1
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
2
|
Yang Q, Sun X, Ding Q, Qi M, Liu C, Li T, Shi F, Wang L, Li C, Kim JS. An ATP-responsive metal-organic framework against periodontitis via synergistic ion-interference-mediated pyroptosis. Natl Sci Rev 2024; 11:nwae225. [PMID: 39071842 PMCID: PMC11275458 DOI: 10.1093/nsr/nwae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024] Open
Abstract
Periodontitis involves hyperactivated stromal cells that recruit immune cells, exacerbating inflammation. This study presents an ATP-responsive metal-organic framework (Mg/Zn-MOF) designed for periodontitis treatment, utilizing ion interference to modulate immune responses and prevent tissue destruction. Addressing the challenges of synergistic ion effects and targeted delivery faced by traditional immunomodulatory nanomaterials, the Mg/Zn-MOF system is activated by extracellular ATP-a pivotal molecule in periodontitis pathology-ensuring targeted ion release. Magnesium and zinc ions released from the framework synergistically inhibit membrane pore formation by attenuating Gasdermin D (GSDMD) expression and activation. This action curtails pyroptosis, lactate dehydrogenase and IL-1β release, thwarting the onset of inflammatory cascades. Mechanistically, Mg/Zn-MOF intervenes in both the NLRP3/Caspase-1/GSDMD and Caspase-11/GSDMD pathways to mitigate pyroptosis. In vivo assessments confirm its effectiveness in diminishing inflammatory cell infiltration and preserving collagen integrity, thereby safeguarding against periodontal tissue damage and bone loss. This investigation highlights the promise of ion-interference strategies in periodontitis immunotherapy, representing a significant stride in developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qijing Yang
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaolin Sun
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qihang Ding
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Manlin Qi
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tingxuan Li
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Lin Wang
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Engineering Laboratory of Intelligent Oral Treatment Technology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
3
|
Wu G, Zhang B, Zhang H, Zhang X, Hu X, Meng X, Wu J, Hou H. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Inorg Chem 2024; 63:12658-12666. [PMID: 38916863 DOI: 10.1021/acs.inorgchem.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.
Collapse
Affiliation(s)
- Gaigai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heyao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiangru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Qu C, Li Y, Li G, Wang X, Su M, Liu H. Liquid Interfacial Gating of Superhydrophobic Plasmonic Metal-Organic Frameworks for Three-in-One Separation, Enrichment, and Recognition in Bacterial Quorum Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32824-32835. [PMID: 38864267 DOI: 10.1021/acsami.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Poor adsorption properties of nonadsorbing targets and competing adsorption of nontargets at a liquid interface always hamper the development of interface sensing techniques. There is a need to fabricate materials that are applicable to various interface assemblies and, meanwhile, could be employed as interfacial gating to improve the performance of interface sensing by separating, enriching, and recognizing targets at the liquid interface. Here, superhydrophobic zeolite imidazole frameworks-8@gold nanoparticles-1H,1H,2H,2H-perfluorodecanethiol (ZIF-8@GNPs-PFDT) with a static water contact angle (WCA) of 155° was constructed via electrostatic self-assembly and surface graft modification. The plasmonic metal-organic framework (PMOF) nanohybrid realized all-purpose self-assembly at air/liquid and liquid/liquid interfaces and also facilely assembled on the surface of liquid droplets, hydrogels, and foams. The self-assembled porous materials displayed the capability for separating, enriching, and recognizing analytes at various oil/water interfaces and thus could be used to adsorb nonadsorbing targets and block the competing adsorption of nontargets. The self-assembled ZIF-8@GNPs-PFDT structures were employed as a three-in-one interfacial gating to endow the excellent surface-enhanced Raman scattering (SERS) sensing capability and has become a promising tool for dye molecular analysis, oil/water separation, organic phase identification, and in situ cultivation and monitoring of bacterial quorum sensing (QS).
Collapse
Affiliation(s)
- Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yuzhu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Guangping Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xian Wang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
5
|
Chen D, Yu R, Yu K, Lu R, Zhao H, Jiao J, Yao Y, Zhu J, Wu J, Mu S. Bicontinuous RuO 2 nanoreactors for acidic water oxidation. Nat Commun 2024; 15:3928. [PMID: 38724489 PMCID: PMC11082236 DOI: 10.1038/s41467-024-48372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Improving activity and stability of Ruthenium (Ru)-based catalysts in acidic environments is eager to replace more expensive Iridium (Ir)-based materials as practical anode catalyst for proton-exchange membrane water electrolyzers (PEMWEs). Here, a bicontinuous nanoreactor composed of multiscale defective RuO2 nanomonomers (MD-RuO2-BN) is conceived and confirmed by three-dimensional tomograph reconstruction technology. The unique bicontinuous nanoreactor structure provides abundant active sites and rapid mass transfer capability through a cavity confinement effect. Besides, existing vacancies and grain boundaries endow MD-RuO2-BN with generous low-coordination Ru atoms and weakened Ru-O interaction, inhibiting the oxidation of lattice oxygen and dissolution of high-valence Ru. Consequently, in acidic media, the electron- and micro-structure synchronously optimized MD-RuO2-BN achieves hyper water oxidation activity (196 mV @ 10 mA cm-2) and an ultralow degradation rate of 1.2 mV h-1. A homemade PEMWE using MD-RuO2-BN as anode also conveys high water splitting performance (1.64 V @ 1 A cm-2). Theoretical calculations and in-situ Raman spectra further unveil the electronic structure of MD-RuO2-BN and the mechanism of water oxidation processes, rationalizing the enhanced performance by the synergistic effect of multiscale defects and protected active Ru sites.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
6
|
Chao S, Shao H, Wang X, Zhang Y, Jiang R, Fan M, Chen S, Tang C. Plasmon-Driven Photochemical Reduction Reaction on Silver Nanostructures for Green Fabrication of Superhydrophobic Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303536. [PMID: 37507816 DOI: 10.1002/smll.202303536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Green fabrication of superhydrophobic surface by water-based processing is still challenging, because introduction of the substances with hydrophilic moieties compromises its superhydrophobicity. Herein, a plasmon-driven photochemical reduction reaction under ultraviolet light (UVA) irradiation is first discovered and is applied to deoxygenation of hydrophilic organic adsorbates on rough nano-Ag coating for the formation of stable superhydrophobic surface. A nano-Ag coating with strong localized surface plasmon resonance in the UVA region is prepared by a water-based silver mirror reaction and results in a unique chemical reduction reaction on its surface. Consequently, the low residual hydrophilic functionalities and the formed cross-linked structure of the adsorbate on Ag nanoparticles (NPs) enables the coating to exhibit stable superhydrophobicity against to both air and water. The superhydrophobic Ag NP-coated sandpaper can also be used as a surface-enhanced Raman scattering (SERS) substrate to concentrate aqueous analytes for trace detection.
Collapse
Affiliation(s)
- Shengmao Chao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Xiao Wang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Ruifeng Jiang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shuwei Chen
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| |
Collapse
|
7
|
Hu D, Miao S, Zhang P, Wu S, He YP, Meng Q. Boosting the catalysis of cesium phosphomolybdate encapsulated in hierarchical porous UiO-66 by microenvironment modulation for epoxidation of alkenes. Dalton Trans 2023; 52:14676-14685. [PMID: 37791565 DOI: 10.1039/d3dt02479b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The chemical microenvironment of polyoxometalates (POMs) encapsulated in metal-organic frameworks (MOFs) presents a significant influence on their catalytic performance, which can be easily regulated by the linker functional group alteration or metal substitution in MOFs. Herein, a series of cesium phosphomolybdate (CsPM) encapsulated in hierarchical porous UiO-66-X composites (CsPM@HP-UiO-66-X, X = H, 2CH3, or 2OH, where X represents the alterable group grafted onto the linker benzene ring) were successfully synthesized through a one pot modulated solvothermal method. The catalytic performances of the obtained materials were explored in alkene epoxidation reaction with tert-butyl hydroperoxide (t-BuOOH). CsPM@HP-UiO-66-2CH3 showed relatively high catalytic activity, stability, and epoxidation selectivity in cyclooctene epoxidation among the CsPM@HP-UiO-66-X composites. Moreover, CsPM@HP-UiO-66-2CH3 was effective in the epoxidation of numerous alkenes, especially cyclic alkenes. The superior catalytic activity of CsPM@HP-UiO-66-2CH3 is mainly attributed to the modulation of the microenvironment surrounding CsPM active sites by introducing a hydrophobic methyl group. Meanwhile, the size-matched effect, the introduction of cesium cations, and the strong metal-support interactions (SMSIs) between CsPM and HP-UiO-66-2CH3 play a crucial role in the stability of CsPM@HP-UiO-66-2CH3.
Collapse
Affiliation(s)
- Dianwen Hu
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songsong Miao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Siyuan Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Peng He
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qingwei Meng
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Yu HP, Bi XD, He YJ, Cui YY, Yang CX. Microporous Organic Network: Superhydrophobic Coating to Protect Metal-Organic Frameworks from Hydrolytic Degradation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37467423 DOI: 10.1021/acsami.3c08458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Despite the rapid development of versatile metal-organic frameworks (MOFs), the synthesis of water-stable MOFs remains challenging, which significantly limits their practical applications. Herein, a novel engineering strategy was developed to prepare superhydrophobic MOFs by an in situ fluorinated microporous organic network (FMON) coating. Through controllable modification, the resulting MOF@FMON retained the porosity and crystallinity of the pristine MOFs. Owing to the superhydrophobicity of the FMON and the feasibility of MOF synthesis, the FMON coating could be in situ integrated with various water-sensitive MOFs to provide superhydrophobicity. The coating thickness and hydrophobicity of the MOF@FMON composites were easily regulated by changing the FMON monomer concentration. The MOF@FMON composites exhibited excellent oil/water separation and catalytic activities and enhanced durability in aqueous solutions. This study provides a general approach for the synthesis of superhydrophobic MOFs, expanding the application scope of MOFs.
Collapse
Affiliation(s)
- Hui-Ping Yu
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin 300071, China
| | - Xiao-Dong Bi
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
9
|
Siu B, Chowdhury AR, Yan Z, Humphrey SM, Hutter T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
11
|
Wang Y, Li T, Li L, Lin RB, Jia X, Chang Z, Wen HM, Chen XM, Li J. Construction of Fluorinated Propane-Trap in Metal-Organic Frameworks for Record Polymer-Grade Propylene Production under High Humidity Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207955. [PMID: 36659826 DOI: 10.1002/adma.202207955] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
Collapse
Affiliation(s)
- Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ming Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
12
|
Cheng L, Ji C, Ren H, Guo Q, Li W. CuCo Nanoparticle, Pd(II), and l-Proline Trifunctionalized UiO-67 Catalyst for Three-Step Sequential Asymmetric Reactions. Inorg Chem 2023; 62:5435-5446. [PMID: 36996329 DOI: 10.1021/acs.inorgchem.2c04334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have become a promising support for different active sites to construct multifunctional and heterogeneous catalysts. However, the related investigation mainly focuses on introducing one or two active sites into MOFs and trifunctional catalysts have been very rarely reported. Herein, non-noble CuCo alloy nanoparticles, Pd2+, and l-proline, as encapsulated active species, functional organic linkers, and active metal nodes, respectively, were successfully decorated to UiO-67 to construct a chiral trifunctional catalyst by the one-step method, which was further applied to asymmetric three-step sequential oxidation of aromatic alcohols/Suzuki coupling/asymmetric aldol reactions with excellent oxidation and coupling performance (yields up to 95 and 96%, respectively), as well as good enantioselectivities (eeanti value up to 73%) in asymmetric aldol reactions. The heterogeneous catalyst can be reused at least five times without obvious deactivation due to the strong interaction between the MOFs and the active sites. This work provides an effective strategy to construct multifunctional catalysts via the introduction and combination of three or more of active sites, including encapsulated active species, functional organic linkers, and active metal nodes, into stable MOFs.
Collapse
Affiliation(s)
- Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chunyan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qiaoqiao Guo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wenjing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
13
|
Zheng X, Chen L, Zhang H, Yao Z, Yang Y, Xiang F, Li Y, Xiang S, Zhang Z, Chen B. Optimized Sieving Effect for Ethanol/Water Separation by Ultramicroporous MOFs. Angew Chem Int Ed Engl 2023; 62:e202216710. [PMID: 36597172 DOI: 10.1002/anie.202216710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
High-purity ethanol is a promising renewable energy resource, however separating ethanol from trace amount of water is extremely challenging. Herein, two ultramicroporous MOFs (UTSA-280 and Co-squarate) were used as adsorbents. A prominent water adsorption and a negligible ethanol adsorption identify perfect sieving effect on both MOFs. Co-squarate exhibits a surprising water adsorption capacity at low pressure that surpassing the reported MOFs. Single crystal X-ray diffraction and theoretical calculations reveal that such prominent performance of Co-squarate derives from the optimized sieving effect through pore structure adjustment. Co-squarate with larger rhombohedral channel is suitable for zigzag water location, resulting in reinforced guest-guest and guest-framework interactions. Ultrapure ethanol (99.9 %) can be obtained directly by ethanol/water mixed vapor breaking through the columns packed with Co-squarate, contributing to a potential for fuel-grade ethanol purification.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.,College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, China
| | - Liangji Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhu Yao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yisi Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Fahui Xiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| |
Collapse
|
14
|
Gong P, Li C, Wang D, Song S, Wu W, Liu B, Shen J, Liu J, Liu Z. Enzyme coordination conferring stable monodispersity of diverse metal–organic frameworks for photothermal/starvation therapy. J Colloid Interface Sci 2023; 642:612-622. [PMID: 37028168 DOI: 10.1016/j.jcis.2023.03.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The agglomeration of metal-organic frameworks (MOFs) has long been a problem, and achieving stable monodispersity in water remains a great challenge. This paper reports a universal strategy that functionalizes MOFs by using an endogenous bioenzyme namely glucose oxidase (GOx), to achieve stable water monodispersity, and integrates it as a highly efficient nanoplatform for cancer synergistic therapy. Phenolic hydroxyl groups in GOx chain confers robust coordination interactions with MOFs, which not only endows stable monodispersion in water, but also provides many reactive sites for further modification. Silver nanoparticles are uniformly deposited onto MOFs@GOx to achieve high conversion efficiency from near-infrared light to heat, resulting in an effective starvation and photothermal synergistic therapy model. In vitro and in vivo experiments confirm excellent therapeutic effect at very low doses without using any chemotherapeutics. In addition, the nanoplatform generates large amounts of reactive oxygen species, induces heavy cell apoptosis, and demonstrates the first experimental example to effectively inhibit cancer migration. Our universal strategy enables stable monodispersity of various MOFs via GOx functionalization and establishes a non-invasive platform for efficient cancer synergistic therapy.
Collapse
|
15
|
Zhou H, Dai R, Wang T, Wang Z. Enhancing Stability of Tannic Acid-Fe III Nanofiltration Membrane for Water Treatment: Intercoordination by Metal-Organic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17266-17277. [PMID: 36399419 DOI: 10.1021/acs.est.2c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tannic acid (TA)-FeIII nanofiltration (NF) membrane has been demonstrated to possess more favorable removal of trace organic contaminants (TrOCs) over the conventional polyamide NF membrane. However, the drawback of acid instability severely hinders the practical application of TA-FeIII NF membrane in the treatment of (weak) acidic wastewater containing TrOCs (e.g., pharmaceutical wastewater, surface water, and drinking water). Herein, we introduced the MIL-101(Cr) nanoparticle, a kind of metal-organic framework (MOF), into the TA-FeIII selective layer to enhance the membrane acid stability. The acid-tolerance parameter of MIL-101(Cr)-stabilized TA-FeIII membrane (TA-FeIII-MOF membrane, 12,000 ppm/s-1) was two orders of magnitude larger than that of the TA-FeIII membrane (50 ppm/s-1), and the TA-FeIII-MOF membrane can withstand acid treatment at pH = 4 for more than 30 days. Meanwhile, the TA-FeIII-MOF membrane displayed increased water permeance from 9.5 to 12.7 L/(m2·h·bar) after the MOF addition, without compromising the selectivity. The enhanced acid stability for the TA-FeIII-MOF membrane was ascribed to an intercoordination mechanism, where FeIII centers (from TA-FeIII complex) coordinated with -COOH groups (from terephthalic acid of MOF) and CrIII centers (from MOF) coordinated with -OH groups (from TA of TA-FeIII complex), which was verified by the density functional theory calculation. This study highlights a new approach for the development of a TA-FeIII-based NF membrane with markedly enhanced acid stability, which is important for its real application in wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| |
Collapse
|
16
|
Superhydrophobic covalent organic frameworks prepared via nucleophilic substitution reaction for effective oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhang Y, Tian H, Sui X, Wang X, Zhou F, Zhang X. The Improved Antiwear and Anticorrosion Properties of Epoxy Resin with Metal-Organic Framework ZIF-8 Containing Lubrication Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10649-10661. [PMID: 35989469 DOI: 10.1021/acs.langmuir.2c01623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) was fabricated as a lubrication container to encapsulate lubrication oil, which was added to epoxy resin (EP) as a filler to get the self-lubricating ZIF-8/EP composites coating. The antiwear and anticorrosion peculiarities of EP can be significantly improved by the encapsulation method. The antiwear peculiarities of EP were evaluated by the macroscopic ball-disk friction tests with the 9Cr18 steel ball as the counterface material. The result demonstrates that the coefficient of friction (COF) and wear rate of the self-lubricating ZIF-8/EP composites were reduced by 82.1% and 93.5% compared with that of the pure EP, respectively. Importantly, the ZIF-8/EP composite shows anticorrosion performance in the artificial seawater (ASW). The constant phase element and effective capacitance of the coating containing ZIF-8 fillers are lower than that of the non-containing coating. In addition, the diameter of the capacitive arc and the impedance modulus of the coating containing ZIF-8 + YR1800 are higher than those of the coating non-containing, which proved that the corrosion resistance of the EP is improved by the ZIF-8 + YR1800.
Collapse
Affiliation(s)
- Yahui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huiyun Tian
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| | - Xudong Sui
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
| | - Xia Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, No. 300, Changjiang Road, Yantai, Shandong 264006, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| |
Collapse
|
18
|
Zhu H, Zhu W, Xue F, Cheng Z. One-pot synthesis for 2D nanostructured calcium borate/Ni-BDC composite nanosheets enabled tribological improvement. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Tahmasbi M, Koukabi N, Seidi F. A novel core@double-shell three-layer structure with dendritic fibrous morphology based on Fe 3O 4@TEA@Ni-organic framework: a highly efficient magnetic catalyst in the microwave-assisted Sonogashira coupling reaction. NANOSCALE 2022; 14:7189-7202. [PMID: 35506543 DOI: 10.1039/d2nr00303a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In synthetic organic chemistry, the formation of carbon-carbon bonds is a significant and substantial reaction. As a result, developing a highly active magnetic heterogeneous catalyst with excellent performance is a very appealing technique for constructing C-C bonds in organic chemistry. The present study describes the fabrication of a novel and readily recoverable nickel-based metal-organic framework (MOF) for C-C bond formation through the Sonogashira coupling reaction. The efficient magnetic core-shell structure (Fe3O4@TEA@MOF) with a 3D dendritic fibrous morphology was successfully synthesized using a hydrothermal approach by immobilizing Ni-based MOF onto the Fe3O4@TEA core-shell structure. The fabrication of Fe3O4@TEA@MOF was confirmed by various analyses; Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDS), and elemental mapping confirmed the stepwise fabrication of catalyst. X-ray diffraction analysis (XRD) showed the crystalline nature of the catalyst. Field-emission scanning electron microscopy (FE-SEM) displayed the 3D dendritic fibrous morphology. Thermogravimetric analysis (TGA) and vibrating sample magnetometer analysis (VSM) showed the excellent thermal stability and magnetic properties of Fe3O4@TEA@MOF. The Brunauer-Emmett-Teller analysis (BET) found that the fabricated catalyst with a surface area of 36.2 m2 g-1, pore volume of 0.18 cm3 g-1, and mean pore diameter of 20.38 nm belongs to mesoporous structures. In addition, the information from the inductively coupled plasma-optical emission spectroscopy (ICP-OES) about fresh and reused catalysts showed that the metal leaching amount is slight and about 1.98%. Other advantages of the Fe3O4@TEA@MOF catalyst can be mentioned as easily reusable for four runs and high performance (above 98%) in synthesizing diphenylacetylene from phenylacetylene, aryl halide, and cesium carbonate (as the base) under solvent-free and microwave conditions.
Collapse
Affiliation(s)
- Marzieh Tahmasbi
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran.
| | - Nadiya Koukabi
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
20
|
Zhang X, Fu J, Wang G, Hu H, Zhang DS, Zhang YZ, Zhang YK, Zhang ZW, Zhou WF, Li TT, Lv D, Geng L. Structure modulation, selective dye adsorption and catalytic CO2 transformation of four pillared-layer metal-organic frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Li WL, Li TR, Du X, Zhao JP, liu F. Hexahydric Components Metal Organic Frameworks Constructed by Multiple Ligands and Mixed-Valence Ions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report two multi-component MOFs [CH3NH2CH3]2[FeIII2MII10(tz)11(HCO2)12(btc)5/3] (MII10 = FeII10 for 1 and MII10 = FeII2CoII8 for 2) obtained by solvothermal assembling formate, benzene-1,3,5-tricarboxylate (btc) and 1,2,4 triazole...
Collapse
|
23
|
Zhu NX, Wei ZW, Chen CX, Xiong XH, Xiong YY, Zeng Z, Wang W, Jiang JJ, Fan YN, Su CY. High Water Adsorption MOFs with Optimized Pore-Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2021; 61:e202112097. [PMID: 34779556 DOI: 10.1002/anie.202112097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
Collapse
Affiliation(s)
- Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang-Yang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zheng Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ji-Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
24
|
Hussain MM, Majeed MK, Ma H, Wang Y, Saleem A, Lotfi M. PTFE/EP Reinforced MOF/SiO 2 Composite as a Superior Mechanically Robust Superhydrophobic Agent towards Corrosion Protection, Self-Cleaning and Anti-Icing. Chemistry 2021; 28:e202103220. [PMID: 34750900 DOI: 10.1002/chem.202103220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Organic resin cross-linking ZIF-67/SiO2 superhydrophobic (SHPB) multilayer coating was successfully fabricated on metal substrate. The perfluoro-octyl-triethoxy silane (POTS) modified ZIF-67 and SiO2 coating was applied on primary coated polytetrafluoroethylene (PTFE) and epoxy resin (EP) via spray coating method. Here, we present that the robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellence and a microstructure design to provide durability. The as-fabricated multilayer coating displayed superior water-repellence (CA=167.4°), chemical robustness (pH=1-14) and mechanical durability undergoing 120th linear abrasion or 35th rotatory abrasion cycle. By applying different acidic and basic corrosive media and various weathering conditions, it can still maintain superior-hydrophobicity. To get a better insight of interaction between inhibitor molecules and metal surface, density functional theory (DFT) calculations were performed, showing lower energy gap and increased binding energy of ZPS/SiO2 /PTFE/EP (ZPS=ZIF-67+POTS) multilayer coating compared to the ZIF-67/SiO2 /PTFE/EP, thereby supporting the experimental findings. Additionally, such coatings may be useful for applications such as anti-corrosion, self-cleaning, and anti-icing multi-functionalities.
Collapse
Affiliation(s)
- Muhammad Muzammal Hussain
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Muhammad K Majeed
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Haitao Ma
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yunpeng Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Adil Saleem
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, P. R. China
| | - Mina Lotfi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
25
|
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007442. [PMID: 34050572 DOI: 10.1002/adma.202007442] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their excellent component tunability, high surface area, adjustable pore size, and uniform active sites. However, the overwhelming number of MOF materials and complex structures has brought difficulties for researchers to select and construct suitable MOF-based catalysts. Herein, a programmable design strategy is presented based on metal ions/clusters, organic ligands, modifiers, functional materials, and post-treatment modules, which can be used to design the components, structures, and morphologies of MOF catalysts for different reactions. By establishing the corresponding relationship between these modules and functions, researchers can accurately and efficiently construct heterometallic MOFs, chiral MOFs, conductive MOFs, hierarchically porous MOFs, defective MOFs, MOF composites, and MOF-derivative catalysts. Further, this programmable design approach can also be used to regulate the physical/chemical microenvironments of pristine MOFs, MOF composites, and MOF-derivative materials for heterogeneous catalysis, electrocatalysis, and photocatalysis. Finally, the challenging issues and opportunities for the future research of MOF-based catalysts are discussed. Overall, the modular design concept of this review can be applied as a potent tool for exploring the structure-activity relationships and accelerating the on-demand design of multicomponent catalysts.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
26
|
Shi J, Han R, Lu S, Liu Q. A metal-OH group modification strategy to prepare highly-hydrophobic MIL-53-Al for efficient acetone capture under humid conditions. J Environ Sci (China) 2021; 107:111-123. [PMID: 34412774 DOI: 10.1016/j.jes.2021.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
A series of highly-hydrophobic MIL-53-Al (MIL = Materials of Institut Lavoisier) frameworks synthesized via decoration of the Al-OH groups by alkyl phosphonic acid were developed as adsorbents for removing acetone from humid gas streams. The newly prepared materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), N2 adsorption-desorption and thermogravimetric analysis (TGA). Their adsorption behaviors toward acetone vapor under dry and wet conditions were studied subsequently. Results showed that alkyl phosphonic acid was successfully grafted into MIL-53-Al skeleton through coordinating interaction with Al3+ generating MIL-53-Al@Cx (x = 12, 14, 18). The MIL-53-Al@Cx exhibited similar crystal structure and thermal stability to parent MIL-53-Al. Furthermore, the modified materials showed significantly enhanced hydrophobicity. The water vapor uptake of MIL-53-Al@C14 decreased by 72.55% at 75% relative humidity (RH). Dynamic adsorption experiments demonstrated that water vapor had almost no effect on the acetone adsorption performance of MIL-53-Al@C14. Under the condition of 90% RH, the acetone adsorption capacity of MIL-53-Al@C14 was 102.98% higher than that of MIL-53-Al. Notably, MIL-53-Al@C14 presented excellent adsorption reversibility and regeneration performance in 10 adsorption-desorption cycles. Taken together, the strategy of metal-OH group modification is an attractive way to improve the acetone adsorption performance over metal-organic frameworks (MOFs) under humid conditions. Besides, MIL-53-Al@C14 would be deemed as a promising candidate for capturing acetone in high moisture environment.
Collapse
Affiliation(s)
- Jiaqi Shi
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Shuangchun Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
27
|
Wang J, Yu S, Yin X, Wang L, Zhu G, Wang K, Li Q, Li J, Yang X. Fabrication of cross-like ZIF-L structures with water repellency and self-cleaning property via a simple in-situ growth strategy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Olson E, Blisko J, Du C, Liu Y, Li Y, Thurber H, Curtzwiler G, Ren J, Thuo M, Yong X, Jiang S. Biobased superhydrophobic coating enabled by nanoparticle assembly. NANOSCALE ADVANCES 2021; 3:4037-4047. [PMID: 36132850 PMCID: PMC9416850 DOI: 10.1039/d1na00296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 06/16/2023]
Abstract
Understanding biobased nanocomposites is critical in fabricating high performing sustainable materials. In this study, fundamental nanoparticle assembly structures at the nanoscale are examined and correlated with the macroscale properties of coatings formulated with these structures. Nanoparticle assembly mechanisms within biobased polymer matrices were probed using in situ liquid-phase atomic force microscopy (AFM) and computational simulation. Furthermore, coatings formulated using these nanoparticle assemblies with biobased polymers were evaluated with regard to the hydrophobicity and adhesion after water immersion. Two biobased glycopolymers, hydroxyethyl cellulose (HEC) and hydroxyethyl starch (HES), were investigated. Their repeating units share the same chemical composition and only differ in monomer conformations (α- and β-anomeric glycosides). Unique fractal structures of silica nanoparticle assemblies were observed with HEC, while compact clusters were observed with HES. Simulation and AFM measurement suggest that strong attraction between silica surfaces in the HEC matrix induces diffusion-limited-aggregation, leading to large-scale, fractal assembly structures. By contrast, weak attraction in HES only produces reaction-limited-aggregation and small compact cluster structures. With high particle loading, the fractal structures in HEC formed a network, which enabled a waterborne formulation of superhydrophobic coating after silane treatment. The silica nanoparticle assembly in HEC was demonstrated to significantly improve adhesion, which showed minimum adhesion loss even after extended water immersion. The superior performance was only observed with HEC, not HES. The results bridge the assembly structures at the nanoscale, influenced by molecular conformation of biobased polymers, to the coating performance at the macroscopic level. Through this study we unveil new opportunities in economical and sustainable development of high-performance biobased materials.
Collapse
Affiliation(s)
- Emily Olson
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Department of Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Chuanshen Du
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Yi Liu
- Department of Mechanical Engineering, Iowa State University Ames IA 50011 USA
| | - Yifan Li
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Henry Thurber
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Department of Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University Ames IA 50011 USA
| | - Martin Thuo
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
29
|
Zhu D, Zhang Y, Bao S, Wang N, Yu S, Luo R, Ma J, Ju H, Lei J. Dual Intrareticular Oxidation of Mixed-Ligand Metal-Organic Frameworks for Stepwise Electrochemiluminescence. J Am Chem Soc 2021; 143:3049-3053. [PMID: 33595320 DOI: 10.1021/jacs.1c00001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work presents a mixed-ligand metal-organic framework (m-MOF) integrated with two ligands, one as a luminophore and the other as a coreactant, on one metal node for self-enhanced electrochemiluminescence (ECL). Both 9,10-di(p-carboxyphenyl)anthracene (DPA) and 1,4-diazabicyclo[2.2.2]octane (D-H2) ligands can be oxidized, generating the cation radicals DPA+• and D-H2+•, respectively. The latter can be deprotonated to form the neutral radical (D-H•) and then react with DPA+• to produce excited DPA* for ECL emission without exogenous coreactants. As a result of the incorporation into the MOF framework and the intrareticular charge transfer between the two ligands, the ECL intensity of the m-MOF was increased 26.5-fold compared with that of the mixture of DPA and D-H2 in aqueous solution. Moreover, with the process of second oxidation of D-H2, stepwise ECL emission was observed as a result of local excitation in the DPA unit, which was identified through density functional theory calculations. Overall, the implementation of the mixed-ligand approach, which combines the luminophore and coreactant as linkers in reticular materials, enriches the fundamentals and applications of ECL systems.
Collapse
Affiliation(s)
- Da Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yong Zhang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Songsong Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Yuan N, Gong X, Sun W, Yu C. Advanced applications of Zr-based MOFs in the removal of water pollutants. CHEMOSPHERE 2021; 267:128863. [PMID: 33199106 DOI: 10.1016/j.chemosphere.2020.128863] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The global water pollution is caused by the increase of industrial and agricultural activities, which have produced various toxic pollutants. Pollutants in water generally consist of metal ions, pharmaceuticals and personal care products (PPCPs), oil spills, organic dyes, and other organic pollutants. Amongst the adsorbents that have been developed to deal with pollutants in water, Zr-based metal-organic frameworks (MOFs) have drawn scientists' great attention due to their excellent stability and adjustable functionalization. Herein, the present review article introduces the synthetic methods of functionalized Zr-based MOFs and summarizes their applications in water pollution treatment. It also clarifies the interactions and removal mechanisms between pollutants and Zr-based MOFs. The use of these MOFs with eminent adsorption ability and recycling performance have been discussed in detail. Zr-based MOFs also face some challenges such as high cost, lack of real water environment applications, selective removal of pollutants, and low ability to remove composite pollutants. Future research should focus on addressing these issues. Although there is still a blank of the practical utility of Zr-based MOFs on a commercial scale, the research reported to date clearly shows that they are very promising materials for the water treatment.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xinrui Gong
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Wenduo Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
31
|
Liu L, Tao ZP, Chi HR, Wang B, Wang SM, Han ZB. The applications and prospects of hydrophobic metal-organic frameworks in catalysis. Dalton Trans 2021; 50:39-58. [PMID: 33306086 DOI: 10.1039/d0dt03635h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, large numbers of hydrophobic/superhydrophobic metal-organic frameworks (MOFs) have been developed. These hydrophobic MOFs not only retain rich structural variety, highly crystalline frameworks, and uniform micropores, but they also have lower affinity towards water and boosted hydrolytic stability. Until now, there were two main strategies to prepare hydrophobic MOFs, including a one-step method and post-synthesis modification (PSM). PSM was an often-used strategy for preparing hydrophobic MOFs. Hydrophobic MOFs showed unique advantages when used as catalysts for various categories of reactions. Herein, recent research advances relating to hydrophobic MOFs in the catalytic field are presented. The catalytic activities of hydrophobic MOFs and corresponding hydrophilic ones are also compared, and the superiority of hydrophobic MOFs or MOF materials as catalysts in 10 reactions is discussed. Finally, the advantages of hydrophobic MOFs as catalysts or auxiliary materials are summarized and promising future developments of hydrophobic MOFs are highlighted.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Zhao M, Huang S, Fu Q, Li W, Guo R, Yao Q, Wang F, Cui P, Tung C, Sun D. Ambient Chemical Fixation of CO
2
Using a Robust Ag
27
Cluster‐Based Two‐Dimensional Metal–Organic Framework. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meihua Zhao
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Shan Huang
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Weifeng Li
- School of Physics Shandong University Jinan 250100 P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| | - Fenglong Wang
- School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
33
|
Zhao M, Huang S, Fu Q, Li W, Guo R, Yao Q, Wang F, Cui P, Tung C, Sun D. Ambient Chemical Fixation of CO
2
Using a Robust Ag
27
Cluster‐Based Two‐Dimensional Metal–Organic Framework. Angew Chem Int Ed Engl 2020; 59:20031-20036. [DOI: 10.1002/anie.202007122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Meihua Zhao
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Shan Huang
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Weifeng Li
- School of Physics Shandong University Jinan 250100 P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| | - Fenglong Wang
- School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
34
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangyu Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yanan Liu
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huajun Zhai
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lin Feng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
35
|
Liu J, Fan YZ, Zhang K, Zhang L, Su CY. Engineering Porphyrin Metal–Organic Framework Composites as Multifunctional Platforms for CO2 Adsorption and Activation. J Am Chem Soc 2020; 142:14548-14556. [DOI: 10.1021/jacs.0c05909] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiewei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guagnzhou 510006, P. R. China
| | - Yan-Zhong Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R. China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Hou YJ, Deng J, He K, Chen C, Yang Y. Covalent Organic Frameworks-Based Solid-Phase Microextraction Probe for Rapid and Ultrasensitive Analysis of Trace Per- and Polyfluoroalkyl Substances Using Mass Spectrometry. Anal Chem 2020; 92:10213-10217. [DOI: 10.1021/acs.analchem.0c01829] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Jun Hou
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Kaili He
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
37
|
Du J, Chen L, Zeng X, Yu S, Zhou W, Tan L, Dong L, Zhou C, Cheng J. Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol-Ene Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28576-28585. [PMID: 32515180 DOI: 10.1021/acsami.0c10368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UiO-66 metal-organic frameworks (MOFs) are unstable in some harsh aqueous environments, which limit their practical applications. We demonstrate a postsynthetic modification methodology to transform hydrophilic Zr(Hf)-UiO-66 into superhydrophobic Zr(Hf)-UiO-66-SH-y (SH = thiol, y = fluoroalkyl) by introducing long fluoroalkyl chains into organic linkers through a thiol-ene click reaction. Water contact angles of the four modified UiO-66 MOFs are all larger than 150°. The grafted low-surface-energy fluorine-containing groups become an effective protective shield for the MOFs, making them exhibit remarkable stability in extreme conditions such as alkaline (pH = 12), saturated HCl, and high concentration of NaCl solution (20 wt %). The Zr-UiO-66 MOFs grafted with 1H,1H,2H-perfluoro-1-hexene have high CO2 adsorption contents of 1.54 and 2.88 mmol·g-1 at 298 and 273 K, respectively. Moreover, the superhydrophobic MOFs also showed potential application in oil/water separation.
Collapse
Affiliation(s)
- Jingcheng Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Li Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Xinjuan Zeng
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China
| | - Shuai Yu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University, Chongqing 400044, PR China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
38
|
Qu R, Li X, Liu Y, Zhai H, Zhao S, Feng L, Wei Y. Superwetting Patterned Membranes with an Anisotropy/Isotropy Transition: Towards Signal Expression and Liquid Permeation. Angew Chem Int Ed Engl 2020; 59:13437-13443. [PMID: 32368822 DOI: 10.1002/anie.202005030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 01/02/2023]
Abstract
Superwetting membranes with responsive properties have attracted heightened attention because of their fine-tunable surface wettability. However, their functional diversity is severely limited by the "black-or-white" wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2 /octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal-expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m-2 h), as well as real-time liquid signal expression with alterable signals.
Collapse
Affiliation(s)
- Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
39
|
Abstract
In this review, the recent advances in the shaping of MOFs are overviewed, and some promising strategies recently developed are highlighted, including templated shaping, self-shaping, shaping on substrates, and shaping with sacrificial materials.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yufeng Wu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|