1
|
Dutta N, Peter SC. Electrochemical CO 2 Reduction in Acidic Media: A Perspective. J Am Chem Soc 2025. [PMID: 40035683 DOI: 10.1021/jacs.5c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) is a promising approach for converting CO2 to useful chemicals and, hence, achieving carbon neutrality. Though high selectivity and activity of products have been achieved recently, all are reported in neutral or alkaline electrolytes. Although these electrolyte media give high selectivity and activity, they face the major challenge of low CO2 utilization because of carbonate formation, which lowers the overall efficiency of the process. Conducting the eCO2RR in acidic media can help overcome the issue of carbonate formation and hence can increase the CO2 utilization efficiency. However, there are many challenges associated with acidic eCO2RR. Two major concerns are the highly competitive hydrogen evolution reaction in acidic media and salt precipitation issues. This Perspective focuses on the fundamentals of acidic eCO2RR, recent catalyst development strategies, and relevant problems that need to be addressed in the future. In the end, we provide a future outlook that will give an idea about the problems to focus on in the future in the field of acidic eCO2RR.
Collapse
Affiliation(s)
- Nilutpal Dutta
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
2
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
3
|
Chemchoub S, El Attar A, Belgada A, Younssi SA, Jama C, Bentiss F, El Rhazi M. A sustainable approach using natural phosphates impregnated with nickel hydroxide nanoparticles: a cost-effective solution for alcohol oxidation'. NANOSCALE ADVANCES 2025; 7:583-600. [PMID: 39650620 PMCID: PMC11622688 DOI: 10.1039/d4na00850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024]
Abstract
This study introduces a novel and effective approach for the electrocatalytic oxidation of alcohols, showcasing the development of a highly active and cost-effective anode catalyst for methanol and ethanol. A dual-embedded Ni electrode, named (Ni@NATPhos/Ni), is based on a carbon paste electrode modified with natural phosphate impregnated with nickel ions. A layer of nickel nanoparticles was then added via electrochemical deposition, using a precise combination of wet impregnation and potentiostatic electrodeposition techniques. Characterization using XRD and TEM revealed the formation of crystalline structures such as nickel pyrophosphate (Ni2P2O7) and orthophosphate (Ni3(PO4)2), along with nickel hydroxides (Ni(OH)2), resulting in well-distributed homogenous nickel nanosized particles of approximately 30 nm. The electrocatalytic performance of Ni@NATPhos/Ni was assessed and compared with an unmodified carbon paste electrode in alkaline media. With peak current densities of 110 mA cm-2 for methanol and 83 mA cm-2 for ethanol oxidation, the synthesized catalyst demonstrated significantly improved catalytic efficiency. After 500 CV cycles, the dual-embedded electrode Ni@NATPhos/Ni demonstrated excellent stability, retaining 70.33% and 61.58% of its initial current values for ethanol and methanol, respectively, and exhibiting high tolerance to intermediate species poisoning. Electrochemical impedance spectroscopy (EIS) conducted after stability testing revealed an increase in solution resistance, indicative of the complete oxidation of intermediate species in the alkaline solution. The synthesized Ni@NATPhos/Ni electrode emerges as a promising and robust catalyst for alcohol oxidation reactions, offering significant advancements in electrocatalytic efficiency and stability.
Collapse
Affiliation(s)
- Sanaa Chemchoub
- University of Hassan II of Casablanca, Faculty of Sciences and Technology, Laboratory of Materials, Membranes and Environment-BP 146 20650 Mohammedia Morocco
| | - Anas El Attar
- University of Hassan II of Casablanca, Faculty of Sciences and Technology, Laboratory of Materials, Membranes and Environment-BP 146 20650 Mohammedia Morocco
| | - Abdessamad Belgada
- University of Hassan II of Casablanca, Faculty of Sciences and Technology, Laboratory of Materials, Membranes and Environment-BP 146 20650 Mohammedia Morocco
| | - Saad Alami Younssi
- University of Hassan II of Casablanca, Faculty of Sciences and Technology, Laboratory of Materials, Membranes and Environment-BP 146 20650 Mohammedia Morocco
| | - Charafeddine Jama
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMET - Unité Matériaux et Transformations UMR 8207 F-59000 Lille France
| | - Fouad Bentiss
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMET - Unité Matériaux et Transformations UMR 8207 F-59000 Lille France
- Laboratory of Catalysis and Corrosion of Materials, Faculty of Sciences, Chouaib Doukkali University PO Box 20 M-24000 El Jadida Morocco
| | - Mama El Rhazi
- University of Hassan II of Casablanca, Faculty of Sciences and Technology, Laboratory of Materials, Membranes and Environment-BP 146 20650 Mohammedia Morocco
| |
Collapse
|
4
|
Sugawara Y, Nakase Y, Anilkumar GM, Kamata K, Yamaguchi T. Oxygen evolution activity of nickel-based phosphates and effects of their electronic orbitals. NANOSCALE ADVANCES 2025; 7:456-466. [PMID: 39659766 PMCID: PMC11626464 DOI: 10.1039/d4na00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Metal phosphate-type compounds have been utilized in diverse applications, and their distinctive chemical properties have recently opened avenues for their use as catalysts. Metal phosphates have previously demonstrated significant electrocatalytic activity for the anodic oxygen evolution reaction (OER) in electrochemical water splitting. However, the critical factors influencing OER electrocatalysis on Ni-based phosphates have been insufficiently explored. We herein demonstrate nickel (Ni)-based phosphates-monoclinic Ni3(PO4)2, monoclinic Ni2P2O7, and monoclinic Ni2P4O12-as exemplary materials exhibiting outstanding OER activity in alkaline media. These Ni-based phosphates exhibit superior OER overpotentials compared to conventional Ni-based oxides (NiO) and phosphides (Ni2P). Additionally, their OER-specific activity surpasses that of the rare metal-based benchmark, IrO2, and previously reported state-of-the-art crystalline electrocatalysts comprising nonprecious metals. Long-term durability tests show that Ni3(PO4)2 maintains its OER activity even after 1000 repeated potential cycles while retaining its elemental composition and Raman spectrum. To understand the excellent OER activities of Ni-based phosphates, the atomic configurations within their crystals are examined. Remarkably, a clear correlation between Ni-O bond length and OER overpotentials is observed in both Ni-based phosphates and NiO, i.e., shorter Ni-O bond lengths are highly beneficial for the OER. Density functional theory (DFT) calculations revealed that the outstanding OER activities of Ni-based phosphates are facilitated by their favorable electronic orbitals, which strengthen the Ni-O bond and improve the adsorption of OER intermediates on Ni sites. This mechanism is substantiated by DFT calculations employing surface slab models, where the adsorption of OER intermediates on the surface of Ni-based phosphates is more energetically favorable than on the surface of NiO. Hence, Ni-based phosphates are promising OER electrocatalysts, and this study provides important guidelines to further improve Ni-based electrocatalysts.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo Yokohama Kanagawa 226-8501 Japan
| | - Yuto Nakase
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo Yokohama Kanagawa 226-8501 Japan
| | - Gopinathan M Anilkumar
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo Yokohama Kanagawa 226-8501 Japan
- R&D Centre, Noritake Co., Ltd Miyoshi Aichi 470-0293 Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Integrated Research, Institute of Science Tokyo Yokohama Kanagawa 226-8501 Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo Yokohama Kanagawa 226-8501 Japan
| |
Collapse
|
5
|
Hou Z, Cui C, Yang Y, Huang Z, Zhuang Y, Zeng Y, Gong X, Zhang T. Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407167. [PMID: 39460492 DOI: 10.1002/smll.202407167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure-activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yanan Yang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Zhikun Huang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Yu Zhuang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ye Zeng
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Xi Gong
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Blomme R, Ramesh R, Henderick L, Minjauw M, Vereecken P, Adriaens M, Detavernier C, Dendooven J. Atomic layer deposition for tuning the surface chemical composition of nickel iron phosphates for oxygen evolution reaction in alkaline electrolyzers. NANOTECHNOLOGY 2024; 35:235401. [PMID: 38417172 DOI: 10.1088/1361-6528/ad2e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Transition metal phosphates are promising catalysts for the oxygen evolution reaction (OER) in alkaline medium. Herein, Fe-doped Ni phosphates are deposited using plasma-enhanced atomic layer deposition (PE-ALD) at 300 °C. A sequence offFe phosphate PE-ALD cycles andnNi phosphate PE-ALD cycles is repeatedxtimes. The Fe to Ni ratio can be controlled by the cycle ratio (f/n), while the film thickness can be controlled by the number of cycles (xtimes (n+f)). 30 nm films with an Fe/Ni ratio of ∼10% and ∼37%, respectively, are evaluated in 1.0 M KOH solution. Remarkably, a significant difference in OER activity is found when the order of the Ni and Fe phosphate PE-ALD cycles in the deposition sequence is reversed. A 20%-45% larger current density is obtained for catalysts grown with an Fe phosphate PE-ALD cycle at the end compared to the Ni phosphate-terminated flavour. We attribute this to a higher concentration of Fe centers on the surface, as a consequence of the specific PE-ALD approach. Secondly, increasing the thickness of the catalyst films up to 160 nm results in an increase of the OER current density and active surface area, suggesting that the as-deposited smooth and continuous films are converted into electrolyte-permeable structures during catalyst activation and operation. This work demonstrates the ability of PE-ALD to control both the surface and bulk composition of thin film electrocatalysts, offering valuable opportunities to understand their impact on performance.
Collapse
Affiliation(s)
- Ruben Blomme
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Rahul Ramesh
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Lowie Henderick
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Matthias Minjauw
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Philippe Vereecken
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
- KU Leuven, Department of Microbial and Micromolecular Systems (M2S), cMACS, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Energyville, Thor Park 8320, B-3600 Genk, Belgium
| | - Mieke Adriaens
- Ghent University, Department of Chemistry, Faculty of Sciences, B-9000 Ghent, Belgium
| | - Christophe Detavernier
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Jolien Dendooven
- Ghent University, Department of Solid State Sciences, Conformal Coating of Nanostructures (CoCooN), Krijgslaan 281 S1, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Zhao S, Wang Y, Hao Y, Yin L, Kuo CH, Chen HY, Li L, Peng S. Lewis Acid Driving Asymmetric Interfacial Electron Distribution to Stabilize Active Species for Efficient Neutral Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308925. [PMID: 37879753 DOI: 10.1002/adma.202308925] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Neutral oxygen evolution reaction (OER) with unique reactive environments exhibits extremely slow reaction kinetics, posing significant challenges in the design of catalysts. Herein, a built-in electric field between the tungstate (Ni-FeWO4 ) with adjustable work function and Lewis acid WO3 is elaborately constructed to regulate asymmetric interfacial electron distribution, which promotes electron accumulation of Fe sites in the tungstate. This decelerates the rapid dissolution of Fe under the OER potentials, thereby retaining the active hydroxyl oxide with the optimized OER reaction pathway. Meanwhile, Lewis acid WO3 enhances hydroxyl adsorption near the electrode surface to improve mass transfer. As expected, the optimized Ni-FeWO4 @WO3 /NF self-supporting electrode achieves a low overpotential of 235 mV at 10 mA cm-2 in neutral media and maintains stable operation for 200 h. Furthermore, the membrane electrode assembly constructed by such self-supporting electrode exhibits robust stability for 250 h during neutral seawater electrolysis. This work deepens the understanding of the reconstruction of OER catalysts in neutral environments and paves the way for development of the energy conversion technologies.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lijie Yin
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
8
|
Liu X, Hu L, Zhang Y, Lai H, Peng G, Li J, Zeng R, Yi Z. Carbon nitride quantum dots-modified cobalt phosphate for enhanced photocatalytic H 2 evolution. Photochem Photobiol 2024; 100:22-32. [PMID: 37057759 DOI: 10.1111/php.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
In the present work, carbon nitride quantum dots (CNQDs)-modified cobalt phosphate (CoPi) composites CNQDs/CoPi-x (x = 1, 2, 3) were prepared at room temperature and characterized by FTIR, XRD, UV-Vis DRS, EIS, SEM, TEM/HR-TEM, XPS, and N2 gas adsorption. The morphologies and surface areas of CNQDs/CoPi-x have no remarkable change after modification of CNQDs, compared with pure CoPi. The obtained CNQDs/CoPi-x shows enhanced activity and stability of photocatalytic H2 evolution compared to pure CoPi using Eosin Y (EY) as a sensitizer and triethanolamine as an electron donor. The CNQDs/CoPi-2 possesses the highest hydrogen evolution rate, 234.5 μmol h-1 g-1 , upon visible light, which outshines that of CoPi by 2.4 times. It was believed that the enhanced photocatalytic performances of the CNQDs/CoPi-2 could result from the boosted electron transfer from radical EY·- to CNQDs/CoPi-2 by the employment of CNQDs; in addition, the visible-light activity of CNQDs contributes to hydrogen evolution. The mechanism of photocatalytic hydrogen production was discussed. This study may contribute toward the development of production of "green hydrogen" using solar.
Collapse
Affiliation(s)
- Xing Liu
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang, China
- College of Hunan Province, Key Laboratory of Organometallic New Materials (Hengyang Normal University), Hengyang, China
| | - Longxin Hu
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
| | - Yujie Zhang
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
| | - Hua Lai
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang, China
- College of Hunan Province, Key Laboratory of Organometallic New Materials (Hengyang Normal University), Hengyang, China
| | - Gang Peng
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang, China
- College of Hunan Province, Key Laboratory of Organometallic New Materials (Hengyang Normal University), Hengyang, China
| | - Junhua Li
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang, China
- College of Hunan Province, Key Laboratory of Organometallic New Materials (Hengyang Normal University), Hengyang, China
| | - Rongying Zeng
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
| | - Zhengji Yi
- College of Chemistry Materials, Hengyang Normal University, Hengyang, China
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang, China
- College of Hunan Province, Key Laboratory of Organometallic New Materials (Hengyang Normal University), Hengyang, China
| |
Collapse
|
9
|
Zeng Z, Wang J, Zhao S, Zhang Y, Fan J, Wu H, Chen J, Zhang Z, Meng Z, Yang L, Wang R, Zhang B, Wang G, Li C, Zang G. A Bioinspired Flexible Sensor for Electrochemical Probing of Dynamic Redox Disequilibrium in Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304079. [PMID: 37943018 PMCID: PMC10754098 DOI: 10.1002/advs.202304079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Malignant tumors pose a serious risk to human health. Ascorbic acid (AA) has potential for tumor therapy; however, the mechanism underlying the ability of AA to selectively kill tumor cells remains unclear. AA can cause redox disequilibrium in tumor cells, resulting in the release of abundant reactive oxygen species, represented by hydrogen peroxide (H2 O2 ). Therefore, the detection of H2 O2 changes can provide insight into the selective killing mechanism of AA against tumor cells. In this work, inspired by the ion-exchange mechanism in coral formation, a flexible H2 O2 sensor (PtNFs/CoPi@CC) is constructed to monitor the dynamics of H2 O2 in the cell microenvironment, which exhibits excellent sensitivity and spatiotemporal resolution. Moreover, the findings suggest that dehydroascorbic acid (DHA), the oxidation product of AA, is highly possible the substance that actually acts on tumor cells in AA therapy. Additionally, the intracellular redox disequilibrium and H2 O2 release caused by DHA are positively correlated with the abundance and activity of glucose transporter 1 (GLUT1). In conclusion, this work has revealed the potential mechanism underlying the ability of AA to selectively kill tumor cells through the construction and use of PtNFs/CoPi@CC. The findings provide new insights into the clinical application of AA.
Collapse
Affiliation(s)
- Zhongyuan Zeng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jian Wang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jingchuan Fan
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Hui Wu
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Jiajia Chen
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Zaikuan Zhang
- The M.O.E. Key Laboratory of Laboratory Medical DiagnosticsThe College of Laboratory MedicineChongqing Medical UniversityChongqing400016P. R. China
| | - Zexuan Meng
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Lu Yang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
| | - Renzhi Wang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Bo Zhang
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| | - Chen‐Zhong Li
- Bioelectronics and Biosensors CenterSchool of MedicineChinese University of Hong KongShenzhen 2001 Longxiang Avenue, Longgang DistrictShenzhen518172P. R. China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell BiologyLab Teaching & Management CenterChongqing Medical UniversityChongqing400016P. R. China
- Department of PathophysiologyChongqing Medical UniversityChongqing400016P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
10
|
Zou Y, Jin M, Zhu D, Tang YJ. Laser-induced immobilization of an amorphous iron-phosphate/Fe 3O 4 composite on nickel foam for efficient water oxidation. Chem Commun (Camb) 2023. [PMID: 38015465 DOI: 10.1039/d3cc04070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A laser-induced immobilization strategy is applied to prepare an amorphous iron-phosphate/Fe3O4 (L-FePO) composite on a nickel foam (NF) support. By laser-irradiating an iron hydrogen phosphate (FeHP) precursor, a melting and oxidation process leads to the generation of L-FePO with hierarchical pores and an amorphous structure. L-FePO shows exceptional electrocatalytic performance for the OER in an alkaline electrolyte, demonstrating an overpotential of 256 mV at 100 mA cm-2, a Tafel slope of 71 mV dec-1, and good stability over 100 h. The active Fe3O4, partially dissolved phosphate, and newly formed FeOOH species provide abundant active sites, contributing to the excellent OER performance.
Collapse
Affiliation(s)
- Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Man Jin
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| |
Collapse
|
11
|
Li DH, Zhang XY, Lv JQ, Cai PW, Sun YQ, Sun C, Zheng ST. Photo-Activating Biomimetic Polyoxomolybdate for Boosting Oxygen Evolution in Neutral Electrolytes. Angew Chem Int Ed Engl 2023; 62:e202312706. [PMID: 37793987 DOI: 10.1002/anie.202312706] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Inspired by the metal-oxo cluster structural feature and charge separation behaviour of the oxygen evolving center (OEC) in photosystem II (PS-II) under photoirradiation, a new crystalline photochromic polyoxomolybdate, MV2 [β-Mo8 O26 ] (1, MV=methyl viologen cation), is designed as a biomimetic oxygen evolution reaction (OER) catalyst in neutral electrolytes. After photoinduced electron transfer (PIET) with colour change from colourless to grey, it remains in an ultra-stable charge-separated state over a year under ambient conditions. The observed overpotential at 10 mA ⋅ cm-2 and Tafel slope decrease by 49 mV and 62.8 mV ⋅ dec-1 after coloration, respectively. The outstanding OER performance of the coloured state in neutral electrolytes even outperforms the commercial RuO2 benchmark. Experimental and theoretical studies show that oxygen holes within polyanions after irradiation serve as sites for enhancing direct O-O coupling, thus effectively promoting OER. This is the first successful application of electron-transfer photochromism to realize OER activity gain.
Collapse
Affiliation(s)
- Da-Huan Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiang-Quan Lv
- College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian, 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
12
|
Li Y, Wang W, Cheng M, Feng Y, Han X, Qian Q, Zhu Y, Zhang G. Arming Ru with Oxygen-Vacancy-Enriched RuO 2 Sub-Nanometer Skin Activates Superior Bifunctionality for pH-Universal Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206351. [PMID: 36609998 DOI: 10.1002/adma.202206351] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Water electrolysis has been expected to assimilate the renewable yet intermediate energy-derived electricity for green H2 production. However, current benchmark anodic catalysts of Ir/Ru-based compounds suffer severely from poor dissolution resistance. Herein, an effective modification strategy is proposed by arming a sub-nanometer RuO2 skin with abundant oxygen vacancies to the interconnected Ru clusters/carbon hybrid microsheet (denoted as Ru@V-RuO2 /C HMS), which can not only inherit the high hydrogen evolution reaction (HER) activity of the Ru, but more importantly, activate the superior activity toward the oxygen evolution reaction (OER) in both acid and alkaline conditions. Outstandingly, it can achieve an ultralow overpotential of 176/201 mV for OER and 46/6 mV for the HER to reach 10 mA cm-2 in acidic and alkaline solution, respectively. Inspiringly, the overall water splitting can be driven with an ultrasmall cell voltage of 1.467/1.437 V for 10 mA cm-2 in 0.5 m H2 SO4 /1.0 m KOH, respectively. Density functional theory calculations reveal that armoring the oxygen-vacancy-enriched RuO2 exoskeleton can cooperatively alter the interfacial electronic structure and make the adsorption behavior of hydrogen and oxygen intermediates much close to the ideal level, thus simultaneously speeding up the hydrogen evolution kinetics and decreasing the energy barrier of oxygen release.
Collapse
Affiliation(s)
- Yapeng Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang, 550018, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
13
|
Guo M, Ma P, Wei L, Wang J, Wang Z, Zheng K, Cheng D, Liu Y, Dai H, Guo G, Duan E, Deng J. Highly Selective Activation of C-H Bond and Inhibition of C-C Bond Cleavage by Tuning Strong Oxidative Pd Sites. J Am Chem Soc 2023; 145:11110-11120. [PMID: 37191364 DOI: 10.1021/jacs.3c00747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It could effectively inhibit the deep oxidation of isopropanol and achieve the ultrahigh selectivity (>98%) to the target product acetone in a wide temperature range of 50-200 °C, even at 150-200 °C with almost 100% isopropanol conversion over PdCu1.2/Al2O3, while an obvious decline in acetone selectivity is observed from 150 °C over Pd/Al2O3. Furthermore, it greatly improves the low-temperature catalytic activity (acetone formation rate at 110 °C over PdCu1.2/Al2O3, 34.1 times higher than that over Pd/Al2O3). The decrease of surface Pd site exposure weakens the cleavage for the C-C bond, while the introduction of proper CuO shifts the d-band center (εd) of Pd upward and strengthens the adsorption and activation of reactants, providing more reactive oxygen species, especially the key super oxygen species (O2-) for selective oxidation, and significantly reducing the barrier of O-H and β-C-H bond scission. The molecular-level understanding of the C-H and C-C bond scission mechanism will guide the regulation of strong oxidative noble metal sites with relatively inert metal oxide for the other selective catalytic oxidation reactions.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxi Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Liu G, Cheng Y, Qiu M, Li C, Bao A, Sun Z, Yang C, Liu D. Facilitating interface charge transfer via constructing NiO/NiCo 2O 4 heterostructure for oxygen evolution reaction under alkaline conditions. J Colloid Interface Sci 2023; 643:214-222. [PMID: 37058896 DOI: 10.1016/j.jcis.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Designing high-activity electrocatalysts to enhance the slow multielectron-transfer process of the oxygen evolution reaction (OER) is of great importance for hydrogen generation. Here, we employ hydrothermal and subsequent heat-treatment strategies to acquire nanoarrays-structured NiO/NiCo2O4 heterojunction anchored Ni foam (NiO/NiCo2O4/NF) as efficient materials for catalyzing the OER in an alkaline electrolyte. Density functional theory (DFT) results demonstrate that NiO/NiCo2O4/NF exhibits a smaller overpotential than those of single NiO/NF and NiCo2O4/NF owing to interface-triggered numerous interface charge transfer. Moreover, the superior metallic characteristics of NiO/NiCo2O4/NF further enhance its electrochemical activity toward OER. Specifically, NiO/NiCo2O4/NF delivered a current density of 50 mA cm-2 at an overpotential of 336 mV with a Tafel slope of 93.2 mV dec-1 for the OER, which are comparable with those of commercial RuO2 (310 mV and 68.8 mV dec-1). Further, an overall water splitting system is preliminarily constructed via using a Pt net as cathode and NiO/NiCo2O4/NF as anode. The water electrolysis cell performs an operating voltage of 1.670 V at 20 mA cm-2, which outperform the Pt net||IrO2 couple assembled two-electrode electrolyzer (1.725 V at 20 mA cm-2). This study proposes an efficient route to acquire multicomponent catalysts with rich interfaces for water electrolysis.
Collapse
Affiliation(s)
- Guoqiang Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yuwen Cheng
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maoqin Qiu
- College of Electromechanical Engineering, Hefei Technology College, Hefei, Anhui 238000, PR China
| | - Chengcheng Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Anyang Bao
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Cuizhen Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Dongming Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
15
|
Anchoring polydentate N/O-ligands in metal phosphite/phosphate/phosphonate (MPO) for functional hybrid materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
N-Doped Carbon-Coupled Nickel Nitride Species/Ni2P Heterostructure for Enhancing Electrochemical Overall Water Splitting Performance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Fang B, Chu X, Han X, He J, Geng B, Jia L, Wang X, Song S, Zhang H. Incorporation of CeO 2 with Ni-Co mixed metal phosphide boosts electrochemical seawater oxidation performance. Chem Commun (Camb) 2022; 58:13803-13806. [PMID: 36444756 DOI: 10.1039/d2cc05503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Electrochemical seawater oxidation has been regarded as one of the most promising strategies for cost-efficient production of hydrogen from the standpoint of sustainability, but suffers from a competitive chlorine evolution/oxidation reaction. Herein, we report a facile hard templated route to fabricate CeO2 incorporated Ni-Co mixed metal phosphide embedded in a carbon matrix (CeO2-Co2-xNixP@C). Benefiting from compositional and structural features, the obtained CeO2-Co2-xNixP@C possesses remarkably improved OER performance in 1 M KOH (η = 295 mV at 10 mA cm-2) compared with Co2-xNixP@C. More importantly, the catalytic activity and stability is retained well after changing fresh water to seawater to constitute the working electrolyte. The promotion effect of CeO2 can be attributed to its unique capability in regulating the surface state of catalysts, contributing to efficient inhibition of chlorine competition.
Collapse
Affiliation(s)
- Bin Fang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoxiao Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianing He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Baokang Geng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lingxi Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Zhu S, Liu D, Lv L, Le J, Zhou Y, Li J, Kuang Y. Charged matrix stabilized cobalt oxide electrocatalyst with extraordinary oxygen evolution performance at pH 7. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Begildayeva T, Theerthagiri J, Lee SJ, Yu Y, Choi MY. Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204309. [PMID: 36192152 DOI: 10.1002/smll.202204309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Herein, the authors produce Co-based (Co3 (PO4 )2 , Co3 O4 , and Co9 S8 ) electrocatalysts via pulsed laser ablation in liquid (PLAL) to explore the synergy of anion modulation on phase-selective active sites in the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Co3 (PO4 )2 displays an ultralow overpotential of 230 mV at 10 mA cm-2 with 48.5 mV dec-1 Tafel slope that outperforms the state-of-the-art Ir/C in OER due to its high intrinsic activity. Meanwhile, Co9 S8 exhibits the highest HER performance known to the authors among the synthesized Co-based catalysts, showing the lowest overpotential of 361 mV at 10 mA cm-2 with 95.8 mV dec-1 Tafel slope in the alkaline medium and producing H2 gas with ≈500 mmol g-1 h-1 yield rate under -0.45 V versus RHE. The identified surface reactive intermediates over in situ electrochemical-Raman spectroscopy reveal that cobalt(hydr)oxides with higher oxidation states of Co-cation forming under oxidizing potentials on the electrode-electrolyte surface of Co3 (PO4 )2 facilitate the OER, while Co(OH)2 facilitate the HER. Notably, the fabricated two-electrode electrolyzers using Co3 (PO4 )2 , Co3 O4 , and Co9 S8 electrocatalysts deliver the cell potentials ≈2.01, 2.11, and 1.89 V, respectively, at 10 mA cm-2 . This work not only shows PLAL-synthesized electrocatalysts as promising candidates for water splitting, but also provides an underlying principle for advanced energy-conversion catalysts and beyond.
Collapse
Affiliation(s)
- Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
20
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Onur Sahin E, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202211543. [PMID: 36001016 PMCID: PMC9826365 DOI: 10.1002/anie.202211543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Herein, we show that coupling boron with cobalt oxide tunes its structure and significantly boost its electrocatalytic performance for the oxygen evolution reaction (OER). Through a simple precipitation and thermal treatment process, a series of Co-B oxides with tunable morphologies and textural parameters were prepared. Detailed structural analysis supported first the formation of an disordered and partially amorphous material with nanosized Co3 BO5 and/or Co2 B2 O6 being present on the local atomic scale. The boron modulation resulted in a superior OER reactivity by delivering a large current and an overpotential of 338 mV to reach a current density of 10 mA cm-2 in 1 M KOH electrolyte. Identical location transmission electron microscopy and in situ electrochemical Raman spectroscopy studies revealed alteration and surface re-construction of materials, and formation of CoO2 and (oxy)hydroxide intermediate, which were found to be highly dependent on crystallinity of the samples.
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Yue Wang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Eko Budiyanto
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Ezgi Onur Sahin
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| | - Minmin Chen
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36D-45470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1D-45470Mülheim an der RuhrGermany
| |
Collapse
|
21
|
Yu M, Weidenthaler C, Wang Y, Budiyanto E, Sahin EO, Chen M, DeBeer S, Rüdiger O, Tüysüz H. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Yue Wang
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | - Ezgi Onur Sahin
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Powder Diffraction and Surface Spectroscopy GERMANY
| | - Minmin Chen
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Serena DeBeer
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Olaf Rüdiger
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Inorganic Spectroscopy GERMANY
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
22
|
Guo B, Kang J, Zeng T, Qu H, Yu S, Deng H, Bai J. 3D Printing of Multiscale Ti64-Based Lattice Electrocatalysts for Robust Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201751. [PMID: 35859255 PMCID: PMC9405505 DOI: 10.1002/advs.202201751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Electrically assisted water splitting is an endurable strategy for hydrogen production, but the sluggish kinetics of oxygen evolution reaction (OER) extremely restrict the large-scale production of hydrogen. Developing highly efficient and non-precious catalytic materials is essential to accelerate the sluggish kinetics of OER. However, currently used catalyst supports, such as copper foam, suffer from inferior corrosion resistance and structural stability, resulting in the disabled functionality of 3D conductive networks. To this end, a novel 3D freestanding electrode with corrosion-resistant and robust Ti-6Al-4V titanium alloy lattice as the catalyst support is designed via a 3D printing technology of selective laser melting. After the coating of core-shell Cu(OH)2@CoNi carbonate hydroxides (CoNiCH) on the designed lattice, a unique micro/nano-sized hierarchical porous structure is formed, which endows the electrocatalyst with a promising electrocatalytic activity (a low overpotential of 355 mV at 30 mA cm-2 and Tafel slope of 125.3 mV dec-1 ). Computational results indicate that the CoNiCH exhibits optimized electron transfer and the catalytic activity of the Ni site is higher than that of the Co site in the CoNiCH. Therefore, the integration of robust catalyst supports and highly active materials opens up an avenue for reliable and high-performance OER electrocatalysts.
Collapse
Affiliation(s)
- Binbin Guo
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Jiahui Kang
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Tianbiao Zeng
- School of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035China
| | - Hongqiao Qu
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Shixiang Yu
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Hui Deng
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Jiaming Bai
- Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
23
|
Yu ZY, Duan Y, Kong Y, Zhang XL, Feng XY, Chen Y, Wang H, Yu X, Ma T, Zheng X, Zhu J, Gao MR, Yu SH. General Synthesis of Tube-like Nanostructured Perovskite Oxides with Tunable Transition Metal-Oxygen Covalency for Efficient Water Electrooxidation in Neutral Media. J Am Chem Soc 2022; 144:13163-13173. [PMID: 35849786 DOI: 10.1021/jacs.2c02989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrogen production from water electrolysis in neutral-pH electrolytes can not only avoid the corrosion and safety issues and expand the catalyst option but also potentially integrate with artificial photosynthesis and bioelectrocatalysis. However, heterogeneous catalysts that can efficiently negotiate the sluggish oxygen evolution reaction (OER) in neutral solutions are considerably lacking. Herein, we report a template-assisted strategy for the synthesis of 13 kinds of tube-like nanostructured perovskite oxides (TNPOs) with markedly high Brunauer-Emmett-Teller surface areas. By systematic examination of these TNPOs, we found that the OER activity of TNPOs in neutral solution exhibits a volcano shape as a function of the covalency of transition metal-oxygen bonds. Consequently, our designed Sm-doped LaCoO3 catalyst yields a geometric current density of 8.5 mA cm-2 at 1.75 V versus the reversible hydrogen electrode in 1 M phosphate buffer solution (pH 7) due to the optimized covalency of Co 3d and O 2p states, representing the most active noble-metal-free OER catalyst in neutral electrolytes reported as yet.
Collapse
Affiliation(s)
- Zi-You Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China.,MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu Duan
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Long Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Yu Feng
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Yu Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xingxing Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Tao Ma
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Qi J, Chen M, Zhang W, Cao R. Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Dang K, Dong H, Wang L, Jiang M, Jiang S, Sun W, Wang D, Tian Y. Boosting Electrochemical Styrene Transformation via Tandem Water Oxidation over a Single-Atom Cr 1 /CoSe 2 Catalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200302. [PMID: 35460128 DOI: 10.1002/adma.202200302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxidation of organics using water as the oxygen source is a prospective but challenging method to produce high-value-added chemicals; especially, the competitive oxygen evolution reaction (OER) limits its efficiency. Herein, a tandem catalysis strategy based on a single-atom catalyst with Cr atoms atomically dispersed at a CoSe2 support (Cr1 /CoSe2 ) is presented. Thereinto, Co and Cr sites are endowed with a specific function to activate water and styrene respectively, and the competition between the OER and styrene oxidation is turned into mutual benefits via cooperated active sites. Under a potential of 1.6 VAg/AgCl , excellent selectivity of 95% to benzaldehyde and a high conversion rate of styrene at 88% without any exogenous oxidizing reagent are achieved. Isotopic tracing, isotope-labeled in situ Raman spectra, and detailed theoretical calculation further reveal the tandem mechanism, showing that the transfer of *OOH intermediates from the Co to the Cr sites serves as a bridge to link the oxidation of water and styrene. This work develops a new strategy for the co-oxidation of multi-species based on tandem catalysis, providing novel insights for the design of single-atom catalysts.
Collapse
Affiliation(s)
- Kun Dang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Ligang Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mai Jiang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Sen Jiang
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| | - Wenming Sun
- College of Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Tian
- Department of Chemistry, Analytical Instrumentation Center, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
26
|
Ge R, Wang Y, Li Z, Xu M, Xu SM, Zhou H, Ji K, Chen F, Zhou J, Duan H. Selective Electrooxidation of Biomass-Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel-Oxide-Supported Ruthenium Single-Atom Catalyst. Angew Chem Int Ed Engl 2022; 61:e202200211. [PMID: 35170172 DOI: 10.1002/anie.202200211] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/11/2022]
Abstract
The biomass-derived alcohol oxidation reaction (BDAOR) holds great promise for sustainable production of chemicals. However, selective electrooxidation of alcohols to value-added aldehyde compounds is still challenging. Herein, we report the electrocatalytic BDAORs to selectively produce aldehydes using single-atom ruthenium on nickel oxide (Ru1 -NiO) as a catalyst in the neutral medium. For electrooxidation of 5-hydroxymethylfurfural (HMF), Ru1 -NiO exhibits a low potential of 1.283 V at 10 mA cm-2 , and an optimal 2,5-diformylfuran (DFF) selectivity of 90 %. Experimental studies reveal that the neutral electrolyte plays a critical role in achieving a high aldehyde selectivity, and the single-atom Ru boosts HMF oxidation in the neutral medium by promoting water dissociation to afford OH*. Furthermore, Ru1 -NiO can be extended to selective electrooxidation of a series of biomass-derived alcohols to corresponding aldehydes, which are conventionally difficult to obtain in the alkaline medium.
Collapse
Affiliation(s)
- Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100091, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fengen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100091, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal 2022. [DOI: 10.1038/s41929-022-00761-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
31
|
Ge R, Wang Y, Li Z, Xu M, Xu S, Zhou H, Ji K, Chen F, Zhou J, Duan H. Selective Electrooxidation of Biomass‐Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel‐Oxide‐Supported Ruthenium Single‐Atom Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ye Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100091 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Fengen Chen
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100091 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
32
|
Lv S, Pei M, Liu Y, Si Z, Wu X, Ran R, Weng D, Kang F. A strategy to construct a highly active Co xP/SrTiO 3(Al) catalyst to boost the photocatalytic overall water splitting reactions. NANOSCALE 2022; 14:2427-2433. [PMID: 35098289 DOI: 10.1039/d1nr07398b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen production from overall water splitting using SrTiO3(Al)-based semiconductors is one of the most promising routes to address energy and environmental concerns. Noble metals are needed to accelerate water splitting by promoting the charge transfer and providing active sites. However, noble metal-based catalysts have high prices and rare resources. Herein, we demonstrate a strategy to construct highly active CoxP/SrTiO3(Al) for overall water splitting. Hydrothermal method followed by an ultrasonic process was applied to prepare CoxP dots, which were loaded on the whole surface of SrTiO3(Al) as bifunctional cocatalysts. Interestingly, the CoxP dots on the (110) planes of SrTiO3(Al) were partially oxidized for the OER reaction. However, CoxP dots on the (100) planes of SrTiO3(Al) for HER kept it as it was. The as-prepared CoxP/SrTiO3(Al) photocatalyst shows a stable HER rate of 1.36 mmol-1 h-1 and OER rate of 0.635 mmol-1 h-1. The strong interaction between CoxP and SrTiO3(Al) not only facilitates rapid charge separation but also provides a highly active site for overall water splitting. Our study provides a valuable method for constructing noble-metal-free SrTiO3(Al)-based photocatalysts.
Collapse
Affiliation(s)
- Shangchun Lv
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Mengxi Pei
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Yuxiang Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Zhichun Si
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Xiaodong Wu
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Rui Ran
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Duan Weng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Feiyu Kang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| |
Collapse
|
33
|
Xue C, Zhou X, Li X, Yang N, Xin X, Wang Y, Zhang W, Wu J, Liu W, Huo F. Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104183. [PMID: 34889533 PMCID: PMC8728834 DOI: 10.1002/advs.202104183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Indexed: 05/22/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is known as a promising mean of nitrogen fixation to mitigate the energy crisis and facilitate fertilizer production under mild circumstances. For electrocatalytic reactions, the design of efficient catalysts is conducive to reducing activation energy and accelerating lethargic dynamics. Among them, hollow structural materials possess cavities in their structures, which can slack off the escape rate of N2 and reaction intermediates, prolong the residence time of N2 , enrich the reaction intermediates' concentration, and shorten electron transportation path, thereby further enhancing their NRR activity. Here, the basic synthetic strategies of hollow structural materials are introduced first. Then, the recent breakthroughs in hollow structural materials as NRR catalysts are reviewed from the perspective of intrinsic, mesoscopic, and microscopic regulations, aiming to discuss how structures affect and improve the catalytic performance. Finally, the future research directions of hollow structural materials as NRR catalysts are discussed. This review is expected to provide an outlook for optimizing hollow structural NRR catalysts.
Collapse
Affiliation(s)
- Cong Xue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xinru Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xiaohan Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xue Xin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Yusheng Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| |
Collapse
|
34
|
Muthukumar P, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Disordered spinel cobalt oxide electrocatalyst for highly enhanced HER activity in an alkaline medium. NEW J CHEM 2022. [DOI: 10.1039/d2nj01879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcination of commercial cobalt salts at 800 °C produced a disordered spinel structure with more crystal strain and exhibited highly enhanced HER activity.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Mehboobali Pannipara
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea
| | | |
Collapse
|
35
|
Yan S, Zhong M, Zhu W, Li W, Chen X, Li M, Wang C, Lu X. Controllable fabrication of a nickel–iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Ni–Ir alloy network electrocatalyst, which is prepared via a galvanic replacement engineering route, presents remarkable electrocatalytic properties for both the HER and the OER due to its porous architecture and synergistic effect between Ni and Ir.
Collapse
Affiliation(s)
- Su Yan
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Meixuan Li
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, Changchun 130025, P.R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
36
|
Liu X, Lai H, Li J, Peng G, Zeng R. One-step preparation of cobalt phosphate at room temperature for effective photocatalytic H 2 evolution. Photochem Photobiol Sci 2021; 21:49-57. [PMID: 34854021 DOI: 10.1007/s43630-021-00139-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 01/20/2023]
Abstract
Cobalt phosphate materials were prepared in the present work in one step at room temperature using different raw materials and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and N2 gas adsorption. Cobalt phosphates exhibit 3D flower-like structures, and the assembly of nanosheets (petals of the "flowers") of cobalt phosphate prepared with sodium phosphate and cobalt acetate as raw materials (denoted as Co-P(A)) is more incompact than that of cobalt phosphate prepared with diammonium hydrogen phosphate and cobalt nitrate as raw materials (denoted as Co-P(B)) due to the former's mildly basic environment. The cobalt phosphates show relatively high photocatalytic activity for H2 evolution reaction (HER) in the presence of Eosin Y as a sensitizer in an aqueous triethanolamine solution. The activity of Co-P(A) (0.40 mmol h-1 g-1) exceeds that of Co-P(B) (0.19 mmol h-1 g-1), which can be attributed to a more dispersive nanosheet and larger BET-specific surface area of Co-P(A). The mechanisms of photocatalytic HER and the formation of flower-like Co3(PO4)2 were discussed. The present system comprising of only abundant elements contributes toward the development of cost-efficient solar HER to achieve sustainable development.
Collapse
Affiliation(s)
- Xing Liu
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China. .,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province and Key Laboratory of Functional Organometallic Materials of College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China.
| | - Hua Lai
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province and Key Laboratory of Functional Organometallic Materials of College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Junhua Li
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province and Key Laboratory of Functional Organometallic Materials of College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Gang Peng
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province and Key Laboratory of Functional Organometallic Materials of College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Rongying Zeng
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China
| |
Collapse
|
37
|
Liu X, Meng J, Zhu J, Huang M, Wen B, Guo R, Mai L. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007344. [PMID: 34050565 DOI: 10.1002/adma.202007344] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/09/2021] [Indexed: 05/14/2023]
Abstract
Reconstruction induced by external environment (such as applied voltage bias and test electrolytes) changes catalyst component and catalytic behaviors. Investigations of complete reconstruction in energy conversion recently receive intensive attention, which promote the targeted design of top-performance materials with maximum component utilization and good stability. However, the advantages of complete reconstruction, its design strategies, and extensive applications have not achieved the profound understandings and summaries it deserves. Here, this review systematically summarizes several important advances in complete reconstruction for the first time, which includes 1) fundamental understandings of complete reconstruction, the characteristics and advantages of completely reconstructed catalysts, and their design principles, 2) types of reconstruction-involved precatalysts for oxygen evolution reaction catalysis in wide pH solution, and origins of limited reconstruction degree as well as design strategies/principles toward complete reconstruction, 3) complete reconstruction for novel material synthesis and other electrocatalysis fields, and 4) advanced in situ/operando or multiangle/level characterization techniques to capture the dynamic reconstruction processes and real catalytic contributors. Finally, the existing major challenges and unexplored/unsolved issues on studying the reconstruction chemistry are summarized, and an outlook for the further development of complete reconstruction is briefly proposed. This review will arouse the attention on complete reconstruction materials and their applications in diverse fields.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Wen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
38
|
Yu Y, Gu J, Peng C, Xia Y, Tan L, Chen J, Jiang F, Chen H. CoO x @Co-NC Catalyst with Dual Active Centers for Enhanced Oxygen Evolution: Breaking Trade-Off of Particle Size and Metal Loading. Chemistry 2021; 27:10657-10665. [PMID: 33876453 DOI: 10.1002/chem.202100642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Increasing the metal loading and downsizing the metal particle size are two effective ways to boost the electrochemical performance of catalysts. However, it is difficult to simultaneously increase the metal loading and reduce the particle size since isolated individual atoms are easy to aggregate into nanoparticles when increasing the metal loading. To tackle this contradiction, we report a bottom-up ligand-mediated strategy to facilely prepare ultrafine CoOx nanoclusters anchored on a Co-N-containing carbon matrix (CoOx @Co-NC). The co-exist of N and O atoms prevent Co atoms agglomerating into large particles and allowing the formation of ultrafine dispersed Co species with large Co loading (up to 20 wt.%). Since the relationship between ultrasmall size and large metal loading is well balanced, the CoOx nanoclusters have no inhibitory effect, but facilitate the catalytic performance of Co-N4 sites during OER process. Consequently, due to the synergistic effect of ultrafine CoOx nanoclusters and Co-N4 macrocycles, the as-synthesized CoOx @Co-NC exhibit promising OER activity (η10 =370 mV, Tafel plot=40 mV/dec), bettering than that of benchmark RuO2 (η10 =411 mV, Tafel plot=72 mV/dec). This ligand-mediated strategy to synthesize carbonaceous materials containing dual active centers with large metal loading is promising for developing active and stable catalysts for electrocatalytic applications.
Collapse
Affiliation(s)
- Yalin Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiayu Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chen Peng
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yun Xia
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Ling Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jian Chen
- Institute of Environmental Toxicology and Environmental Ecology College of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, P. R. China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
39
|
In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Gu X, Chen Z, Li Y, Wu J, Wang X, Huang H, Liu Y, Dong B, Shao M, Kang Z. Polyaniline/Carbon Dots Composite as a Highly Efficient Metal-Free Dual-Functional Photoassisted Electrocatalyst for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24814-24823. [PMID: 34009941 DOI: 10.1021/acsami.1c04386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photoassisted electrocatalytic (P-EC) water splitting for H2 production has received much attention. Here, we report a metal-free bifunctional photoassisted catalyst of a polyaniline/carbon dots (PANI/CDs) composite for overall water splitting. In a neutral electrolyte, under visible light, the overpotentials of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for PANI/CDs/NF are reduced by 150 and 65 mV to reach the current densities of 30 and 20 mA cm-2, respectively. In a full water-splitting cell, under visible light, the current density is 13.27 mA cm-2 at 2.0 V, which increases by 62.8% compared with that under the dark conditions (8.15 mA cm-2). The in situ transient photovoltage (TPV) tests were used to study the light-induced effects on half-reactions of water splitting, as well as the charge-transfer kinetic characteristics at the catalyst interface.
Collapse
Affiliation(s)
- Xiaoqing Gu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhaomin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, P. R. China
| |
Collapse
|
41
|
Zhang R, van Straaten G, di Palma V, Zafeiropoulos G, van de Sanden MC, Kessels WM, Tsampas MN, Creatore M. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catal 2021; 11:2774-2785. [PMID: 33842021 PMCID: PMC8025676 DOI: 10.1021/acscatal.0c04933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/23/2021] [Indexed: 01/08/2023]
Abstract
The development of efficient and stable earth-abundant water oxidation catalysts is vital for economically feasible water-splitting systems. Cobalt phosphate (CoPi)-based catalysts belong to the relevant class of nonprecious electrocatalysts studied for the oxygen evolution reaction (OER). In this work, an in-depth investigation of the electrochemical activation of CoPi-based electrocatalysts by cyclic voltammetry (CV) is presented. Atomic layer deposition (ALD) is adopted because it enables the synthesis of CoPi films with cobalt-to-phosphorous ratios between 1.4 and 1.9. It is shown that the pristine chemical composition of the CoPi film strongly influences its OER activity in the early stages of the activation process as well as after prolonged exposure to the electrolyte. The best performing CoPi catalyst, displaying a current density of 3.9 mA cm-2 at 1.8 V versus reversible hydrogen electrode and a Tafel slope of 155 mV/dec at pH 8.0, is selected for an in-depth study of the evolution of its electrochemical properties, chemical composition, and electrochemical active surface area (ECSA) during the activation process. Upon the increase of the number of CV cycles, the OER performance increases, in parallel with the development of a noncatalytic wave in the CV scan, which points out to the reversible oxidation of Co2+ species to Co3+ species. X-ray photoelectron spectroscopy and Rutherford backscattering measurements indicate that phosphorous progressively leaches out the CoPi film bulk upon prolonged exposure to the electrolyte. In parallel, the ECSA of the films increases by up to a factor of 40, depending on the initial stoichiometry. The ECSA of the activated CoPi films shows a universal linear correlation with the OER activity for the whole range of CoPi chemical composition. It can be concluded that the adoption of ALD in CoPi-based electrocatalysis enables, next to the well-established control over film growth and properties, to disclose the mechanisms behind the CoPi electrocatalyst activation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Gerben van Straaten
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Valerio di Palma
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Georgios Zafeiropoulos
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Mauritius C.M. van de Sanden
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Wilhelmus M.M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mihalis N. Tsampas
- DIFFER
- Dutch Institute For Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Mariadriana Creatore
- Department
of Applied Physics, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
42
|
Zhao H, Yuan ZY. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions. CHEMSUSCHEM 2021; 14:130-149. [PMID: 33030810 DOI: 10.1002/cssc.202002103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The key challenge to developing renewable energy conversion and storage devices lies in the exploration and rational engineering of cost-effective and highly efficient electrocatalysts for various energy-related electrochemical reactions. Transition-metal phosphates and phosphonates have shown remarkable performances for these reactions based on their unique physicochemical properties. Compared with transition-metal oxides, phosphate groups in transition-metal phosphates and phosphonates show flexible coordination with diverse orientations, making them an ideal platform for designing active electrocatalysts. Although numerous efforts have been spent on the development of transition-metal phosphate and phosphonate electrocatalysts, some urgent issues, such as low intrinsic catalytic efficiency and low electronic conductivity, have to be resolved in accordance with their applications. In this Review, we focus on the design strategies of highly efficient transition-metal phosphate and phosphonate electrocatalysts, with special emphasis on the tuning of transition-metal-center coordination environment, optimization of electronic structures, increase of catalytically active site densities, and construction of heterostructures. Guided by these strategies, recently developed transition-metal phosphate and phosphonate materials have exhibited excellent activity, selectivity, and stability for various energy-related electrocatalytic reactions, showing great potential for replacing noble-metal-based catalysts in next-generation advanced energy techniques. The existing challenges and prospects regarding these materials are also presented.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, Shandong, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
43
|
Zhang G, Ge H, Zhao L, Liu J, Wang F, Fan S, Li G. NiMn1.5PO4 thin layer supported on Ni foam as a highly efficient bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Li J, Ma J, Du K, Zhao E, Guo J, Mao J, Ling T. Double exchange interaction promoted high-valence metal sites for neutral oxygen evolution reaction. Chem Commun (Camb) 2020; 56:15004-15007. [PMID: 33185208 DOI: 10.1039/d0cc06453j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique double-exchange strategy is adopted to access active high-valent transition metal sites during neutral oxygen evolution reaction (OER). This double-exchange is realized through electronic interaction between transition metal ions and foreign dopants in a transition metal oxide. Based on systematical evaluation on dopants with varied d-electron numbers, we demonstrate that the d electron-poor dopant exhibits more significant double-exchange interaction with the transition metal ions, and therefore obtains more active high-valence metal sites, and thus achieves better neutral OER performance.
Collapse
Affiliation(s)
- Jisi Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
High stability three-dimensional porous PtSn nano-catalyst for ethanol electro-oxidation reaction. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Kim B, Kim T, Lee K, Li J. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000734] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Byeongyoon Kim
- Department of Chemistry and Research Institute of Natural Sciences (RINS)Korea University Seoul 02841 Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute of Natural Sciences (RINS)Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute of Natural Sciences (RINS)Korea University Seoul 02841 Republic of Korea
| | - Jinghong Li
- Department of ChemistryTsinghua University Beijing 100084 People's republic of China
| |
Collapse
|
47
|
Zheng X, Cui P, Qian Y, Zhao G, Zheng X, Xu X, Cheng Z, Liu Y, Dou SX, Sun W. Multifunctional Active‐Center‐Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angew Chem Int Ed Engl 2020; 59:14533-14540. [DOI: 10.1002/anie.202005241] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaobo Zheng
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Yumin Qian
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Guoqiang Zhao
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Xun Xu
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
48
|
Zheng X, Cui P, Qian Y, Zhao G, Zheng X, Xu X, Cheng Z, Liu Y, Dou SX, Sun W. Multifunctional Active‐Center‐Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaobo Zheng
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Yumin Qian
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Guoqiang Zhao
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Xun Xu
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australia Institute for Innovation Material University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- School of Materials Science and Engineering State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
49
|
Sharma K, Gupta SK, Murugavel R. Discrete and Polymeric Cobalt Pyrophosphates Derived from Pyrophosphoric Acid Diester Ar
2
H
2
P
2
O
7. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kamna Sharma
- Department of Chemistry Indian Institute of Technology Bombay ‐400076 Mumbai India
| | - Sandeep K. Gupta
- Department of Chemistry Indian Institute of Technology Bombay ‐400076 Mumbai India
| | - Ramaswamy Murugavel
- Department of Chemistry Indian Institute of Technology Bombay ‐400076 Mumbai India
| |
Collapse
|
50
|
Ouyang T, Wang X, Mai X, Chen A, Tang Z, Liu Z. Coupling Magnetic Single‐Crystal Co
2
Mo
3
O
8
with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ting Ouyang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiao‐Tong Wang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiu‐Qiong Mai
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - An‐Na Chen
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Zi‐Yuan Tang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| |
Collapse
|