. [PMID: 39686810 DOI: 10.1002/anie.202420390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Skeletal editing represents an attractive strategy for adding complexity to a given molecular scaffold in chemical synthesis. Isodesmic reactions provide a complementary skeletal editing approach for the redistribution of chemical bonds in chemical synthesis. However, catalytic enantioselective isodesmic reaction is extremely scarce and enantioselective isodesmic reaction to synthesize atropisomeric compounds is unknown. Herein, we report a facile method to synthesize axially chiral aminoaryl quinoxalines through Cu(I)-catalyzed dearomatization and sequential chiral phosphoric acid (CPA) catalyzed enantioselective isodesmic C-N bond formation and cleavage from indoles and 1,2-diaminoarenes under mild reaction conditions. In this process, the five-membered ring of the indole scaffold was broken and a novel quinoxaline skeleton was constructed. This method allows the practical and atom-economical synthesis of valuable axially chiral aminoaryl quinoxalines in high yields (up to 95 %) and generally excellent enantioselectivities (up to 99 % ee). Notably, this novel type of quinoxaline atropisomers has promising applications in developing axially chiral ligand in asymmetric catalysis. This strategy represents the first example of CPA-catalyzed enantioselective isodesmic reaction to form axially chiral compounds.
Collapse
Affiliation(s)
- Xu Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
- X. Zhang, J.-Q. Zhang, and Z.-H. Sun contibuted equally to this work
| | - Jin-Qi Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
- X. Zhang, J.-Q. Zhang, and Z.-H. Sun contibuted equally to this work
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University
- X. Zhang, J.-Q. Zhang, and Z.-H. Sun contibuted equally to this work
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University
- School of Chemistry and Chemical Engineering, Shandong University of Technology
| | - Jun-Cheng Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Xiao-Pan Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin, 541199, China
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| |
Collapse
|
2
|
Mi R, Wu R, Jing J, Wang F, Li XX, Hong X, Li X. Rhodium-catalyzed atropodivergent hydroamination of alkynes by leveraging two potential enantiodetermining steps. SCIENCE ADVANCES 2024; 10:eadr4435. [PMID: 39602543 PMCID: PMC11601210 DOI: 10.1126/sciadv.adr4435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
A pair of enantiomers is known to have different biological activities. Two catalysts with opposite chirality are nearly always required to deliver both enantiomeric products. In this work, chiral rhodium(III) cyclopentadienyl complexes are repurposed as efficient catalysts for enantiodivergent and atroposelective hydroamination of sterically hindered alkynes. Products with opposite chirality have been both obtained using the same or closely analogous chiral catalyst in good efficiency and excellent enantioselectivity, and the enantiodivergence was mainly enabled by an achiral carboxylic acid and its silver salt. Mechanistic studies revealed the origin of the enantiodivergence ascribable to the switch of the enantiodetermining step (alkyne insertion versus protonolysis) under acid control, which constitutes a previously unidentified working mode of enantiodivergence by leveraging two elementary steps.
Collapse
Affiliation(s)
- Ruijie Mi
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Rongkai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xiao-Xi Li
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North, First Street No. 2, Beijing 100190, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xingwei Li
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
3
|
Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Catalytic Asymmetric Synthesis of Inherently Chiral Eight-Membered O-Heterocycles through Cross-[4+4] Cycloaddition of Quinone Methides. Angew Chem Int Ed Engl 2024:e202416873. [PMID: 39540793 DOI: 10.1002/anie.202416873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Inherently chiral eight-membered rings embedded in tetraphenylene derivatives and hetero-analogues exhibit unique properties and allow diverse applications. A conceptually viable and straightforward approach to these frameworks is [4+4] cycloaddition, which still remains elusive. Herein, we describe the stereoselective cross-[4+4] cycloaddition of quinone methides (QMs), leading to the formation of oxa-analogues of tetraphenylene with exceptional chemo-, diastereo-, and enantioselectivity. The structures of these novel rigid eight-membered O-heterocycles were explored by single-crystal X-ray diffraction, and their stereochemical stability was elaborated through both density functional theory (DFT) calculations and thermal racemization experiments. The developed methodology exhibited broad substrate scope and the resulting cross-[4+4] cycloadducts could be readily transformed into valuable chiral building blocks. Our findings expand the library of inherently chiral medium-sized rings and also contribute to the advancement of asymmetric cross-[4+4] cycloadditions of quinone methides.
Collapse
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Guojie Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Bangli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
4
|
Xie ZY, Tang C, Li L, Zhou Z, Zou J, Qian PC. Rhodium-Catalyzed Regioselective [4 + 2] Cycloaddition of Ynamines and 2-(Cyanomethyl)phenylboronates. Org Lett 2024; 26:6586-6590. [PMID: 39079756 DOI: 10.1021/acs.orglett.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A rhodium-catalyzed [4 + 2] cycloaddition of ynamines and 2-(cyanomethyl)phenylboronates has been developed, leading to efficient and excellent regioselective synthesis of valuable indole-linked aromatic compounds in a concise and flexible approach. Interestingly, this strategy was successful in the construction of C···N axially chiral indoles with high enantiocontrol by the introduction of a new phosphoramidite ligand (Xie-Phos).
Collapse
Affiliation(s)
- Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Conghui Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zijun Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Zou
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- College of Medicine & Pharmaceutical Enginering, Taizhou Vocational & Technical College, Taizhou 318000, China
| |
Collapse
|
5
|
Zheng Y, Chen C, Lu Y, Huang S. Recent advances in electrochemically enabled construction of indoles from non-indole-based substrates. Chem Commun (Camb) 2024; 60:8516-8525. [PMID: 39036971 DOI: 10.1039/d4cc03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Indole motifs are important heterocycles found in natural products, pharmaceuticals, agricultural chemicals, and materials. Although there are well-established classical name reactions for indole synthesis, these transformations often require harsh reaction conditions, have a limited substrate scope, and exhibit poor regioselectivity. As a result, organic synthesis chemists have been exploring efficient and practical methods, leading to numerous strategies for synthesizing a variety of functionalized indoles. In recent years, electrochemistry has emerged as an environmentally friendly and sustainable synthetic tool, with widespread applications in organic synthesis. This technology allows for elegant synthetic routes to be developed for the construction of indoles under external oxidant-free conditions. This feature article specifically focuses on recent advancements in indole synthesis from non-indole-based substrates, as well as the mechanisms underlying these transformations.
Collapse
Affiliation(s)
- Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunxi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Shikari A, Parida C, Chandra Pan S. Catalytic Asymmetric Dearomatization of 2,3-Disubstituted Indoles by a [4 + 2] Cycloaddition Reaction with In Situ Generated Vinylidene ortho-Quinone Methides: Access to Polycyclic Fused Indolines. Org Lett 2024; 26:5057-5062. [PMID: 38489515 DOI: 10.1021/acs.orglett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A protocol of enantioselective dearomatization of 2,3-disubstituted indoles by an organocatalytic intermolecular (4 + 2) cycloaddition reaction with in situ generated vinylidene ortho-quinone methide has been documented. A wide range of polycyclic 2,3-fused indolines containing vicinal quaternary carbon stereocenters was readily prepared in high yields and with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Liu J, Wei X, Wang Y, Qu J, Wang B. Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5-aminopyrazoles with naphthoquinones. Org Biomol Chem 2024; 22:4254-4263. [PMID: 38738921 DOI: 10.1039/d4ob00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Construction of axially chiral arylpyrazoles represents an attractive challenge due to the relatively low rotational barrier of biaryl structures containing five-membered heterocycles. This work describes the catalytic asymmetric construction of axially chiral arylpyrazoles using 5-aminopyrazoles and naphthoquinone derivatives. The chiral axis could be formed through a central-to-axial chirality relay step of the chiral phosphoric acid-catalyzed arylation reaction, which features excellent yields and enantioselectivities with a broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
9
|
Zhang G, Yang B, Yang J, Zhang J. Pd-Catalyzed Asymmetric Larock Indole Synthesis to Access Axially Chiral N-Arylindoles. J Am Chem Soc 2024; 146:5493-5501. [PMID: 38350095 DOI: 10.1021/jacs.3c13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Larock indole synthesis is one of the most straightforward and efficient methods for the synthesis of indoles; however, there has been no asymmetric version yet for the construction of indole-based axially chiral N-arylindoles since its initial report in 1991. Herein we report the first example of an asymmetric Larock indole synthesis by employing a chiral sulfinamide phosphine (SadPhos) ligand (Ming-Phos) with palladium. It allows rapid construction of a wide range of axially chiral N-arylindole compounds in good yields up to 98:2 er. The application of this unique chiral scaffold as an organocatalyst is promising. Furthermore, a kinetic study has revealed that the alkyne migratory insertion is the rate-determining step, which has been proven by the density functional theory (DFT) calculations. Additionally, DFT studies also suggest that the N-C dihedral difference caused by the steric hindrance of the ligand contributes to enantioselectivity control.
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Bin Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
11
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Yang G, He Y, Wang T, Li Z, Wang J. Atroposelective Synthesis of Planar-Chiral Indoles via Carbene Catalyzed Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202316739. [PMID: 38014469 DOI: 10.1002/anie.202316739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an N-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10-16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yi He
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Tianyi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Wu F, Zhang Y, Zhu R, Huang Y. Discovery and synthesis of atropisomerically chiral acyl-substituted stable vinyl sulfoxonium ylides. Nat Chem 2024; 16:132-139. [PMID: 37945832 DOI: 10.1038/s41557-023-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Atropisomerism is a type of conformational chirality that plays a critical role in various fields of chemistry, including synthetic, medicinal and material chemistry, and its impact has been widely recognized. Although chiral atropisomerism in rotationally restricted aryl-aryl bonds has garnered substantial interest and led to important discoveries in chiral catalysts and drug development, the exploration of non-aryl atropisomers has fallen behind. Here we reveal a previously unexplored form of non-aryl atropisomerism by linking a sterically congested olefin to a sulfoxonium ylide. A streamlined synthetic approach to these novel molecules was developed through the hydrofunctionalization of alkynyl sulfoxonium ylides. Notably, an enantioselective organocatalytic strategy was developed to prepare these non-aryl atropisomers in high optical purity. This form of atropisomerism offers new routes for investigating the functional properties of axially chiral molecules.
Collapse
Affiliation(s)
- Fengjin Wu
- The Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yichi Zhang
- The Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ruiqi Zhu
- The Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yong Huang
- The Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
14
|
Yin S, Liu J, Weeks KN, Aponick A. Catalytic Enantioselective Synthesis of Axially Chiral Imidazoles by Cation-Directed Desymmetrization. J Am Chem Soc 2023; 145:28176-28183. [PMID: 38096490 DOI: 10.1021/jacs.3c10746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Axially chiral five-membered heterobiaryls synthesized by enantioselective catalysis typically feature large ortho-substituents or a heteroatom in the chiral axis to maintain a stable configuration. Herein we report a cation-directed catalytic enantioselective desymmetrization method that enables rapid access to axially chiral imidazoles with the basic nitrogen at the ortho position and efficiently integrates π-stacking moieties to ensure a stable axial configuration for further applications. The process is operationally simple, is highly enantioselective, and can be performed on the gram scale. The majority of the products are obtained in >90% ee, but interestingly even those with only moderate ee can readily be enriched to near optical purity by selective racemate crystallization. Together with a mild phosphine oxide reduction method, axially chiral imidazoles such as StackPhos and its derivatives are readily prepared in high yield and excellent enantioselectivity on the gram scale. The method also enables the preparation of new chiral non-phosphine-bearing imidazoles.
Collapse
Affiliation(s)
- Shengkang Yin
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ji Liu
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kendall N Weeks
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Liu Y, Wang B, Hou JT, Xie P, Li W, Wang S. Molecular engineering and bioimaging applications of C2-alkenyl indole dyes with tunable emission wavelengths covering visible to NIR light. Bioorg Chem 2023; 141:106905. [PMID: 37832222 DOI: 10.1016/j.bioorg.2023.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
As an important member of dyes, small-molecule fluorescent dyes show indispensable value in biomedical fields. Although various molecular dyes have been developed, full-color dyes covering blue to red region derived from a single chromophore are still in urgent demand. In this work, a series of dyes based on C2-alkenyl indole skeleton were synthesized, namely AI dyes, and their photophysical properties, cytotoxicity, and imaging capacity were verified to be satisfactory. Particularly, the maximal emission wavelengths of these dyes could cover a wide range from visible to NIR light with large Stokes shifts. Besides, the optical and structural discrepancies between the C2- and C3- alkenyl AI dyes were discussed in detail, and the theoretical calculations were conducted to provide insights on such structure-activity relationship. Finally, as a proof-of-concept, a fluorescent probe AI-Py-B capable of imaging endogenous ONOO- was presented, demonstrating the bioimaging potentials of these alkenyl indole dyes. This work is anticipated to open up new possibilities for developing dye engineering and bio-applications of natural indole framework.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bingya Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Peng Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Weiyi Li
- School of Science, Research Center for Advanced Computation, Xihua University, Chengdu 610039, China.
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
16
|
Wang CS, Xiong Q, Xu H, Yang HR, Dang Y, Dong XQ, Wang CJ. Organocatalytic atroposelective synthesis of axially chiral N, N'-pyrrolylindoles via de novo indole formation. Chem Sci 2023; 14:12091-12097. [PMID: 37969599 PMCID: PMC10631393 DOI: 10.1039/d3sc03686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
The first organocatalytic atroposelective synthesis of axially chiral N,N'-pyrrolylindoles based on o-alkynylanilines was successfully established via de novo indole formation catalyzed by chiral phosphoric acid (CPA). This new synthetic strategy introduced CPA-catalyzed asymmetric 5-endo-dig cyclization of new well-designed o-alkynylanilines containing a pyrrolyl unit, resulting in a wide range of axially chiral N,N'-pyrrolylindoles in high yields with exclusive regioselectivity and excellent enantioselectivity (up to 99% yield, >20 : 1 rr, 95 : 5 er). Considering the potential biological significance of N-N atropisomers, preliminary biological activity studies were performed and revealed that these structurally important N,N'-pyrrolylindoles had a low IC50 value with promising impressive cytotoxicity against several kinds of cancer cell lines. DFT studies reveal that the N-nucleophilic cyclization mediated by CPA is the rate- and stereo-determining step, in which ligand-substrate dispersion interactions facilitate the axial chirality of the target products.
Collapse
Affiliation(s)
- Cong-Shuai Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Qi Xiong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Dai L, Zhou X, Guo J, Dai X, Huang Q, Lu Y. Diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis. Nat Commun 2023; 14:4813. [PMID: 37558716 PMCID: PMC10412603 DOI: 10.1038/s41467-023-40491-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
The C-N axially chiral N-arylpyrrole motifs are privileged scaffolds in numerous biologically active molecules and natural products, as well as in chiral ligands/catalysts. Asymmetric synthesis of N-arylpyrroles, however, is still challenging, and the simultaneous creation of contiguous C-N axial and central chirality remains unknown. Herein, a diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis has been developed. The key transformation is a one-pot, three-component oxo-diarylation reaction, which simultaneously creates a C-N axial chirality and a central quaternary stereogenic center. A broad range of unactivated alkynes were readily employed as a reaction partner in this transformation, and the N-arylpyrrole products are obtained in good yields, with excellent enantioselectivities and very good diastereoselectivities. Notably, the N-arylpyrrole skeletons represent interesting structural motifs that could be used as chiral ligands and catalysts in asymmetric catalysis.
Collapse
Affiliation(s)
- Lei Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xueting Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, Fujian, China
| | - Jiami Guo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, Fujian, China
| | - Xuan Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Qingqin Huang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, Fujian, China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, Fujian, China.
| |
Collapse
|
18
|
Wu C, Chang Z, Peng C, Bai C, Xing J, Dou X. Catalytic asymmetric indolization by a desymmetrizing [3 + 2] annulation strategy. Chem Sci 2023; 14:7980-7987. [PMID: 37502333 PMCID: PMC10370590 DOI: 10.1039/d3sc02474a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
A new catalytic asymmetric indolization reaction by a desymmetrizing [3 + 2] annulation strategy is developed. The reaction proceeds via a rhodium-catalyzed enantioposition-selective addition/5-exo-trig cyclization/dehydration cascade between ortho-amino arylboronic acids and 2,2-disubstituted cyclopentene-1,3-diones to produce N-unprotected cyclopenta[b]indoles bearing an all-carbon quaternary stereocenter in high yields with good enantioselectivities. A quantitative structure-selectivity relationship (QSSR) model was established to identify the optimal chiral ligand, which effectively controlled the formation of the stereocenter away from the reaction site. Density functional theory (DFT) calculations, non-covalent interaction analysis, and Eyring analysis were performed to understand the key reaction step and the function of the ligand.
Collapse
Affiliation(s)
- Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiqian Chang
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chuanyong Peng
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Chen Bai
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
19
|
Zuccarello G, Nannini LJ, Arroyo-Bondía A, Fincias N, Arranz I, Pérez-Jimeno AH, Peeters M, Martín-Torres I, Sadurní A, García-Vázquez V, Wang Y, Kirillova MS, Montesinos-Magraner M, Caniparoli U, Núñez GD, Maseras F, Besora M, Escofet I, Echavarren AM. Enantioselective Catalysis with Pyrrolidinyl Gold(I) Complexes: DFT and NEST Analysis of the Chiral Binding Pocket. JACS AU 2023; 3:1742-1754. [PMID: 37388697 PMCID: PMC10301678 DOI: 10.1021/jacsau.3c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
A new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote C2-symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a N-heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers. The chiral binding pockets of the new catalysts have been analyzed by DFT calculations. As revealed by non-covalent interaction plots, attractive non-covalent interactions between substrates and catalysts direct specific enantioselective folding. Furthermore, we have introduced the open-source tool NEST, specifically designed to account for steric effects in cylindrical-shaped complexes, which allows predicting experimental enantioselectivities in our systems.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Leonardo J. Nannini
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ana Arroyo-Bondía
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Nicolás Fincias
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Isabel Arranz
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Alba H. Pérez-Jimeno
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Matthias Peeters
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Inmaculada Martín-Torres
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Anna Sadurní
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Víctor García-Vázquez
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Yufei Wang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Mariia S. Kirillova
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Marc Montesinos-Magraner
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ulysse Caniparoli
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Gonzalo D. Núñez
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Maria Besora
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Imma Escofet
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Antonio M. Echavarren
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
20
|
Zhang ZX, Liu LG, Liu YX, Lin J, Lu X, Ye LW, Zhou B. Organocatalytic intramolecular (4 + 2) annulation of enals with ynamides: atroposelective synthesis of axially chiral 7-aryl indolines. Chem Sci 2023; 14:5918-5924. [PMID: 37293635 PMCID: PMC10246658 DOI: 10.1039/d3sc01880f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Catalytic enantioselective transformation of alkynes has become a powerful tool for the synthesis of axially chiral molecules. Most of these atroposelective reactions of alkynes rely on transition-metal catalysis, and the organocatalytic approaches are largely limited to special alkynes which act as the precursors of Michael acceptors. Herein, we disclose an organocatalytic atroposelective intramolecular (4 + 2) annulation of enals with ynamides. This method allows the efficient and highly atom-economical preparation of various axially chiral 7-aryl indolines in generally moderate to good yields with good to excellent enantioselectivities. Computational studies were carried out to elucidate the origins of regioselectivity and enantioselectivity. Furthermore, a chiral phosphine ligand derived from the synthesized axially chiral 7-aryl indoline was proven to be potentially applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Xi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
21
|
Cai WY, Ding QN, Zhou L, Chen J. Asymmetric Synthesis of Axially Chiral Molecules via Organocatalytic Cycloaddition and Cyclization Reactions. Molecules 2023; 28:4306. [PMID: 37298781 PMCID: PMC10254363 DOI: 10.3390/molecules28114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Atropisomeric molecules are present in many natural products, biologically active compounds, chiral ligands and catalysts. Many elegant methodologies have been developed to access axially chiral molecules. Among them, organocatalytic cycloaddition and cyclization have attracted much attention because they have been widely used in the asymmetric synthesis of biaryl/heterobiaryls atropisomers via construction of carbo- and hetero-cycles. This strategy has undoubtedly become and will continue to be a hot topic in the field of asymmetric synthesis and catalysis. This review aims to highlight the recent advancements in this field of atropisomer synthesis by using different organocatalysts in cycloaddition and cyclization strategies. The construction of each atropisomer, its possible mechanism, the role of catalysts, and its potential applications are illustrated.
Collapse
Affiliation(s)
| | | | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| |
Collapse
|
22
|
Zhou L, Li Y, Li S, Shi Z, Zhang X, Tung CH, Xu Z. Asymmetric rhodium-catalyzed click cycloaddition to access C-N axially chiral N-triazolyl indoles. Chem Sci 2023; 14:5182-5187. [PMID: 37206396 PMCID: PMC10189892 DOI: 10.1039/d3sc00610g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is regarded as a prime example of "click chemistry", but the asymmetric click cycloaddition of internal alkynes still remains challenging. A new asymmetric Rh-catalyzed click cycloaddition of N-alkynylindoles with azides was developed, providing atroposelective access to C-N axially chiral triazolyl indoles, a new type of heterobiaryl, with excellent yields and enantioselectivity. This asymmetric approach is efficient, mild, robust and atom-economic, and features very broad substrate scope with easily available Tol-BINAP ligands.
Collapse
Affiliation(s)
- Li Zhou
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Yankun Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Shunian Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhenwei Shi
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Xue Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 PR China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University No. 18 Shilongshan Road Hangzhou 310024 China
| |
Collapse
|
23
|
Wu JH, Tan JP, Zheng JY, He J, Song Z, Su Z, Wang T. Towards Axially Chiral Pyrazole-Based Phosphorus Scaffolds by Dipeptide-Phosphonium Salt Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215720. [PMID: 36694276 DOI: 10.1002/anie.202215720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Given the comparatively lower rotational barriers, the catalytic asymmetric construction of axially chiral biaryl structures, especially those containing a five-membered heterocycle, still remains a challenge. Herein, we described a general and modular protocol to access atropisomeric arylpyrazole scaffolds containing a phosphorus unit by a dipeptide phosphonium salt catalyzed reaction involving an oxidative central-to-axial chirality conversion. This reaction features excellent yields and enantioselectivities, broad substrate scope, and a low catalyst loading, delivering axially chiral phosphine compounds.
Collapse
Affiliation(s)
- Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhenlei Song
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
24
|
Tan TD, Qian GL, Su HZ, Zhu LJ, Ye LW, Zhou B, Hong X, Qian PC. Brønsted acid-catalyzed asymmetric dearomatization for synthesis of chiral fused polycyclic enone and indoline scaffolds. SCIENCE ADVANCES 2023; 9:eadg4648. [PMID: 36921050 PMCID: PMC10017053 DOI: 10.1126/sciadv.adg4648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the past two decades, substantial advances have been made on the asymmetric alkyne functionalization by the activation of inert alkynes. However, these asymmetric transformations have so far been mostly limited to transition metal catalysis, and chiral Brønsted acid-catalyzed examples are rarely explored. Here, we report a chiral Brønsted acid-catalyzed dearomatization reaction of phenol- and indole-tethered homopropargyl amines, allowing the practical and atom-economical synthesis of a diverse array of valuable fused polycyclic enones and indolines bearing a chiral quaternary carbon stereocenter and two contiguous stereogenic centers in moderate to good yields with excellent diastereoselectivities and generally excellent enantioselectivities (up to >99% enantiomeric excess). This protocol demonstrates Brønsted acid-catalyzed asymmetric dearomatizations via vinylidene-quinone methides.
Collapse
Affiliation(s)
- Tong-De Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gan-Lu Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao-Ze Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
25
|
Wu P, Yu L, Gao CH, Cheng Q, Deng S, Jiao Y, Tan W, Shi F. Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2 + 3) cyclization. FUNDAMENTAL RESEARCH 2023; 3:237-248. [PMID: 38932922 PMCID: PMC11197731 DOI: 10.1016/j.fmre.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The catalytic asymmetric construction of axially chiral indole-based frameworks is an important area of research due to the unique characteristics of such frameworks. Nevertheless, research in this area is still in its infancy and has some challenges, such as designing and constructing new classes of axially chiral indole-based scaffolds and developing their applications in chiral catalysts, ligands, etc. To overcome these challenges, we present herein the design and atroposelective synthesis of aryl-pyrroloindoles as a new class of axially chiral indole-based scaffolds via the strategy of organocatalytic asymmetric (2 + 3) cyclization between 3-arylindoles and propargylic alcohols. More importantly, this new class of axially chiral scaffolds was derived into phosphines, which served as efficient chiral ligands in palladium-catalyzed asymmetric reactions. Moreover, theoretical calculations provided an in-depth understanding of the reaction mechanism. This work offers a new strategy for constructing axially chiral indole-based scaffolds, which are promising for finding more applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qi Cheng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
26
|
Xu D, Chang Y, Liu Y, Qin W, Yan H. Mechanistic Features of Asymmetric Vinylidene ortho-Quinone Methide Construction and Subsequent Transformations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Chang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
27
|
Chen ZH, Li TZ, Wang NY, Ma XF, Ni SF, Zhang YC, Shi F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N'-Bisindoles. Angew Chem Int Ed Engl 2023; 62:e202300419. [PMID: 36749711 DOI: 10.1002/anie.202300419] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Han Chen
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Fang Ma
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
28
|
Yu L, Liu J, Xiang S, Lu T, Ma P, Zhao Q. Silver-Catalyzed Direct Nucleophilic Cyclization: Enantioselective De Novo Synthesis of C-C Axially Chiral 2-Arylindoles. Org Lett 2023; 25:522-527. [PMID: 36652713 DOI: 10.1021/acs.orglett.2c04234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atropisomeric indoles widely exist in natural products, pharmaceuticals, functional materials, and catalysts for their featured biological activities, photoelectric properties, and catalytic activities, while facile and de novo construction of this motif remains underexplored. Herein, we report a chiral silver phosphate-catalyzed direct 5-endo-dig nucleophilic cyclization of 2-alkynylanilins under mild conditions, affording various C-C axially chiral 2-arylindoles in high to excellent yields and enantioselectivities. Control experiments implied the cooperative catalysis of AgOAc and chiral phosphoric acid, wherein the former accelerated the desired transformation while the latter improved the enantioselectivity. In addition, as the first example of silver-catalyzed enantioselective de novo synthesis of C-C axially chiral indole skeletons, synthetic applications and products' thermal stability have been investigated.
Collapse
Affiliation(s)
- Liangbin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shiyu Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Taotao Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ping Ma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyang Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
29
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
30
|
Zhang X, Liu YZ, Shao H, Ma X. Advances in Atroposelectively De Novo Synthesis of Axially Chiral Heterobiaryl Scaffolds. Molecules 2022; 27:8517. [PMID: 36500610 PMCID: PMC9739056 DOI: 10.3390/molecules27238517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Axially chiral heterobiaryl frameworks are privileged structures in many natural products, pharmaceutically active molecules, and chiral ligands. Therefore, a variety of approaches for constructing these skeletons have been developed. Among them, de novo synthesis, due to its highly convergent and superior atom economy, serves as a promising strategy to access these challenging scaffolds including C-N, C-C, and N-N chiral axes. So far, several elegant reviews on the synthesis of axially chiral heterobiaryl skeletons have been disclosed, however, atroposelective construction of the heterobiaryl subunits by de novo synthesis was rarely covered. Herein, we summarized the recent advances in the catalytic asymmetric synthesis of the axially chiral heterobiaryl scaffold via de novo synthetic strategies. The related mechanism, scope, and applications were also included.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Central Laboratory, Chongqing University Fu Ling Hospital, Chongqing 408000, China
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
31
|
Wang HQ, Wu SF, Yang JR, Zhang YC, Shi F. Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and Central Chirality. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hai-Qing Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun-Ru Yang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
32
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
33
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
34
|
Qin W, Liu Y, Yan H. Enantioselective Synthesis of Atropisomers via Vinylidene ortho-Quinone Methides (VQMs). Acc Chem Res 2022; 55:2780-2795. [PMID: 36121104 DOI: 10.1021/acs.accounts.2c00486] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomers, arising from conformational restriction, are inherently chiral due to the intersecting dissymmetric planes. Since there are numerous applications of enantiopure atropisomers in catalyst design, drug discovery, and material science, the asymmetric preparation of these highly prized molecules has become a flourishing field in synthetic chemistry. A number of catalysts, synthetic procedures, and novel concepts have been developed for the manufacture of the atropisomeric molecules. However, due to the intrinsic properties of different types of atropisomers featuring biaryl, hetero-biaryl, or non-biaryl architectures, only very few methods pass the rigorous inspection and are considered generally applicable. The development of a broadly applicable synthetic strategy for various atropisomers is a challenge. In this Account, we summarize our recent studies on the enantioselective synthesis of atropisomers using the vinylidene ortho-quinone methides (VQMs) as pluripotent intermediates.The most appealing features of VQMs are the disturbed aromaticity and axial chirality of the allene fragment. At the outset, the applications of VQMs in organic synthesis have been neglected due to their principal liabilities: ephemeral nature, extraordinary reactivity, and multireaction sites. The domestication of this transient intermediate was demonstrated by in situ catalytic asymmetric generation of VQMs, and the reactivity and selectivity were fully explored by judiciously modifying precursors and tuning catalytic systems. A variety of axially chiral heterocycles were achieved through five-, six-, seven- and nine-membered ring formation of VQM intermediates with different kinds of branched nucleophilic functional groups. The axially chiral C-N axis could be constructed from VQM intermediates via N-annulation or desymmetrization of preformed C-N scaffolds. We take advantage of the high electrophilicity of VQMs toward a series of sulfur and carbon based nucleophiles leading to atropisomeric vinyl arenes. Furthermore, chiral helical compounds were realized by cycloaddition or consecutive annulation of VQM intermediates. These achievements demonstrated that the VQMs could work as a nuclear parent for the collective synthesis of distinct and complex optically active atropisomers. Recently, we have realized the isolation and structural characterization of the elusive VQMs, which were questioned as putative intermediates for decades. The successful isolation of VQMs provided direct evidence for their existence and an unprecedented opportunity to directly investigate their reactivity. The good thermal stability and reserved reactivity of the isolated VQMs demonstrated their great potential as synthetic reagents and expanded the border of VQM chemistry.
Collapse
Affiliation(s)
- Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
35
|
Niu C, Zhou Y, Chen Q, Zhu Y, Tang S, Yu ZX, Sun J. Atroposelective Synthesis of N-Arylindoles via Enantioselective N-H Bond Insertion. Org Lett 2022; 24:7428-7433. [PMID: 36190794 DOI: 10.1021/acs.orglett.2c03003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present here a rhodium-catalyzed asymmetric N-H insertion reaction, which is a concerted process revealed by DFT calculations, for the synthesis of novel axially chiral N-arylindoles by the reaction between indoles and diazonaphthoquinones. The reaction occurs at the N1 rather than C2/C3 positions of indoles, providing the chiral N-arylindoles in good yields and excellent enantiomeric ratios. Furthermore, this protocol is also amenable to the synthesis of chiral N-arylcarbazoles with excellent enantiocontrol.
Collapse
Affiliation(s)
- Chao Niu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qiang Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
36
|
Zhang HH, Shi F. Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications. Acc Chem Res 2022; 55:2562-2580. [PMID: 36053083 DOI: 10.1021/acs.accounts.2c00465] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Catalytic atroposelective syntheses of axially chiral compounds have stimulated extensive interest in multiple communities, such as synthetic chemistry, biochemistry, and materials science, because of the intriguing characteristics of atropisomerism. In particular, atropisomeric indole derivatives, which contain a kind of five-membered heterocyclic framework, are widely distributed in a number of natural alkaloids, biologically relevant compounds, chiral ligands, and chiral organocatalysts. Hence, the catalytic atroposelective synthesis of indole derivatives bearing axial chirality is of considerable importance and has become an emerging focus of research. However, there are substantial challenges associated with the atroposelective synthesis of indole derivatives, including remote ortho-substituents around the chiral axis, a lower barrier for rotation, and a weaker configurational stability than that of atropisomeric six-membered biaryls. Therefore, the development of effective strategies toward the catalytic atroposelective synthesis of indole derivatives has become an urgent task.In order to tackle these challenges and to accomplish the task, our group devised a unique strategy of designing indole-derived platform molecules and developing organocatalytic enantioselective transformations of such platform molecules to synthesize atropisomeric indole derivatives; asymmetric organocatalysis has tremendous advantages and was the research area recognized by the Nobel Prize in Chemistry in 2021. This Account summarizes our endeavors in the organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality. In brief, we devised and developed a series of indole-derived platform molecules, such as indolylmethanols, (hetero)aryl indoles, oxindole-based styrenes, N-aminoindoles, and indole-based homophthalic anhydrides, by introducing different functional groups onto the indole ring to achieve new reactivity and modulate the reactive site of the indole ring. As a result, these indole-derived platform molecules possess versatile and unique reactivity and are capable of undergoing a variety of organocatalytic enantioselective transformations for preparing structurally diversified indole derivatives with axial chirality.We used these strategies to accomplish the atroposelective synthesis of plenty of indole derivatives with axial chirality, including (hetero)aryl indoles, alkene-indoles, oxindole-based styrenes, N-pyrrolylindoles, and isochromenone-indoles. In addition, we gave a thorough and detailed understanding of the designed reaction by investigating the reaction pathway and activation mode. More importantly, we studied the biological activity of some products and performed catalyst design on the basis of atropisomeric indole moieties, which are helpful for disclosing more applications of indole derivatives bearing axial chirality.In the future, the organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality will indubitably remain a frontier topic in the research area of asymmetric catalysis and chiral indole chemistry despite challenging issues, for instance, the atroposelective synthesis of novel indole derivatives bearing an unconventional chiral axis, the development of atropisomeric indole derivatives into powerful catalysts or ligands, and the discovery of atroposelective indole derivatives as potent drug candidates. We hope our efforts summarized in this Account will encourage chemists worldwide to devise innovative strategies toward solving the challenging issues that remain in this field, thus promoting its development to a higher level.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Gehu Road No. 21, Wujin District, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Gehu Road No. 21, Wujin District, Changzhou 213164, China.,School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road No. 101, Tongshan District, Xuzhou 221116, China
| |
Collapse
|
37
|
Hang QQ, Wu SF, Yang S, Wang X, Zhong Z, Zhang YC, Shi F. Design and catalytic atroposelective synthesis of axially chiral isochromenone-indoles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1363-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
39
|
Qin J, Zhou T, Zhou TP, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022; 61:e202205159. [PMID: 35612900 DOI: 10.1002/anie.202205159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 01/13/2023]
Abstract
Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones. The origin of 1,6-addition selectivity was investigated through computational studies. Preliminary studies show that the obtained 3-aminoindoles atropisomers exhibit anticancer activities. This method is valuable with respect to enlarging the toolbox for atropochiral amine derivatives.
Collapse
Affiliation(s)
- Jingyang Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tong Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Honghua Zuo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
40
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls. Angew Chem Int Ed Engl 2022; 61:e202206501. [PMID: 35621411 DOI: 10.1002/anie.202206501] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/27/2022]
Abstract
We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.
Collapse
Affiliation(s)
- Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
41
|
Liu J, Li Q, Shao Y, Sun J. Atroposelective Synthesis of Axially Chiral C2-Arylindoles via Rhodium-Catalyzed Asymmetric C-H Bond Insertion. Org Lett 2022; 24:4670-4674. [PMID: 35730740 DOI: 10.1021/acs.orglett.2c01818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient rhodium-catalyzed formal C-H insertion reaction between indoles and 1-diazonaphthoquinones has been established, providing a novel protocol for the atroposelective synthesis of axially chiral C2-arylindoles (up to 99:1 er) under mild reaction conditions. Typically, only 1 mol % of Rh2(S-PTTL)4 is used and the chelation group is not needed for this conversion.
Collapse
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
42
|
Wang Y, Zhou X, Shan W, Liao R, Deng Y, Peng F, Shao Z. Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Xue Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ruisong Liao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - YuHua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
43
|
Chen Z, He Q, Guo H, Fan R. Anodic dearomatization of 2-alkynylanilines for the synthesis of multi-functionalized indoles. Chem Commun (Camb) 2022; 58:6797-6800. [PMID: 35611853 DOI: 10.1039/d2cc01766k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anodic oxidative dearomatization reaction of 2-alkynylanilines was developed. The formed dearomatized compounds were used as versatile precursors in the synthesis of a variety of benzenoid ring multi-functionalized indoles through simple conversions.
Collapse
Affiliation(s)
- Zhuowen Chen
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
44
|
Catalytic Asymmetric Synthesis of Axially Chiral 3,3'‐Bisindoles by Direct Coupling of Indole Rings. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine‐Membered Carbonate Bridged Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiqi Jia
- Zhengzhou University Green Catalysis Center 重庆大学虎溪校区药学院 zhengzhou CHINA
| | - Yuhong Tian
- Chongqing University School of Pharmaceutical Sciences Chongqing CHINA
| | - Xin Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Pengfei Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yu Lan
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yan
- Chongqing University Innovative Drug Research Center No.55 Daxuecheng South Rd 401331 Chongqing CHINA
| |
Collapse
|
46
|
Qin J, Zhou T, Zhou T, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao RZ, Zhong F. Catalytic Atroposelective Electrophilic Amination of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingyang Qin
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Tong Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Taiping Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Langyu Tang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Honghua Zuo
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huaibin Yu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Guojiao Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Fangrui Zhong
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering Luoyu road 1037 430074 Wuhan CHINA
| |
Collapse
|
47
|
Yin SY, Pan C, Zhang WW, Liu CX, Zhao F, Gu Q, You SL. SCpRh(III)-Catalyzed Enantioselective Synthesis of Atropisomers by C2-Arylation of Indoles with 1-Diazonaphthoquinones. Org Lett 2022; 24:3620-3625. [DOI: 10.1021/acs.orglett.2c01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Fangnuo Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
48
|
Wang ZS, Zhu LJ, Li CT, Liu BY, Hong X, Ye LW. Synthesis of Axially Chiral N-Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Brønsted Acids. Angew Chem Int Ed Engl 2022; 61:e202201436. [PMID: 35246909 DOI: 10.1002/anie.202201436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/25/2023]
Abstract
In recent years, asymmetric catalysis of ynamides has attracted much attention, but these reactions mostly constructed central chirality, except for a few examples on the synthesis of axially chiral compounds which exclusively relied on noble-metal catalysis. Herein, a facile access to axially chiral N-heterocycles enabled by chiral Brønsted acid-catalyzed 5-endo-dig cyclization of ynamides is disclosed, which represents the first metal-free protocol for the construction of axially chiral compounds from ynamides. This method allows the practical and atom-economical synthesis of valuable N-arylindoles in excellent yields with generally excellent enantioselectivities. Moreover, organocatalysts and ligands based on such axially chiral N-arylindole skeletons are demonstrated to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
49
|
Liu H, Li K, Huang S, Yan H. An Isolable Vinylidene ortho-Quinone Methide: Synthesis, Structure and Reactivity. Angew Chem Int Ed Engl 2022; 61:e202117063. [PMID: 35171537 DOI: 10.1002/anie.202117063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Commonly, an elusive intermediate is generated from a precursor and then trapped and consumed in a reaction. Vinylidene ortho-quinone methides (VQMs) have been demonstrated as transient axially chiral intermediates in asymmetric catalysis due to their orthogonal π-bonds forming an allene motif. The current understanding of VQMs is primarily based on time-resolved absorption, trapping experiments and computational studies. Herein, we report the first isolation and comprehensive characterization of a VQM, including crystallographic analysis. The disturbed aromaticity of the VQM led to its high reactivity as an electrophile or a 4π-component capable of asymmetric dearomatization of an electron-deficient phenyl group. Notably, the VQM could be isolated in enantiomerically enriched form, and the subsequent transformation was stereospecific, indicating that the generation of the VQM was involved in the enantiodetermining step. This study paves the way for the direct application of VQMs as starting materials.
Collapse
Affiliation(s)
- Hong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| |
Collapse
|
50
|
Wang Y, Yang Y, Xu S, Huang A, Chen L, Xie Y, Liu P, Hong L, Li G. Organocatalytic enantioselective construction of axially chiral (1 H)-isochromen-1-imines. Org Biomol Chem 2022; 20:3277-3282. [PMID: 35373230 DOI: 10.1039/d2ob00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocycloalkenyl atropisomers, derived from biaryl atropisomers and axially chiral styrenes, have emerged as a new class of nonbiaryl C-C atropisomers due to the benefit in improving the pharmacological activity and structural diversity. This paper proposes an intramolecular annulation strategy for constructing the heterocycloalkenyl atropisomers (1H)-isochromen-1-imines by organocatalysis. Various heterocycloalkenyl atropisomers (1H)-isochromen-1-imines were prepared in good to excellent yields with excellent enantioselectivity (up to 98% ee), and could be easily converted to atropisomeric lactones isocoumarins.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Yang Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu Chen
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Yubao Xie
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Pengyutian Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|