1
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Three-Component Tandem Cyclization for One-Pot Synthesis of Indole-Benzofuran Bis-Heterocycles. J Org Chem 2024; 89:17168-17175. [PMID: 39576131 DOI: 10.1021/acs.joc.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Haritha Kumari A, Jagadesh Kumar J, Sharadha N, Rama Krishna G, Jannapu Reddy R. Visible-Light-Induced Radical Sulfonylative-Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzoheteroles. CHEMSUSCHEM 2024; 17:e202400227. [PMID: 38650432 DOI: 10.1002/cssc.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Benzoheteroles are promising structural scaffolds in the realm of medicinal chemistry, but sustainable synthesis of 2,3-difunctionalized benzoheterole derivatives is still in high demand. Indeed, we have conceptually rationalized the intrinsic reactivity of propargylic-enyne systems for the flexible construction of 2,3-disubstituted benzoheteroles through radical sulfonylative-cyclization cascade under organophotoredox catalysis. We hereby report an efficient visible-light-induced sulfonyl radical-triggered cyclization of 1,6-enynols with sulfinic acids under the dual catalytic influence of 4CzIPN and NiBr2⋅DME, which led to the formation of 2,3-disubstituted benzoheteroles in good to high yields. Additionally, the Rose Bengal (RB)-catalyzed radical sulfonylative-cycloannulation of acetyl-derived 1,6-enynols with sulfinic acids under blue LED irradiation allowed to access 3-(E-styryl)-derived benzofurans and benzothiophenes in moderate to good yields. The scope and limitations of the present strategies were successfully established using different classes of 1,6-enynols and sulfinic acids bearing various sensitive functional groups, yielding the desired products in a highly stereoselective fashion. Plausible mechanistic pathways were also proposed based on the current experimental and control experiments.
Collapse
Affiliation(s)
- Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| |
Collapse
|
3
|
Liu W, Xing Y, Yan D, Kong W, Shen K. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes. Nat Commun 2024; 15:1787. [PMID: 38413585 PMCID: PMC10899222 DOI: 10.1038/s41467-024-45617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles. Despite notable achievements, these transformations have been largely limited to the use of aryl or alkenyl metal reagents, and stereoselective or stereospecific alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes with aryl iodides, providing enantioenriched six-membered carbo- and heterocycles in good yields with excellent enantioselectivities. Additionally, we have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides, furnishing chiral five-membered heterocycles with high regioselectivity and stereochemical fidelity. Mechanistic studies reveal that the arylative cyclization of 1,6-enynes is initiated by the oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is triggered by the oxidative addition of Ni(0) to allylic acetates. The utility of this strategy is further demonstrated in the enantioselective synthesis of the antiepileptic drug Brivaracetam.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yunxin Xing
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Denghong Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Yan D, Wen S, Xing Y, Bu J, Shen K. Nickel-Catalyzed Reductive anti-Arylative Cyclization of Alkynyl Enones with Aryl Halides. J Org Chem 2024; 89:2223-2231. [PMID: 38326966 DOI: 10.1021/acs.joc.3c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A nickel-catalyzed reductive anti-arylative cyclization of alkynyl enones with aryl halides has been developed. The reaction avoids the use of stoichiometric organometallic reagents and has a broad reaction scope and high functional group tolerance. This method offers an efficient way to access a variety of synthetically useful carbocycles that are widely found in many natural products and biologically active molecules.
Collapse
Affiliation(s)
- Denghong Yan
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shun Wen
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yunxin Xing
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Bu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Jiang S, Wang W, Mou C, Zou J, Jin Z, Hao G, Chi YR. Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors. Nat Commun 2023; 14:7381. [PMID: 37968279 PMCID: PMC10651860 DOI: 10.1038/s41467-023-43198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The development of suitable electron donors is critical to single-electron-transfer (SET) processes. The use of heteroatom-centered anions as super-electron-donors (SEDs) for direct SET reactions has rarely been studied. Here we show that heteroatom anions can be applied as SEDs to initiate radical reactions for facile synthesis of 3-substituted benzofurans. Phosphines, thiols and anilines bearing different substitution patterns work well in this inter-molecular radical coupling reaction and the 3-functionalized benzofuran products bearing heteroatomic functionalities are given in moderate to excellent yields. The reaction mechanism is elucidated via control experiments and computational methods. The afforded products show promising applications in both organic synthesis and pesticide development.
Collapse
Affiliation(s)
- Shichun Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
6
|
Zhan LW, Lu CJ, Feng J, Liu RR. Atroposelective Synthesis of C-N Vinylindole Atropisomers by Palladium-Catalyzed Asymmetric Hydroarylation of 1-Alkynylindoles. Angew Chem Int Ed Engl 2023; 62:e202312930. [PMID: 37747364 DOI: 10.1002/anie.202312930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Transition-metal-catalyzed hydroarylation of unsymmetrical internal alkynes remains challenging because of the difficulty in controlling regioselectivity and stereoselectivity. Moreover, the enantioselective hydroarylation of alkynes using organoboron reagents has not been reported. Herein, we report for the first time that palladium compounds can catalyze the hydroarylation of 1-alkynylindoles with organoborons for the synthesis of chiral C-N atropisomers. A series of rarely reported vinylindole atropisomers was synthesized with excellent regio-, stereo- (Z-selectivity), and enantioselectivity under mild reaction conditions. The ready availability of organoborons and alkynes and the simplicity, high stereoselectivity, and good functional group tolerance of this catalytic system make it highly attractive.
Collapse
Affiliation(s)
- Li-Wen Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
7
|
Hyeon Ka C, Kim S, Jin Cho E. Visible Light-Induced Metal-Free Fluoroalkylations. CHEM REC 2023; 23:e202300036. [PMID: 36942971 DOI: 10.1002/tcr.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.
Collapse
Affiliation(s)
- Cheol Hyeon Ka
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
8
|
Liu WM, Lu Z, Wei Q, Liu WB. Enantioselective Nickel-Catalyzed Reductive anti-Arylative Annulation of Alkyne-Tethered Malononitriles to Construct Quaternary Stereocenters. Org Lett 2023; 25:1811-1816. [PMID: 36919903 DOI: 10.1021/acs.orglett.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A nickel-catalyzed reductive desymmetrizing annulation of alkyne-tethered malononitriles and (hetero)aryl iodides is reported for the access of cyclohexenones containing an α-all-carbon quaternary stereocenter. The use of a nickel catalyst derived from an electron-rich phosphinooxazoline ligand combined with iron powder as a reductant is crucial to the success of this transformation.
Collapse
Affiliation(s)
- Wei-Min Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Zhiwu Lu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Qiang Wei
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education; College of Chemistry and Molecular Sciences; Wuhan University, Wuhan, 430072 Hubei, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
10
|
Iqbal N, Ashraf MA, Gul AR, Bae J, Iqbal N, Park TJ, Cho EJ. Construction of a Pentacyclic Framework Enabled by Nickel Catalysis. Org Lett 2023; 25:647-652. [PMID: 36682059 DOI: 10.1021/acs.orglett.2c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present a novel nickel-catalyzed reaction of indole-tethered 2-alkynylphenol esters with various (hetero)aryl boronic acids, resulting in the synthesis of diversely functionalized pentacyclic benzofurocyclohepta[b]indole derivatives. This unprecedented cascade reaction involves the arylative cyclization of alkynes, nucleophilic attack of the indole moiety on the oxonium ion intermediate, 1,2-alkyl group migration, and aromatization. The synthesized molecules exhibit exceptional cytotoxicity against multiple cancer cell lines while maintaining biocompatibility toward healthy cells.
Collapse
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Muhammad Awais Ashraf
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Anam Rana Gul
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaehan Bae
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Naila Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Reddy RJ, Kumari AH, Krishna GR. Unified Radical Sulfonylative-Annulation of 1,6-Enynols with Sodium Sulfinates: A Modular Synthesis of 2,3-Disubstituted Benzoheteroles. J Org Chem 2023; 88:1635-1648. [PMID: 36650618 DOI: 10.1021/acs.joc.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Benzoheteroles are valuable scaffolds in medicinal chemistry, but the direct synthesis of 3-vinyl benzoheterole analogues remains unexplored. A rationally designed new class of 1,6-enyne-containing propargylic alcohols has been prepared for the modular synthesis of 3-alkenyl benzoheteroles. Ag-catalyzed cascade radical sulfonylative-cycloannulation of 1,6-enynols with sodium sulfinates is realized to access a wide variety of 2,3-disubstituted benzoheteroles in good to high yields. Moreover, a three-component coupling of 1,6-enynols, aryldiazonium salts, and Na2S2O5 (as an SO2 surrogate) has been achieved to deliver benzoheterole derivatives in moderate to good yields. Of note, a scalable reaction and late-stage synthetic transformations were successfully demonstrated. A plausible mechanism is also presented based on the existing experimental results and control experiments.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
12
|
Fernández-Canelas P, Miguélez R, Rubio E, González JM, Barrio P. Intramolecular activation of strong Si-O bonds by gold(I): regioselective synthesis of 3-bromo-2-silylbenzofurans. Chem Commun (Camb) 2022; 58:9250-9253. [PMID: 35900046 DOI: 10.1039/d2cc03060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high reactivity of gold-vinylidene complexes, generated in situ by [1,2]-bromine shift from the corresponding 1-bromoalkynes, allows the activation of one of the strongest bonds in organic chemistry (Si-O), strategically placed at the ortho-position. In this way, the synthesis of 3-bromo-2-silylbenzofuranes is achieved in good yields. Several substituents with different electronic properties and substitution patterns are well tolerated on the tethering aromatic ring as well as a number of silyl groups on the O-atom. A preliminary mechanistic study is compatible with the participation of gold vinylidene intermediate species. The synthetic applicability of the obtained scaffolds was preliminarily showcased by orthogonal C-C bond forming transformations.
Collapse
Affiliation(s)
- Paula Fernández-Canelas
- Departmento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julian Clavería 8 33006, Oviedo, Spain.
| | - Rubén Miguélez
- Departmento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julian Clavería 8 33006, Oviedo, Spain.
| | - Eduardo Rubio
- Departmento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julian Clavería 8 33006, Oviedo, Spain.
| | - José Manuel González
- Departmento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julian Clavería 8 33006, Oviedo, Spain.
| | - Pablo Barrio
- Departmento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julian Clavería 8 33006, Oviedo, Spain.
| |
Collapse
|
13
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022; 61:e202203494. [DOI: 10.1002/anie.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
14
|
Tambe SD, Ka CH, Hwang HS, Bae J, Iqbal N, Cho EJ. Nickel‐Catalyzed Enantioselective Synthesis of 2,3,4‐Trisubstituted 3‐Pyrrolines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Cheol Hyeon Ka
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Jaehan Bae
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry University of York Heslington, York YO10 5DD UK
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu, Seoul 06974 Republic of Korea
| |
Collapse
|
15
|
Gillbard SM, Lam HW. Nickel-Catalyzed Arylative Cyclizations of Alkyne- and Allene-Tethered Electrophiles using Arylboron Reagents. Chemistry 2022; 28:e202104230. [PMID: 34986277 PMCID: PMC9302687 DOI: 10.1002/chem.202104230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
The use of arylboron reagents in metal‐catalyzed domino addition–cyclization reactions is a well‐established strategy for the preparation of diverse, highly functionalized carbo‐ and heterocyclic products. Although rhodium‐ and palladium‐based catalysts have been commonly used for these reactions, more recent work has demonstrated nickel catalysis is also highly effective, in many cases offering unique reactivity and access to products that might otherwise not be readily available. This review gives an overview of nickel‐catalyzed arylative cyclizations of alkyne‐ and allene‐tethered electrophiles using arylboron reagents. The scope of the reactions is discussed in detail, and general mechanistic concepts underpinning the processes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UK.,School of Chemistry, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
16
|
Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes. Commun Chem 2022; 5:13. [PMID: 36697817 PMCID: PMC9814684 DOI: 10.1038/s42004-022-00633-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
α,β-Unsaturated ketones are common feedstocks for the synthesis of fine chemicals, pharmaceuticals, and natural products. Transition metal-catalysed hydroacylation reactions of alkynes using aldehydes have been recognised as an atom-economical route to access α,β-unsaturated ketones through chemoselective aldehydic C-H activation. However, the previously reported hydroacylation reactions using rhodium, cobalt, or ruthenium catalysts require chelating moiety-bearing aldehydes to prevent decarbonylation of acyl-metal-hydride complexes. Herein, we report a nickel-catalysed anti-Markovnikov selective coupling process to afford non-tethered E-enones from terminal alkynes and S-2-pyridyl thioesters in the presence of zinc metal as a reducing agent. Utilization of a readily available thioester as an acylating agent and water as a proton donor enables the mechanistically distinctive and aldehyde-free hydroacylation of terminal alkynes. This non-chelation-controlled approach features mild reaction conditions, high step economy, and excellent regio- and stereoselectivity.
Collapse
|
17
|
Kraus GA, Alterman JL. A Convenient Procedure for Sonogashira Reactions Using Propyne. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1648-7074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA modified Sonogashira coupling of aryl iodides and propyne was achieved using only two equivalents of propyne in THF from –78 °C to room temperature.
Collapse
|
18
|
Min KH, Iqbal N, Cho EJ. Ni-Catalyzed Reductive Coupling of Alkynes and Amides to Access Multi-Functionalized Indoles. Org Lett 2022; 24:989-994. [PMID: 35050641 DOI: 10.1021/acs.orglett.1c03971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A nickel-catalyzed reductive coupling of alkynes and amides, followed by base-free transmetalation, proceeded selectively in the presence of an uncommon bidentate primary aminophosphine ligand to access highly functionalized indoles comprising biologically important trifluoromethyl groups and challenging electron-rich alkenyl groups at the 2- and 3-positions, respectively. Indole molecules were installed within natural products or drug molecules under mild conditions, and a trifluoromethylated analogue of a drug molecule (pravadoline) was also synthesized.
Collapse
Affiliation(s)
- Kwan Hong Min
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
19
|
Maiti S, Rhlee JH. Reductive Ni-catalysis for stereoselective carboarylation of terminal aryl alkynes. Chem Commun (Camb) 2021; 57:11346-11349. [PMID: 34643192 DOI: 10.1039/d1cc04586e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereoselective dicarbofunctionalization of terminal aryl alkynes has been achieved through reductive Ni-catalysis. The exclusive regioselective and anti-addition selective alkylarylation of terminal alkynes is accomplished using alkyl iodide and aryl iodide as electrophilic coupling partners in the presence of NiBr2 as the catalyst and Mn as an inexpensive reductant.
Collapse
Affiliation(s)
- Saikat Maiti
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea. .,Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Joon Ho Rhlee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
20
|
Hu X, Lv P, Zhang N, Liu Y. Synthesis of ortho-Diamino-Functionalized 1-Arylnaphthalenes through Nickel-Catalyzed Cyclization of Ynamide-Benzylnitriles with Organoboronic Acids. Org Lett 2021; 23:7949-7954. [PMID: 34553930 DOI: 10.1021/acs.orglett.1c02957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed highly regioselective addition/cyclization of ynamide-benzylnitriles with organoboronic acids has been developed. The reaction offers an attractive route for the construction of diamino-functionalized 1-arylnaphthalenes, which is difficult to synthesize by other methods. In addition, a wide range of functional groups are tolerated in this reaction.
Collapse
Affiliation(s)
- Xiaoping Hu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Peizhuo Lv
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Ninghui Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China.,Department of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Gillbard SM, Green H, Argent SP, Lam HW. Enantioselective nickel-catalyzed anti-arylmetallative cyclizations onto acyclic electron-deficient alkenes. Chem Commun (Camb) 2021; 57:4436-4439. [PMID: 33949471 DOI: 10.1039/d1cc01166a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enantioselective nickel-catalyzed reactions of (hetero)arylboronic acids or alkenylboronic acids with substrates containing an alkyne tethered to various acyclic electron-deficient alkenes are described.
Collapse
Affiliation(s)
- Simone M Gillbard
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harley Green
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK. and School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
23
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au-Ag Bimetallic Catalysis: 3-Alkynyl Benzofurans from Phenols via Tandem C-H Alkynylation/Oxy-Alkynylation. Angew Chem Int Ed Engl 2021; 60:10637-10642. [PMID: 33617065 PMCID: PMC8252013 DOI: 10.1002/anie.202016595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/17/2023]
Abstract
The development of new methodologies enabling a facile access to valuable heterocyclic frameworks still is an important subject of research. In this context, we describe a dual catalytic cycle merging C-H alkynylation of phenols and oxy-alkynylation of the newly introduced triple bond by using a unique redox property and the carbophilic π acidity of gold. Mechanistic studies support the participation of a bimetallic gold-silver species. The one-pot protocol offers a direct, simple, and regio-specific approach to 3-alkynyl benzofurans from readily available phenols. A broad range of substrates, including heterocycles, is transferred with excellent functional group tolerance. Thus, this methodology can be used for the late-stage incorporation of benzofurans.
Collapse
Affiliation(s)
- Long Hu
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Martin C. Dietl
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Chunyu Han
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University (KAU)21589JeddahSaudi Arabia
| |
Collapse
|
24
|
Liou YC, Wang HW, Edukondalu A, Lin W. Phosphine-Catalyzed Chemoselective Reduction/Elimination/Wittig Sequence for Synthesis of Functionalized 3-Alkenyl Benzofurans. Org Lett 2021; 23:3064-3069. [PMID: 33821660 DOI: 10.1021/acs.orglett.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient protocol for the construction of functionalized 3-alkenyl benzofurans is demonstrated under metal-free conditions using catalytic amount of phosphine proceeding an intramolecular Wittig reaction. This one-pot reaction initiated by the phospha-Michael addition of phosphine to O-acylated nitrostyrene, in which phosphine was in-situ-generated from the chemoselective reduction of phosphine oxide with PhSiH3, would provide the phosphorus ylide to result in the aforementioned multifunctionalized benzofuran via O-acylation/nitrous acid elimination/Wittig reaction.
Collapse
Affiliation(s)
- Yan-Cheng Liou
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China
| | - Heng-Wei Wang
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China
| | - Athukuri Edukondalu
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, 88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, Republic of China
| |
Collapse
|
25
|
Iqbal N, Lee DS, Jung H, Cho EJ. Synergistic Effects of Boron and Oxygen Interaction Enabling Nickel-Catalyzed Exogenous Base-Free Stereoselective Arylvinylation of Alkynes through Vinyl Transposition. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoimin Jung
- Department of Chemistry, Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Pirouz M, Saeed Abaee M, Harris P, Mojtahedi MM. One-pot synthesis of benzofurans via heteroannulation of benzoquinones. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Three different reactions were explored leading to the synthesis of various benzofurans. All reactions took place under AcOH catalysis in a one-pot manner. As a result, benzoquinone derivatives underwent heteroannulation with either itself or cyclohexanones to produce furanylidene-benzofuran or benzofuran structures, respectively.
Collapse
Affiliation(s)
- Maryam Pirouz
- Organic Chemistry Department , Chemistry and Chemical Engineering Research Center of Iran , P.O. Box 14335-186 , Tehran , Iran
| | - M. Saeed Abaee
- Organic Chemistry Department , Chemistry and Chemical Engineering Research Center of Iran , P.O. Box 14335-186 , Tehran , Iran
| | | | | |
Collapse
|
27
|
Green H, Argent SP, Lam HW. Enantioselective Nickel-Catalyzed anti-Arylmetallative Cyclizations onto Acyclic Ketones. Chemistry 2021; 27:5897-5900. [PMID: 33533065 PMCID: PMC8048927 DOI: 10.1002/chem.202100143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Domino reactions involving nickel-catalyzed additions of (hetero)arylboronic acids to alkynes, followed by cyclization of the alkenylnickel intermediates onto tethered acyclic ketones to give chiral tertiary-alcohol-containing products in high enantioselectivities, are described. The reversible E/Z isomerization of the alkenylnickel intermediates enables overall anti-arylmetallative cyclization to occur. The ring system of the products are substructures of certain diarylindolizidine alkaloids.
Collapse
Affiliation(s)
- Harley Green
- The GlaxoSmithKline Carbon Neutral Laboratories for, Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for, Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
28
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au‐Ag‐Bimetallkatalyse: 3‐Alkinylbenzofurane aus Phenolen durch Tandem‐C‐H‐Alkinylierung/Oxyalkinylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Hu
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Martin C. Dietl
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Chunyu Han
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Matthias Rudolph
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabien
| |
Collapse
|
29
|
Chen X, Shatskiy A, Liu JQ, D Kärkäs M, Wang XS. Synthesis of Sulfonylated Heterocycles via Copper-Catalyzed Heteroaromatization/Sulfonyl Transfer of Propargylic Alcohols. Chem Asian J 2021; 16:30-33. [PMID: 33025769 DOI: 10.1002/asia.202001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Indexed: 01/04/2023]
Abstract
An unprecedented copper-catalyzed heteroaromatization/sulfonyl transfer of propargylic alcohols with isocyanide has been developed. 3-Sulfonyl benzofurans and indoles were produced under Cu(I) catalysis in good to high yields. The developed catalytic methodology provides controlled, modular, and facile access to sulfonyl benzoheterocycle scaffolds.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China.,Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
30
|
Tambe SD, Iqbal N, Cho EJ. Nickel-Catalyzed trans-Carboamination across Internal Alkynes to Access Multifunctionalized Indoles. Org Lett 2020; 22:8550-8554. [PMID: 33104355 DOI: 10.1021/acs.orglett.0c03148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A Ni-catalyzed reaction was developed for the synthesis of multifunctionalized indoles. The reaction proceeded through oxidative cyclization of the Ni(0)/P^N complex with an enyne system, 2-alkynyl anilinoacrylate, to provide a nickelacycle intermediate. The trans-carboamination around the internal alkyne was achieved by syn/anti-rotation of the Ni-carbenoid intermediate formed by C-N bond cleavage of the nickelacycle, and 3-alkenylated indoles were formed by C-N bond-forming reductive elimination. Notably, the synthesized indoles could be successfully transformed to functionalized carbazoles.
Collapse
Affiliation(s)
- Shrikant D Tambe
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
31
|
Han XL, Nie XD, Chen ZD, Si CM, Wei BG, Lin GQ. Synthesis of a 3,4-Dihydro-1,3-oxazin-2-ones Skeleton via an Intermolecular [4 + 2] Process of N-Acyliminium Ions with Ynamides/Terminal Alkynes. J Org Chem 2020; 85:13567-13578. [DOI: 10.1021/acs.joc.0c01692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Li Han
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiao-Di Nie
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhao-Dan Chen
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Copper(II)-catalyzed decarboxylative cyclization for accessing biologically relevant 3-(2-furanyl) Indoles via 3-cyanoacetyl indoles and cinnamic acids. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Sreedharan R, Rajeshwaran P, Panyam PKR, Yadav S, Nagaraja CM, Gandhi T. Acylation of oxindoles using methyl/phenyl esters via the mixed Claisen condensation - an access to 3-alkylideneoxindoles. Org Biomol Chem 2020; 18:3843-3847. [PMID: 32400832 DOI: 10.1039/d0ob00789g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Predominantly, aggressive acid chlorides and stoichiometric coupling reagents are employed in the acylating process for synthesizing carbonyl tethered heterocycles. Herein, we report simple acyl sources, viz. methyl and phenyl esters, which acylate oxindoles via the mixed Claisen condensation. This straightforward protocol is mediated by LiHMDS and KOtBu and successfully applied to a wide range of substrates. It is a noteworthy transformation that skips the stepwise generation of enolates and acylation, and the reaction is performed at a moderate temperature with no side reactions. This protocol produces the first examples of ortho-substituents in an aryl ring flanked with electron-donating and electron-withdrawing substrates. Interestingly, robust organometallic ferrocenyl methyl ester cleaved under these conditions with ease. Furthermore, biologically important Tenidap's analog was synthesized by this protocol.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Purushothaman Rajeshwaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Pradeep Kumar Reddy Panyam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Saurabh Yadav
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Wang HR, Huang EH, Luo C, Luo WF, Xu Y, Qian PC, Zhou JM, Ye LW. Copper-catalyzed tandem cis-carbometallation/cyclization of imine-ynamides with arylboronic acids. Chem Commun (Camb) 2020; 56:4832-4835. [PMID: 32236203 DOI: 10.1039/d0cc01424a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient copper-catalyzed tandem regioselective cis-carbometallation/cyclization of imine-ynamides with arylboronic acids has been developed. This method leads to a facile and practical synthesis of valuable 2,3-disubstituted indolines in moderate to excellent yields and features a broad substrate scope and wide functional group tolerance. Other significant features of this protocol include the use of readily available starting materials, high flexibility, simple procedure and mild reaction conditions.
Collapse
Affiliation(s)
- Hao-Ran Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Song L, Su Q, Lin X, Du Z, Xu H, Ouyang MA, Yao H, Tong R. Cascade Claisen and Meinwald Rearrangement for One-Pot Divergent Synthesis of Benzofurans and 2H-Chromenes. Org Lett 2020; 22:3004-3009. [DOI: 10.1021/acs.orglett.0c00770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Su
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xi Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhihui Du
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huiyou Xu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ming-An Ouyang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong 510260, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Di Sanza R, Nguyen TLN, Iqbal N, Argent SP, Lewis W, Lam HW. Enantioselective nickel-catalyzed arylative and alkenylative intramolecular 1,2-allylations of tethered allene-ketones. Chem Sci 2020; 11:2401-2406. [PMID: 34084403 PMCID: PMC8157472 DOI: 10.1039/c9sc05246a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023] Open
Abstract
The enantioselective nickel-catalyzed reaction of tethered allene-ketones with (hetero)arylboronic acids or potassium vinyltrifluoroborate is described. Carbonickelation of the allene gives allylnickel species, which undergo cyclization by 1,2-allylation to produce chiral tertiary-alcohol-containing aza- and carbocycles in high diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Riccardo Di Sanza
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Thi Le Nhon Nguyen
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Naeem Iqbal
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - William Lewis
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Hon Wai Lam
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|