1
|
Hong J, Wang X, Zhao K, Chen X, Feng R, Li C, Wei C, Gong X, Zheng F, Zheng C. Nickel-Catalyzed Direct Fluorosulfonylation of Vinyl Bromides and Benzyl Bromides for Sulfonyl Fluorides. Org Lett 2024. [PMID: 39511949 DOI: 10.1021/acs.orglett.4c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An efficient nickel-catalyzed direct fluorosulfonylation of vinyl bromides and benzyl bromides under mild reaction conditions has been developed for sulfonyl fluorides utilizing Na2S2O4 and NFSI as the sulfur dioxide and fluorine sources, respectively. This reaction system tolerates organic bromide compounds, such as β-styryl bromides, alkyl vinyl bromides, and benzyl bromides, to achieve corresponding sulfonyl fluorides in moderate to good yields, with convenient operation, mild conditions, broad substrate scope, good functional group compatibility, and excellent retention of configuration to vinyl bromides.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
2
|
Zhang YJ, Li ML, Hu HX, Teng F. Recent advances in palladium-catalyzed sulfonylation via SO 2 insertion. Org Biomol Chem 2024; 22:5868-5885. [PMID: 38980115 DOI: 10.1039/d4ob00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The importance of sulfonyl-group-containing compounds, such as sulfonamides, sulfones, sulfinate esters, and sulfonyl fluorides, in pharmaceuticals, bioactive molecules, and natural products cannot be overstated. The new development of palladium-catalyzed sulfonylation via SO2 insertion represents a crucial advancement in organic synthesis, enabling the direct α,α-difunctionalization of SO2 and providing efficient access to an array of structure-diverse sulfonyl-containing compounds. Although there have been numerous reviews about SO2 insertion, many of them only cover specific aspects of palladium-catalyzed reactions, leading to an oversight of some important works. Besides, these reviews often lack detailed discussions and systematic conclusion on reaction mechanisms, and fail to comprehensively summarize the significant research achievements in palladium-catalyzed reactions over the past few years. Herein, we aim to systematically consolidate the recent advances in palladium-catalyzed sulfonylation via SO2 insertion, elucidate the underlying reaction mechanism, and highlight some unsolved challenges in this segment. This review seeks to serve as a valuable resource for researchers, assisting in the continued development of palladium-catalyzed sulfonylation methodologies.
Collapse
Affiliation(s)
- Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng-Ling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hai-Xia Hu
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
3
|
Wei MK, Moseley DF, Bär RM, Sempere Y, Willis MC. Palladium-Catalyzed Addition of Aryl Halides to N-Sulfinylamines for the Synthesis of Sulfinamides. J Am Chem Soc 2024; 146:19690-19695. [PMID: 38994915 PMCID: PMC11273345 DOI: 10.1021/jacs.4c06726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sulfinamides are versatile, synthetically useful intermediates, and final motifs. Traditional methods to synthesize sulfinamides generally require substrates with preinstalled sulfur centers. However, these precursors have limited commercial availability, and the associated synthetic routes often require harsh reaction conditions and highly reactive reagents, thus severely limiting their application. Herein, we report the synthesis of sulfinamides from aryl and alkenyl (pseudo)halides and N-sulfinylamines, enabled by palladium catalysis. The reactions use mild conditions and are achieved without the use of highly reactive preformed organometallic reagents, resulting in transformations of broad generality and high functional group tolerance. In particular, substrates featuring protic and electrophilic functional groups can be used successfully. The modification of complex aryl cores and natural product derivatives demonstrates the utility of this method.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Daniel F. Moseley
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin M. Bär
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Yeshua Sempere
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
He T, Liang C, Jiang P, Liang H, Liao S, Huang S. Radical Ring-Opening Fluorosulfonylation of Methylenecyclobutanols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:5577-5581. [PMID: 38912598 DOI: 10.1021/acs.orglett.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A visible-light-mediated catalyst- and additive-free method for radical ring-opening fluorosulfonylation of methylenecyclobutanols is reported. Sulfuryl chlorofluoride acts as a FSO2 radical precursor as well as an electron acceptor to form electron donor-acceptor complexes with various methylenecyclobutanol substrates. This method shows fully regioselective and (E)-stereoselective ring-opening processes, providing a variety of FSO2-functionalized γ,δ-unsaturated carbonyls in 38-77% yields. A selection of product diversifications has been studied to demonstrate the versatility of these sulfonyl fluoride products.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
5
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
6
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
7
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
8
|
Feng Q, He T, Qian S, Xu P, Liao S, Huang S. Electroreductive hydroxy fluorosulfonylation of alkenes. Nat Commun 2023; 14:8278. [PMID: 38092768 PMCID: PMC10719349 DOI: 10.1038/s41467-023-44029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
An electroreductive strategy for radical hydroxyl fluorosulfonylation of alkenes with sulfuryl chlorofluoride and molecular oxygen from air is described. This mild protocol displays excellent functional group compatibility, broad scope, and good scalability, providing convenient access to diverse β-hydroxy sulfonyl fluorides. These β-hydroxy sulfonyl fluoride products can be further converted to valuable aliphatic sulfonyl fluorides, β-keto sulfonyl fluorides, and β-alkenyl sulfonyl fluorides. Further, some of these products showed excellent inhibitory activity against Botrytis cinerea or Bursaphelenchus xylophilus, which could be useful for potent agrochemical discovery. Preliminary mechanistic studies indicate that this transformation is achieved through rapid O2 interception by the alkyl radical and subsequent reduction of the peroxy radical, which outcompete other side reactions such as chlorine atom transfer, hydrogen atom transfer, and Russell fragmentation.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Wang H, Li Z, Dai R, Jiao N, Song S. An efficient and mild oxidative approach from thiols to sulfonyl derivatives with DMSO/HBr. Chem Sci 2023; 14:13228-13234. [PMID: 38023524 PMCID: PMC10664549 DOI: 10.1039/d3sc04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Zhaoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| |
Collapse
|
10
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
11
|
Deng X, Zhu X. Recent Advances of S- 18F Radiochemistry for Positron Emission Tomography. ACS OMEGA 2023; 8:37720-37730. [PMID: 37867643 PMCID: PMC10586020 DOI: 10.1021/acsomega.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
The click chemistry of sulfur(VI) fluoride exchange (SuFEx) has facilitated the widespread application of sulfur-fluoride compounds such as sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides in various fields, especially in the development of 18F ligands for PET (positron emission tomography) imaging. In recent years, the prominent progress of sulfur-[18F]fluoride compounds has been achieved through the combination of 18F and sulfur-fluoride chemistry. These compounds serve as potential 18F tracers, 18F synthons, and reagents for 18F-fluorination, thereby complementing the range of 18F ligands, typically C-18F structures, used in PET studies. This review aims to provide an overview of S-18F labeling reactions through examples of relevant 18F compounds and highlight the advancements and breakthroughs achieved in the past decade.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
12
|
Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nat Commun 2023; 14:5168. [PMID: 37620301 PMCID: PMC10449886 DOI: 10.1038/s41467-023-40615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
13
|
Vincent CA, Ripak A, Troian-Gautier L, Tambar UK. Photocatalytic conversion of aryl diazonium salts to sulfonyl fluorides. Tetrahedron 2023; 139:133364. [PMID: 38404686 PMCID: PMC10887421 DOI: 10.1016/j.tet.2023.133364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Sulfonyl fluorides have emerged as powerful tools in chemical biology for the selective labelling of proteins. A photocatalytic method is described for the conversion of aryl diazonium salts to aryl sulfonyl fluorides. The diazonium substrates are easily obtained in one step from functionalized anilines. We present the optimization of this mild method for the synthesis of sulfonyl fluorides, the scope of the transformation with a series of functionalized diazonium salts, and we discuss photophysical measurements that provide detailed information about the mechanism of the photochemical process.
Collapse
Affiliation(s)
- Cooper A. Vincent
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, United States
| | - Alexia Ripak
- Université Catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université Catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, United States
| |
Collapse
|
14
|
Zhao X, Chen D, Zhu S, Luo J, Liao S, Zheng B, Huang S. Fluorosulfonylvinylation of Unactivated C(sp 3)-H via Electron Donor-Acceptor Photoactivation. Org Lett 2023; 25:3109-3113. [PMID: 37083288 DOI: 10.1021/acs.orglett.3c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An electron donor-acceptor (EDA) complex photoactivation strategy for radical fluorosulfonylation is disclosed for the first time. Simply upon blue light irradiation, the FSO2 radical can be generated efficiently under catalyst-free, base-free, and additive-free conditions, which enables facile access to 6-keto alkenylsulfonyl fluorides from readily available propargyl alcohols and FSO2Cl. The 6-keto alkenylsulfonyl fluoride motif has been showcased as a versatile SuFEx hub with diverse follow-up derivatizations.
Collapse
Affiliation(s)
- Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengzhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan, Ningxia Hui Autonomous Region 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
15
|
Nie H, Xiong Z, Hu M, Zhang S, Qin C, Wang S, Ji F, Jiang G. Copper-Catalyzed Sulfonylation Reaction of NH-Sulfoximines with Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: Formation of N-Sulfonyl Sulfoximines. J Org Chem 2023; 88:2322-2333. [PMID: 36701768 DOI: 10.1021/acs.joc.2c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient and practical SO2 insertion protocol of NH-sulfoximines with aryldiazonium tetrafluoroborates and DABSO toward N-sulfonyl sulfoximines has been developed under mildly basic conditions. This transformation features easy operation, readily available substrates, and mild conditions. A tentative mechanism is proposed, which indicates that the aryldiazonium tetrafluoroborates would be radical donors under standard reaction conditions. The aryl radical produced in situ from diazonium salts would be trapped by SO2 to generate an arylsulfonyl radical and then undergo further transformation to generate the final N-sulfonyl sulfoximines.
Collapse
Affiliation(s)
- Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
16
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
17
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
18
|
Erchinger JE, Hoogesteger R, Laskar R, Dutta S, Hümpel C, Rana D, Daniliuc CG, Glorius F. EnT-Mediated N-S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. J Am Chem Soc 2023; 145:2364-2374. [PMID: 36652725 DOI: 10.1021/jacs.2c11295] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing the SO2F moiety via a classical two-electron approach. Recently, radical-based methodologies have emerged as a complementary strategy to increase the diversity of accessible click partners. In this work, synthesis of a bench-stable sulfamoyl fluoride reagent is presented, which may undergo sigma-bond homolysis upon visible-light-induced sensitization to form protected β-amino sulfonyl fluorides from alkene feedstocks. Notably, this offers an appealing strategy to access various building blocks for peptido sulfonyl fluorides, relevant in a medicinal chemistry context, as well as an intriguing entry to β-ammonium sulfonates and β-sultams, from alkenes. Densely functionalized 1,3-sultones were obtained by employing allyl alcohols as substrates. Surprisingly, allyl chloride-derived β-imino sulfonyl fluoride underwent S-O bond formation and ring closure to yield rigid cyclopropyl β-imino sulfonate ester under SuFEx conditions. Furthermore, by engaging a thiol-based hydrogen atom donor in the reaction, the reactivity of the same reagent can be tuned toward the direct synthesis of aliphatic sulfonyl fluorides. Mechanistic experiments indicate an energy transfer (EnT)-mediated process. The transient sulfonyl fluoride radical adds to the alkene and product formation occurs upon either radical-radical coupling or hydrogen atom transfer (HAT), respectively.
Collapse
Affiliation(s)
- Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Reece Hoogesteger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ranjini Laskar
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Carla Hümpel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
19
|
Zhang X, Qin HL. A General Procedure for the Construction of 2-Alkyl-Substituted Vinyl Sulfonyl Fluoride. Org Lett 2022; 24:9311-9315. [PMID: 36475782 DOI: 10.1021/acs.orglett.2c03936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of compact and multifunctional 2-alkyl-substituted vinyl sulfonyl fluorides were efficiently prepared from the corresponding alkyl iodides and 2-chloroprop-2-ene-1-sulfonyl fluoride (CESF). This Giese-type radical approach provided new and general access to alkenyl sulfonyl fluorides, including structures that would otherwise be challenging to synthesize with previously established methods. A correspondingly large collection of derivatization reactions was also demonstrated on the alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Hua-Li Qin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
21
|
Lou TS, Kawamata Y, Ewing T, Correa‐Otero GA, Collins MR, Baran PS. Scalable, Chemoselective Nickel Electrocatalytic Sulfinylation of Aryl Halides with SO 2. Angew Chem Int Ed Engl 2022; 61:e202208080. [PMID: 35819400 PMCID: PMC9452475 DOI: 10.1002/anie.202208080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Simple access to aryl sulfinates from aryl iodides and bromides is reported using an inexpensive Ni-electrocatalytic protocol. The reaction exhibits a broad scope, uses stock solution of simple SO2 as sulfur source, and can be scaled up in batch and recycle flow settings. The limitations of this reaction are clearly shown and put into context by benchmarking with state-of-the-art Pd-based methods.
Collapse
Affiliation(s)
- Terry Shing‐Bong Lou
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Yu Kawamata
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Tamara Ewing
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | | | - Michael R. Collins
- Oncology Medicinal Chemistry DepartmentPfizer Pharmaceuticals10770 Science Center DriveSan DiegoCA 92121USA
| | - Phil S. Baran
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
22
|
Wang P, Li SJ, Liao S, Zhang H, Yang N. Photo-organocatalytic Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Acetates. Synlett 2022. [DOI: 10.1055/s-0041-1738692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractA metal-free synthesis of useful β-keto sulfonyl fluorides has been established via radical fluorosulfonylation of ketone-derived vinyl acetates under photoredox organocatalysis by using 1-fluorosulfonyl benzoimidazolium (FABI) as the fluorosulfonyl radical source and oxygen-doped anthanthrene (ODA) as the photocatalyst. A series of aryl and alkyl β-keto sulfonyl fluorides as well as cyclic analogues can be readily obtained in moderate to high yields from widely available ketone starting materials.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Shao-Jie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University
| |
Collapse
|
23
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
24
|
Lou TSB, Kawamata Y, Ewing T, Correa-Otero GA, Collins MR, Baran PS. Scalable, Chemoselective Nickel Electrocatalytic Sulfinylation of Aryl Halides with SO2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yu Kawamata
- The Scripps Research Institute Chemistry 10950 N. Torrey Pines Rd 92037 La Jolla UNITED STATES
| | - Tamara Ewing
- The Scripps Research Institute chemistry UNITED STATES
| | | | - Michael R. Collins
- Pfizer Global Pharmaceuticals: Pfizer Inc Oncology Medicinal Chemistry Department UNITED STATES
| | - Phil S. Baran
- The Scripps Research Institute Department of Chemistry 10550 North Torrey pines RoadBCC-169 92037 La Jolla UNITED STATES
| |
Collapse
|
25
|
Zhang W, Deng X, Zhang FX, Lin JH, Xiao JC, Liang SH. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Org Lett 2022; 24:4992-4997. [PMID: 35771975 DOI: 10.1021/acs.orglett.2c02091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A successful Cu-catalyzed addition of both Cl and SO2OCF2H groups into alkenes allows us to discover the unusual reactivity of the SO2OCF2H group. As opposed to common sulfonic esters (RSO2-O-R'), in which the R' group is highly electrophilic, the SO2 moiety demonstrates higher electrophilicity in RSO2-OCF2H. The unexpected reactivity is further developed not only as a synthetic tool for well-functionalized alkenyl sulfonyl fluorides but also for the first 18F labeling of alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States
| |
Collapse
|
26
|
Huang Y, Zhao X, Chen D, Zheng Y, Luo J, Huang S. Access to Sulfocoumarins via Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Xueyan Zhao
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Dengfeng Chen
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Yu Zheng
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing CHINA
| | - Jinyue Luo
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Shenlin Huang
- Nanjing Forestry University College of Chemical Engineering No. 159, Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
27
|
Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO 2F radical reagent. Nat Commun 2022; 13:3515. [PMID: 35717500 PMCID: PMC9206656 DOI: 10.1038/s41467-022-31296-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides are key components in the fields of chemical biology, materials science and drug discovery. In this line, the highly active SO2F radical has been employed for the construction of sulfonyl fluorides, but the utilization of gaseous ClSO2F as radical precursor is limited due to the tedious and hazardous preparation. Meanwhile, the synthesis of sulfonyl fluorides from inert SO2F2 gas through a fluorosulfonyl radical (·SO2F) process has met with inevitable difficulties due to the high homolytic bond dissociation energy of the S(VI)-F bond. Here we report a radical fluorosulfonylation strategy for the stereoselective synthesis of alkenyl sulfonyl fluorides and functional alkyl sulfonyl fluorides with an air-stable crystalline benzimidazolium fluorosulfonate cationic salt reagent. This bench-stable redox-active reagent offers a useful and operational protocol for the radical fluorosulfonylation of unsaturated hydrocarbons with good yield and high stereoselectivity, which can be further transformed into valuable functional SO2F moieties. Sulfonyl fluorides have potential application in chemical biology, materials science, and drug discovery, but their preparation remains challenging. Here, the authors report an air-stable fluorosulfonylating reagent that enables the radical fluorosulfonylation, hydrofluorosulfonylation and migratory SO2F-difunctionalization of unsaturated hydrocarbons to construct a variety of sulfonyl fluoride compounds.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
29
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
30
|
Feng Q, Fu Y, Zheng Y, Liao S, Huang S. Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Org Lett 2022; 24:3702-3706. [PMID: 35579434 DOI: 10.1021/acs.orglett.2c01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemical synthesis of versatile β-keto sulfonyl fluorides is accomplished by radical fluorosulfonylation of vinyl triflates with FSO2Cl as the fluorosulfonyl radical source. This electroreductive protocol uses inexpensive graphite felt as electrodes, thus avoiding the use of a sacrificial anode. Moreover, this protocol, featuring metal-free, mild conditions and easy scalability, allows expedient access to valuable β-keto sulfonyl fluorides from readily available precursors, as well as the cyclic ones that are otherwise inaccessible using prior methods.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
31
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
32
|
Chen ZD, Zhou X, Yi JT, Diao HJ, Chen QL, Lu G, Weng J. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org Lett 2022; 24:2474-2478. [PMID: 35263111 DOI: 10.1021/acs.orglett.2c00459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonyl fluorides are useful building blocks in a wide array of fields. Herein, we report a catalytic decarboxylative fluorosulfonylation approach for converting abundant aliphatic carboxylic acids to the corresponding sulfonyl fluorides. This transformation is enabled by simple preactivation as aldoxime esters and energy-transfer-mediated photocatalysis. This operationally simple method proceeds with high functional-group tolerance under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Long Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
33
|
Ma Z, Shan L, Ma X, Hu X, Guo Y, Chen QY, Liu C. Arenesulfonyl fluoride synthesis via one-pot copper-free Sandmeyer-type three-component reaction of aryl amine, K2S2O5, and NFSI. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Abstract
AbstractThe introduction of easy-to-handle SO2 surrogates has transformed the field of sulfur chemistry, enabling methodologies utilizing SO2 to be carried out without specialized apparatus, and paving the way for the development of new procedures. This review highlights some of the varied and significant developments associated with one of the most prominent SO2 surrogates: DABSO.1 Introduction2 DABSO3 Reactions with Nucleophilic Reagents4 Metal-Catalyzed Reactions4.1 Palladium-Catalyzed Reactions4.2 Other Transition-Metal Catalysis5 Radical Reactions5.1 Aryldiazonium Salts5.2 Other Aryl Radical Precursors5.3 Alkyl Radical Precursors6 Conclusion
Collapse
|
35
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
36
|
Li Q, Zhu H, Liu Y, Yang L, Fan Q, Xie Z, Le ZG. Copper-assisted preparation of pyridinyl sulfonate esters from hydroxypyridines and sodium sulfinates. RSC Adv 2022; 12:2736-2740. [PMID: 35425336 PMCID: PMC8979058 DOI: 10.1039/d1ra08568a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient and powerful copper-assisted method for the effective conversion of a broad range of hydroxypyridines and sodium sulfinates into their corresponding pyridinyl tosylates was developed. Key features of this base- and ligand-free protocol include using the cheap and readily available CuBr2 as a medium and the use of sodium sulfinates as formal sulfonylation reagents. A variety of functional pyridinyl tosylates could be formed with good yields, which can easily be converted into C-C and C-N bond-containing compounds.
Collapse
Affiliation(s)
- Qian Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology Nanchang 330013 China
| | - Yishuai Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Liu Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology Nanchang 330013 China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology 330013 Nanchang China
| |
Collapse
|
37
|
Zhang H, Li S, Zheng HL, Zhu G, Liao S, Nie X. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SO2 radical insertion/fluorination via a photocatalytic redox strategy is developed, providing an efficient and reliable approach for the synthesis of alkylsulfonyl fluorides.
Collapse
Affiliation(s)
- Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shaojie Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Han-Liang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory of Molecular Science (BNLMS), Beijing 100190, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
38
|
Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen QY, Liu C. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general and efficient approach to various aliphatic sulfonyl fluorides by the reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acids via a radical sulfur dioxide insertion and fluorination strategy was developed.
Collapse
Affiliation(s)
- Zhanhu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
39
|
Li Y, Zhang X, Lian Z. Copper catalyzed cyano-sulfonylation of allenes via the insertion of sulfur dioxide toward the synthesis of ( E)-α-cyanomethyl vinylsulfones. Org Chem Front 2022. [DOI: 10.1039/d2qo01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and practical method for highly regio- and stereo-selective cyanosulfonylation of allenes by inserting sulfur dioxide to synthesize useful (E)-α-cyanomethyl vinylsulfones has been explored.
Collapse
Affiliation(s)
- Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
40
|
Zhang G, Guan C, Zhao Y, Miao H, Ding C. ‘Awaken’ aryl sulfonyl fluoride: a new partner in the Suzuki–Miyaura coupling reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An example of the activation of the –SO2F group, which is traditionally considered a stable group even in the presence of a transition metal, is described using a novel partner in the Suzuki–Miyaura coupling reaction catalyzed by Pd(OAc)2 and Ruphos as ligands.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou, 310012, P. R. China
| | - Huihui Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
41
|
Magre M, Cornella J. Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides. J Am Chem Soc 2021; 143:21497-21502. [PMID: 34914387 PMCID: PMC8719321 DOI: 10.1021/jacs.1c11463] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. We demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of SO2 into Bi-C bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
42
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo-Fluorosulfonylation of Alkynes under Air: Facile Access to β-Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021; 60:27271-27276. [PMID: 34729882 DOI: 10.1002/anie.202112118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Indexed: 11/12/2022]
Abstract
Radical fluorosulfonylation is emerging as an appealing approach for the synthesis of sulfonyl fluorides, which have widespread applications in many fields, in particular in the context of chemical biology and drug development. Here, we report the first investigation of FSO2 radical generation under electrochemical conditions, and the establishment of a new and facile approach for the synthesis of β-keto sulfonyl fluorides via oxo-fluorosulfonylation of alkynes with sulfuryl chlorofluoride as the radical precursor and air as the oxidant. This electrochemical protocol is amenable to access two different products (β-keto sulfonyl fluorides or α-chloro-β-keto sulfonyl fluorides) with the same reactants. The β-keto sulfonyl fluoride products can be utilized as useful building blocks in the synthesis of various derivatives and heterocycles, including the first synthesis of an oxathiazole dioxide compound. Furthermore, some β-keto sulfonyl fluorides and derivatives exhibited notably potent activities against Bursaphelenchus xylophilus and Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
43
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
44
|
Chatelain P, Muller C, Sau A, Brykczyńska D, Bahadori M, Rowley CN, Moran J. Desulfonative Suzuki–Miyaura Coupling of Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paul Chatelain
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Cyprien Muller
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Abhijit Sau
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | | | | | | | - Joseph Moran
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| |
Collapse
|
45
|
Chatelain P, Muller C, Sau A, Brykczyńska D, Bahadori M, Rowley CN, Moran J. Desulfonative Suzuki-Miyaura Coupling of Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021; 60:25307-25312. [PMID: 34570414 DOI: 10.1002/anie.202111977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Sulfonyl fluorides have emerged as powerful "click" electrophiles to access sulfonylated derivatives. Yet, they are relatively inert towards C-C bond forming transformations, notably under transition-metal catalysis. Here, we describe conditions under which aryl sulfonyl fluorides act as electrophiles for the Pd-catalyzed Suzuki-Miyaura cross-coupling. This desulfonative cross-coupling occurs selectively in the absence of base and, unusually, even in the presence of strong acids. Divergent one-step syntheses of two analogues of bioactive compounds showcase the expanded reactivity of sulfonyl fluorides to encompass both S-Nu and C-C bond formation. Mechanistic experiments and DFT calculations suggest oxidative addition occurs at the C-S bond followed by desulfonation to form a Pd-F intermediate that facilitates transmetalation.
Collapse
Affiliation(s)
- Paul Chatelain
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | - Cyprien Muller
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | - Abhijit Sau
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | | | | | | | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| |
Collapse
|
46
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
47
|
Wu Z, Xu X, Wang J, Dong G. Carbonyl 1,2-transposition through triflate-mediated α-amination. Science 2021; 374:734-740. [PMID: 34735246 DOI: 10.1126/science.abl7854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhao Wu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xiaolong Xu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:22035-22042. [PMID: 34382306 DOI: 10.1002/anie.202109072] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, β-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions. BCASF molecules exhibit versatile reactivities and well undergo a series of transformations at the chloride site while keeping the sulfonyl fluoride group intact, including reduction, Suzuki coupling, Sonogashira coupling, as well as nucleophilic substitution with various nitrogen, oxygen, and sulfur nucleophiles. By using BCASF as a synthetic hub, a wide range of sulfonyl fluorides becomes readily accessible, such as cis alkenylsulfonyl fluorides, dienylsulfonyl fluorides, and ynenylsulfonyl fluorides, which are challenging or even not possible to synthesize before with the known methods. Moreover, further application of BCASF to the late-stage modification of peptides and drugs is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization, Xiamen University, Xiamen, 361102, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
49
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization Xiamen University Xiamen 361102 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
50
|
Dong X, Jiang W, Hua D, Wang X, Xu L, Wu X. Radical-mediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. Chem Sci 2021; 12:11762-11768. [PMID: 34659713 PMCID: PMC8442677 DOI: 10.1039/d1sc03315h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then β-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology. An unprecedented method for vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes has been developed to afford useful alkenylsulfonate esters and alkenylsulfonyl fluorides.![]()
Collapse
Affiliation(s)
- Xinrui Dong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Wenhua Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|