1
|
Bhalani DV, Lim B. Hydrogen Separation Membranes: A Material Perspective. Molecules 2024; 29:4676. [PMID: 39407605 PMCID: PMC11478078 DOI: 10.3390/molecules29194676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The global energy market is shifting toward renewable, sustainable, and low-carbon hydrogen energy due to global environmental issues, such as rising carbon dioxide emissions, climate change, and global warming. Currently, a majority of hydrogen demands are achieved by steam methane reforming and other conventional processes, which, again, are very carbon-intensive methods, and the hydrogen produced by them needs to be purified prior to their application. Hence, researchers are continuously endeavoring to develop sustainable and efficient methods for hydrogen generation and purification. Membrane-based gas-separation technologies were proven to be more efficient than conventional technologies. This review explores the transition from conventional separation techniques, such as pressure swing adsorption and cryogenic distillation, to advanced membrane-based technologies with high selectivity and efficiency for hydrogen purification. Major emphasis is placed on various membrane materials and their corresponding membrane performance. First, we discuss various metal membranes, including dense, alloyed, and amorphous metal membranes, which exhibit high hydrogen solubility and selectivity. Further, various inorganic membranes, such as zeolites, silica, and CMSMs, are also discussed. Major emphasis is placed on the development of polymeric materials and membranes for the selective separation of hydrogen from CH4, CO2, and N2. In addition, cutting-edge mixed-matrix membranes are also delineated, which involve the incorporation of inorganic fillers to improve performance. This review provides a comprehensive overview of advancements in gas-separation membranes and membrane materials in terms of hydrogen selectivity, permeability, and durability in practical applications. By analyzing various conventional and advanced technologies, this review provides a comprehensive material perspective on hydrogen separation membranes, thereby endorsing hydrogen energy for a sustainable future.
Collapse
Affiliation(s)
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
3
|
Sun Y, Liu Y. Oriented Metal-Organic Framework Membranes for Molecular Separations. Chemistry 2024; 30:e202304162. [PMID: 38695867 DOI: 10.1002/chem.202304162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 06/15/2024]
Abstract
Metal-organic framework (MOF) membranes, which are recognized as state-of-the-art platforms applied in various separation processes, have attracted widespread attention. Nonetheless, to overcome the trade-off between permeability and selectivity, which is crucial for achieving efficient separation, it is important to rationally design and manipulate MOF membrane structure. Given remarkable advances in the past decade, a timely summary of recent advancement in this field has become indispensable. This review introduces major strategies for fabricating oriented MOF membranes, including in situ growth, contra-diffusion method, interface-assisted approach, and laminated nanosheet assembly. New insights into their updated progress and potential are elucidated. Of particular note, recent development and emerging applications of oriented MOF membranes, illustrating their potential to address environmental and energy challenges, are highlighted. Finally, remaining challenges facing their bath production and practical applications are discussed.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Zhang B, Dai X, Wei N, Cui X, Fan F, Zhang J, Zhang D, Meng F, Qi W, Fu Y. Fabrication of Oriented MOF-Based Mixed Matrix Membrane via Ion-Induced Synchronous Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305688. [PMID: 37922529 DOI: 10.1002/smll.202305688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Developing a facile strategy for constructing oriented mixed matrix membranes (MMMs) with uniformly dispersed and high-loading metal-organic frameworks (MOFs) is a crucial scientific challenge in probing the enhanced capability and potential applications of MOF-polymer MMMs. Herein, a novel synchronous synthetic method for constructing oriented CuBDC/poly(m-phenylenediamine) (CuBDC/PmPD) MMM with uniform MOF dispersion at high loading at the air-solution interface via the dual function of metal ions is reported. The resulting MMM exhibits excellent separation performance in ion sieving and seawater desalination due to the structural integrity of the proposed membrane and the highly interconnected channels created through the oriented distribution of MOF in a polymer matrix. Such a cutting-edge approach may provide promising insights into the development of advanced MMMs with optimized structure and superior performances.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xueya Dai
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Nini Wei
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xingchen Cui
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
6
|
Kundu S, Haldar R. A roadmap to enhance gas permselectivity in metal-organic framework-based mixed-matrix membranes. Dalton Trans 2023; 52:15253-15276. [PMID: 37603374 DOI: 10.1039/d3dt01878d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Performing gas separation at high efficiency with minimum energy input and reduced carbon footprint is a major challenge. While several separation methods exist at various technology readiness levels, porous membrane-based separation is considered as a disruptive technology. To attain sustainability and required efficiency, different approaches of membrane design have been explored. However, the selectivity-permeation trade-off and membrane aging have restricted further advancement. In this regard, a new generation composite made of organic polymers and metal-organic framework (MOF) fillers shows substantial promise. Organic polymer matrix allows easy processibility, but it has poor permselectivity for gas molecules. Metal-organic frameworks are excellent sieving materials; however, they suffer from poor processibility issues. A combination of these two components makes an ideal sieving membrane, which can potentially outnumber the existing energy intensive distillation strategies. In this perspective, we have discussed key indices that regulate gas permselectivity by a careful selection of the existing literature. While the target gas flux and selectivity values have been a part of many previous reviews and articles, we have presented a concise discussion on the interface design of the MOF-polymer membrane, morphology, and orientation control of MOF fillers in the matrix. Following this, a future roadmap to overcome challenges related to MOF-polymer interfacial defects is outlined.
Collapse
Affiliation(s)
- Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| |
Collapse
|
7
|
Chen G, Chen C, Guo Y, Chu Z, Pan Y, Liu G, Liu G, Han Y, Jin W, Xu N. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation. Science 2023; 381:1350-1356. [PMID: 37733840 DOI: 10.1126/science.adi1545] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Mixed-matrix membranes (MMMs) that combine processable polymer with more permeable and selective filler have potential for molecular separation, but it remains difficult to control their interfacial compatibility and achieve ultrathin selective layers during processing, particularly at high filler loading. We present a solid-solvent processing strategy to fabricate an ultrathin MMM (thickness less than 100 nanometers) with filler loading up to 80 volume %. We used polymer as a solid solvent to dissolve metal salts to form an ultrathin precursor layer, which immobilizes the metal salt and regulates its conversion to a metal-organic framework (MOF) and provides adhesion to the MOF in the matrix. The resultant membrane exhibits fast gas-sieving properties, with hydrogen permeance and/or hydrogen-carbon dioxide selectivity one to two orders of magnitude higher than that of state-of-the-art membranes.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Cailing Chen
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Yu Han
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
- Suzhou Laboratory, Suzhou 215100, China
| |
Collapse
|
8
|
Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207313. [PMID: 36709424 DOI: 10.1002/smll.202207313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.
Collapse
Affiliation(s)
- Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
9
|
Designed channels in thin benzimidazole-linked polymer membranes for hot H2 purification. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Li C, Jiang Y, Wu Z, Zhang Y, Huang C, Cheng S, You Y, Zhang P, Chen W, Mao L, Jiang L. Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angew Chem Int Ed Engl 2023; 62:e202215906. [PMID: 36374215 DOI: 10.1002/anie.202215906] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 μS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Duan S, Li D, Yang X, Niu C, Sun S, He X, Shan M, Zhang Y. Experimental and molecular simulation study of a novel benzimidazole-linked polymer membrane for efficient H2/CO2 separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Chen D, Yang F, Karousos DS, Lei L, Favvas EP, He X. Process Parametric Testing and Simulation of Carbon Membranes for H2 Recovery from Natural Gas Pipeline Network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Li G, Si Z, Yang S, Zhuang Y, Pang S, Cui Y, Baeyens J, Qin P. A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
16
|
Engineering CAU-10-H for preparation of mixed matrix membrane for gas separations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Qi C, Li J, Shi Y, Zhang B, Chen T, Wang C, Liu Q, Yang X. ZIF-8 penetrating composite membrane for ion sieving. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Huang L, Xing Z, Zhuang X, Wei J, Ma Y, Wang B, Jiang X, He X, Deng L, Dai Z. Polymeric membranes and their derivatives for H2/CH4 separation: State of the art. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Li W, Wang J, Chen J, Chen K, Wen Z, Huang A. Core-Shell Carbon-Based Bifunctional Electrocatalysts Derived from COF@MOF Hybrid for Advanced Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202018. [PMID: 35808960 DOI: 10.1002/smll.202202018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The development of highly active carbon-based bifunctional electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired, but still full of challenges in rechargeable Zn-air batteries. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have gained great attention for various applications due to their attractive features of structural tunability, high surface area and high porosity. Herein, a core-shell structured carbon-based hybrid electrocatalyst (H-NSC@Co/NSC), which contains high density active sites of MOF-derived shell (Co/NSC) and COF-derived hollow core (H-NSC), is successfully fabricated by direct pyrolysis of covalently-connected COF@ZIF-67 hybrid. The core-shell H-NSC@Co/NSC hybrid manifests excellent catalytic properties toward both OER and ORR with a small potential gap (∆E = 0.75 V). The H-NSC@Co/NSC assembled Zn-air battery exhibits a high power-density of 204.3 mW cm-2 and stable rechargeability, outperforming that of Pt/C+RuO2 assembled Zn-air battery. Density functional theory calculations reveal that the electronic structure of the carbon frameworks on the Co/NSC shell can be effectively modulated by the embedded Co nanoparticles (NPs), facilitating the adsorption of oxygen intermediates and leading to enhanced catalytic activity. This work will provide a strategy to design highly-efficient electrocatalysts for application in energy conversion and storage.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jingyun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
20
|
Datta SJ, Mayoral A, Murthy Srivatsa Bettahalli N, Bhatt PM, Karunakaran M, Carja ID, Fan D, Graziane M Mileo P, Semino R, Maurin G, Terasaki O, Eddaoudi M. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 2022; 376:1080-1087. [PMID: 35653472 DOI: 10.1126/science.abe0192] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional separation technologies to separate valuable commodities are energy intensive, consuming 15% of the worldwide energy. Mixed-matrix membranes, combining processable polymers and selective adsorbents, offer the potential to deploy adsorbent distinct separation properties into processable matrix. We report the rational design and construction of a highly efficient, mixed-matrix metal-organic framework membrane based on three interlocked criteria: (i) a fluorinated metal-organic framework, AlFFIVE-1-Ni, as a molecular sieve adsorbent that selectively enhances hydrogen sulfide and carbon dioxide diffusion while excluding methane; (ii) tailoring crystal morphology into nanosheets with maximally exposed (001) facets; and (iii) in-plane alignment of (001) nanosheets in polymer matrix and attainment of [001]-oriented membrane. The membrane demonstrated exceptionally high hydrogen sulfide and carbon dioxide separation from natural gas under practical working conditions. This approach offers great potential to translate other key adsorbents into processable matrix.
Collapse
Affiliation(s)
- Shuvo Jit Datta
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD3), KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alvaro Mayoral
- Centre for High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China.,Instituto de Nanociencia y Materiales de Aragon, CSIC - Universidad de Zaragoza, Laboratorio de Microscopias Avanzadas, 50009 Zaragoza, Spain
| | - Narasimha Murthy Srivatsa Bettahalli
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD), KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Madhavan Karunakaran
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ionela Daniela Carja
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD), KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dong Fan
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Paulo Graziane M Mileo
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Osamu Terasaki
- Centre for High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Mohamed Eddaoudi
- Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Division of Physical Science and Engineering, Advanced Membrane and Porous Materials Center, Functional Materials Design, Discovery and Development (FMD), KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Zulkifli MYB, Yao Y, Chen R, Chai M, Su K, Li X, Zhou Y, Lin R, Zhu Z, Liang K, Chen V, Hou J. Phase control of ZIF-7 nanoparticles via mechanochemical synthesis. Chem Commun (Camb) 2022; 58:12297-12300. [DOI: 10.1039/d2cc04054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF crystal phase control is made possible through a mechanochemical process.
Collapse
Affiliation(s)
- Muhammad Yazid Bin Zulkifli
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuqi Yao
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ruiqi Chen
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Milton Chai
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Kun Su
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Xuemei Li
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Yinghong Zhou
- School of Dentistry, University of Queensland, Herston, QLD 4006, Australia
| | - Rijia Lin
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
25
|
Deng A, Shen X, Wan Z, Li Y, Pang S, He X, Caro J, Huang A. Elimination of Grain Boundary Defects in Zeolitic Imidazolate Framework ZIF‐95 Membrane via Solvent‐Free Secondary Growth. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aishan Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Xintian Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Zheng Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Shuyue Pang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hanover Callinstr. 3A 30167 Hannover Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| |
Collapse
|
26
|
Deng A, Shen X, Wan Z, Li Y, Pang S, He X, Caro J, Huang A. Elimination of Grain Boundary Defects in Zeolitic Imidazolate Framework ZIF-95 Membrane via Solvent-Free Secondary Growth. Angew Chem Int Ed Engl 2021; 60:25463-25467. [PMID: 34549499 DOI: 10.1002/anie.202110828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Metal-organic framework membranes are usually prepared by in situ or secondary growth in a solution/hydrogel. The use of organic solvents may cause safety and environmental problems and produce solvent-induced defects. Here, highly oriented and permselective ZIF-95 membranes are prepared for the first time via a solvent-free secondary growth method. The solvent-free growth is not only helpful to control the membrane microstructure and thickness, but also to reduce the intercrystalline defects. In case of solvent-free growth, a perfectly oriented structure leads to an outstanding reduction of intercrystalline defects and transport resistances. For the separation of equimolar binary gas mixtures by using the highly oriented ZIF-95 membrane at 25 °C and 1 bar, the mixture separation factors of H2 /CO2 and H2 /CH4 are 184 and 140, respectively, with H2 permeance of over 1.9×10-7 mol m-2 s-1 Pa-1 which are much higher than those of the randomly oriented ZIF-95 membrane.
Collapse
Affiliation(s)
- Aishan Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Xintian Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zheng Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Shuyue Pang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hanover, Callinstr. 3A, 30167, Hannover, Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| |
Collapse
|
27
|
|
28
|
Zhao Y, Wu M, Guo Y, Mamrol N, Yang X, Gao C, Van der Bruggen B. Metal-organic framework based membranes for selective separation of target ions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
30
|
Chen S, Sun Y, Chen S, Gao Y, Wang F, Li H, Liu Y. Facile fabrication of a highly (110)-oriented ZIF-7 film with rod-shaped seeds. Chem Commun (Camb) 2021; 57:2128-2131. [PMID: 33588430 DOI: 10.1039/d0cc07810g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report a novel synthetic strategy to prepare a highly (110)-oriented ZIF-7 film possessing superior anti-corrosion properties via oriented epitaxial growth. Our work provides insights into facile preparation of oriented uniform MOF single seed layers and films with rod-shaped MOF seeds as building blocks.
Collapse
Affiliation(s)
- Sixing Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Sikang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hong Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| |
Collapse
|
31
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
32
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021; 60:5864-5870. [DOI: 10.1002/anie.202014893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
33
|
Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat Commun 2021; 12:268. [PMID: 33431865 PMCID: PMC7801458 DOI: 10.1038/s41467-020-20628-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
Carbon molecular sieve (CMS) membranes with rigid and uniform pore structures are ideal candidates for high temperature- and pressure-demanded separations, such as hydrogen purification from the steam methane reforming process. Here, we report a facile and scalable method for the fabrication of cellulose-based asymmetric carbon hollow fiber membranes (CHFMs) with ultramicropores of 3–4 Å for superior H2 separation. The membrane fabrication process does not require complex pretreatments to avoid pore collapse before the carbonization of cellulose precursors. A H2/CO2 selectivity of 83.9 at 130 °C (H2/N2 selectivity of >800, H2/CH4 selectivity of >5700) demonstrates that the membrane provides a precise cutoff to discriminate between small gas molecules (H2) and larger gas molecules. In addition, the membrane exhibits superior mixed gas separation performances combined with water vapor- and high pressure-resistant stability. The present approach for the fabrication of high-performance CMS membranes derived from cellulose precursors opens a new avenue for H2-related separations. Energy-efficient hydrogen purification technologies are needed for the hydrogen economy. Here the authors report facile and scalable fabrication of asymmetric carbon molecular sieve membranes for the separation of hydrogen and carbon dioxide.
Collapse
|
34
|
Qian J, Wu T, Shi J, Chang H, Liu D, Pan Y. Improved
CO
2
/
CH
4
separation performance of
mixed‐matrix
membrane by adding
ZIF‐7‐NH
2
nanocrystals. J Appl Polym Sci 2020. [DOI: 10.1002/app.50424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junfeng Qian
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering Changzhou University Changzhou, Jiangsu China
| | - Tingting Wu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech Univeristy Nanjing, Jiangsu China
| | - Jianqun Shi
- Yejian New Materials Co. Ltd. Changzhou, Jiangsu China
| | - Hao Chang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech Univeristy Nanjing, Jiangsu China
| | - Donghui Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech Univeristy Nanjing, Jiangsu China
| | - Yichang Pan
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech Univeristy Nanjing, Jiangsu China
| |
Collapse
|
35
|
Sun Y, Song C, Guo X, Hong S, Choi J, Liu Y. Microstructural optimization of NH2-MIL-125 membranes with superior H2/CO2 separation performance by innovating metal sources and heating modes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Ma X, Wan Z, Li Y, He X, Caro J, Huang A. Anisotropic Gas Separation in Oriented ZIF-95 Membranes Prepared by Vapor-Assisted In-Plane Epitaxial Growth. Angew Chem Int Ed Engl 2020; 59:20858-20862. [PMID: 32767658 DOI: 10.1002/anie.202008260] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/07/2022]
Abstract
Control of the microstructure grain orientation, grain boundaries and thickness are crucial for MOF membranes. We report a novel synthesis strategy to prepare highly c-oriented ZIF-95 membranes through vapor-assisted in-plane epitaxial growth. In a mixed DMF/water vapor atmosphere, in-plane epitaxial growth of a ZIF-95 seeds layer was achieved to obtain an oriented and well-intergrown ZIF-95 membrane with a thickness of only 600 nm. Demonstrated by both experimental and simulation studies, the c-oriented ZIF-95 membrane displayed superior separation performance because a perfectly oriented structure resulted in a notable reduction of intercrystalline defects and transport pathways. For the separation of equimolar binary mixtures at 100 °C and 1 bar, the mixture separation factors of H2 /CO2 and H2 /CH4 were 32.2 and 53.7, respectively, with an H2 permeance of over 7.9×10-7 mol m-2 s-1 Pa-1 , which was 4.6 times higher than that of a randomly oriented ZIF-95 membrane.
Collapse
Affiliation(s)
- Xixi Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Zheng Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University, Hannover, Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China
| |
Collapse
|
37
|
In-situ interfacial assembly of ultra-H2-permeable metal-organic framework membranes for H2/CO2 separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Ma X, Wan Z, Li Y, He X, Caro J, Huang A. Anisotropic Gas Separation in Oriented ZIF‐95 Membranes Prepared by Vapor‐Assisted In‐Plane Epitaxial Growth. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xixi Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Zheng Wan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Germany
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road 200241 Shanghai China
| |
Collapse
|
39
|
Wu W, Su P, Li W. Mixed matrix membranes containing polymer‐embedded metal‐organic framework microspheres. AIChE J 2020. [DOI: 10.1002/aic.17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wufeng Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| | - Pengcheng Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University Guangzhou China
| |
Collapse
|
40
|
Wang B, Qiao Z, Xu J, Wang J, Liu X, Zhao S, Wang Z, Guiver MD. Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907701. [PMID: 32329145 DOI: 10.1002/adma.201907701] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Ultrathin unobstructed gas transport channels through the membrane selective layer are constructed in mixed matrix membranes (MMMs) by using gravity-induced interface self-assembly of poly(vinylamine) and polymer-modified MIL-101(Cr). For CO2 /N2 (15/85 by volume) mixed gas, the MMMs achieve a high CO2 permeance of 823 gas permeation units and CO2 /N2 selectivity of 242 at 0.5 MPa. Based on economic analyses, a two-stage membrane process can achieve gas separation and economic targets.
Collapse
Affiliation(s)
- Bo Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Jiayou Xu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinlei Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Song Zhao
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| |
Collapse
|