1
|
Liu T, Li T, Tea ZY, Wang C, Shen T, Lei Z, Chen X, Zhang W, Wu J. Modular assembly of arenes, ethylene and heteroarenes for the synthesis of 1,2-arylheteroaryl ethanes. Nat Chem 2024; 16:1705-1714. [PMID: 38937591 DOI: 10.1038/s41557-024-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The 1,2-arylheteroaryl ethane motif stands as a privileged scaffold with promising implications in drug discovery. Conventional de novo syntheses of these molecules have relied heavily on pre-functionalized synthons, entailing harsh conditions and multi-step processes. Here, to address these limitations, we present a modular approach for the direct synthesis of 1,2-arylheteroaryl ethanes using feedstock chemicals, including ethylene, arenes and heteroarenes. We disclosed a photo triplet-energy-transfer-initiated radical cascade process, leveraging homolytic cleavage of C-S bonds in aryl sulfonium salts as the key step to access aryl radicals with excellent regioselectivity. This method allows for rapid structural diversification of bioactive molecules, showcasing excellent functional group tolerance and streamlining the synthesis of bioactive compounds and their derivatives. Furthermore, our approach can be extended to propylene, non-gaseous terminal alkenes and various other electrophilic radical precursors, including heteroaryl radicals, hydroxyl radicals, trifluoromethyl radicals and α-carbonyl alkyl radicals. This study highlights the significance of radical polarity matching in designing selective multi-component couplings.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Talin Li
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi Yuan Tea
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Chu Wang
- College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, Republic of Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, People's Republic of China
| | - Weigang Zhang
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
- National University of Singapore Suzhou Research institute, Suzhou, People's Republic of China.
| |
Collapse
|
2
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
3
|
Wright JS, Sharninghausen LS, Lapsys A, Sanford MS, Scott PJH. C-H Labeling with [ 18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS CENTRAL SCIENCE 2024; 10:1674-1688. [PMID: 39364044 PMCID: PMC11447958 DOI: 10.1021/acscentsci.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F+" reagents (e.g., [18F]F2) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [18F]fluoride sources (e.g., [18F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SNAr, SN2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex Lapsys
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Michiyuki T, Homölle SL, Pandit NK, Ackermann L. Electrocatalytic Formal C(sp 2)-H Alkylations via Nickel-Catalyzed Cross-Electrophile Coupling with Versatile Arylsulfonium Salts. Angew Chem Int Ed Engl 2024; 63:e202401198. [PMID: 38695843 DOI: 10.1002/anie.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/15/2024]
Abstract
Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Neeraj K Pandit
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
7
|
Simon H, Zangarelli A, Bauch T, Ackermann L. Ruthenium(II)-Catalyzed Late-Stage Incorporation of N-Aryl Triazoles and Tetrazoles with Sulfonium Salts via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202402060. [PMID: 38618872 DOI: 10.1002/anie.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.
Collapse
Affiliation(s)
- Hendrik Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Jiao M, Zhang J, Wang M, Lu H, Shi Z. Metallaphotoredox deuteroalkylation utilizing thianthrenium salts. Nat Commun 2024; 15:5067. [PMID: 38871683 DOI: 10.1038/s41467-024-48590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Deuterium labeling compounds play a crucial role in organic and pharmaceutical chemistry. The synthesis of such compounds typically involves deuterated building blocks, allowing for the incorporation of deuterium atoms and functional groups into a target molecule in a single step. Unfortunately, the limited availability of synthetic approaches to deuterated synthons has impeded progress in this field. Here, we present an approach utilizing alkyl-substituted thianthrenium salts that efficiently and selectively introduce deuterium at the α position of alkyl chains through a pH-dependent HIE process, using D2O as the deuterium source. The resulting α-deuterated alkyl thianthrenium salts, which bear two deuterium atoms, exhibit excellent selectivity and deuterium incorporation in electrophilic substitution reactions. Through in situ formation of isotopically labelled alkyl halides, these thianthrenium salts demonstrate excellent compatibility in a series of metallaphotoredox cross-electrophile coupling with (hetero)aryl, alkenyl, alkyl bromides, and other alkyl thianthrenium salts. Our technique allows for a wide range of substrates, high deuterium incorporation, and precise control over the site of deuterium insertion within a molecule such as the benzyl position, allylic position, or any alkyl chain in between, as well as neighboring heteroatoms. This makes it invaluable for synthesizing various deuterium-labeled compounds, especially those with pharmaceutical significance.
Collapse
Affiliation(s)
- Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
9
|
Cheng K, Webb EW, Bowden GD, Wright JS, Shao X, Sanford MS, Scott PJH. Photo- and Cu-Mediated 11C Cyanation of (Hetero)Aryl Thianthrenium Salts. Org Lett 2024; 26:3419-3423. [PMID: 38630573 PMCID: PMC11099534 DOI: 10.1021/acs.orglett.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We present a photo- and Cu-mediated 11C cyanation of bench-stable (hetero)aryl thianthrenium salts via an aryl radical addition pathway. The thianthrenium substrates can be readily accessed via C-H functionalization, and the radiocyanation protocol proceeds under mild conditions (<50 °C, 5 min) and can be automated using open-source, readily accessible augmentations to existing radiochemistry equipment.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen, Germany
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| |
Collapse
|
10
|
Schüll A, Grothe L, Rodrigo E, Erhard T, Waldvogel SR. Electrochemical Synthesis of S-Aryl Dibenzothiophenium Triflates as Precursors for Selective Nucleophilic Aromatic (Radio)fluorination. Org Lett 2024; 26:2790-2794. [PMID: 37805940 DOI: 10.1021/acs.orglett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A novel electrosynthetic approach to aryl dibenzothiophenium salts, including the direct intramolecular formation of a C-S bond in a metal-free, electrochemical key step under ambient conditions, is reported. The broad applicability of this method is demonstrated with 14 examples, including nitrogen-containing heterocycles in isolated yields up to 72%. The resulting sulfonium salts can be used as precursors for fluorine labeling to give [18F]fluoroarenes as found in PET tracer ligands.
Collapse
Affiliation(s)
- Aaron Schüll
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lisa Grothe
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eduardo Rodrigo
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Thomas Erhard
- Medicinal Chemistry & Screening Biology, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Cui M, Xu Y, Tian R, Duan Z. BF 3-Promoted Ring Expansion of Iminylphosphiranes and Acylphosphiranes for Divergent Access to 1,2-Azaphospholidines and 1,2-Dihydrophosphetes. Org Lett 2024; 26:1819-1823. [PMID: 38415589 DOI: 10.1021/acs.orglett.3c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ring expansion of strained small rings provides an efficient method for the synthesis of various high-value carbocycles and heterocycles. Here we report BF3·Et2O as both an activating reagent and fluorine source, enabling ring expansion of phosphirane and P-F bond formation. Treatment of 1-iminylphosphirane complexes with BF3·Et2O resulted in 1,2-azaphospholidines, while the reaction of 1-acylphosphirane complexes with BF3·Et2O afforded 1,2-dihydrophosphetes. The reaction path was tuned by the nucleophilicity of the N and O atoms toward the intermediate phosphenium cation.
Collapse
Affiliation(s)
- Mingyue Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yang Xu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Haveman LYF, Vugts DJ, Windhorst AD. State of the art procedures towards reactive [ 18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm Chem 2023; 8:28. [PMID: 37824021 PMCID: PMC10570257 DOI: 10.1186/s41181-023-00203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of 18F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction. MAIN BODY Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [18F]fluoride from oxygen-18 enriched water ([18O]H2O). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [18F]fluoride and its use for radiolabeling. CONCLUSION Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic 18F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.
Collapse
Affiliation(s)
- Lizeth Y F Haveman
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Neuroscience Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Humpert S, Hoffmann C, Neumaier F, Zlatopolskiy BD, Neumaier B. Validation of analytical HPLC with post-column injection as a method for rapid and precise quantification of radiochemical yields. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123847. [PMID: 37634390 DOI: 10.1016/j.jchromb.2023.123847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023]
Abstract
Accurate assessment of isolated radiochemical yields (RCYs) is a prerequisite for efficient and reliable optimization of labeling reactions. In practice, radiochemical conversions (RCCs) determined by HPLC analysis of crude reaction mixtures are often used to estimate RCYs. However, incomplete recovery of radioactivity from the stationary phase can lead to significant inaccuracies if RCCs are calculated based on the activity eluted from the column (i.e. the summed integrals of all peaks). Here, we validate a simple and practical method that overcomes problems associated with retention of activity on the column by determination of the total activity in the sample using post-column injection. Post-column injections were carried out using an additional injection valve, which was placed between the outlet of the HPLC column and the inlet of the detectors. 2-[18F]Fluoropyridine ([18F]FPy) and 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX) were prepared with radiochemical purities of > 99.8% and mixed with [18F]fluoride at a ratio of 1:1 to simulate reaction mixtures obtained by radiolabeling reactions with an RCC of 50%. The samples were analyzed on three different C18 HPLC columns using neutral and acidic mobile phases. RCCs determined using the summed area of all peaks in the chromatograms were compared with those determined using post-column injection. Additionally, RCCs determined by post-column injection were corrected for activity losses before, during and after radiosyntheses to afford analytical RCYs, which were compared with isolated RCYs. Determination of RCCs based on the summed area of all peaks gave correct results under certain chromatographic conditions, but led to overestimation of the actual RCCs by up to 50% in other cases. In contrast, determination of RCCs using post-column injection provided precise results in all cases, and often significantly reduced analysis time. Moreover, analytical RCYs calculated from RCCs determined by post-column injection showed excellent agreement with isolated RCYs (<3% deviation). In conclusion, HPLC analysis using post-column injection enables reliable determination of RCCs independent of the chromatographic conditions and, together with a simple activity balance, rapid and accurate prediction of isolated RCYs.
Collapse
Affiliation(s)
- Swen Humpert
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Chris Hoffmann
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neurosciences and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| |
Collapse
|
15
|
Cai Y, Chatterjee S, Ritter T. Photoinduced Copper-Catalyzed Late-Stage Azidoarylation of Alkenes via Arylthianthrenium Salts. J Am Chem Soc 2023. [PMID: 37307146 DOI: 10.1021/jacs.3c04016] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The arylethylamine pharmacophore is conserved across a range of biologically active natural products and pharmaceuticals, particularly in molecules that act on the central nervous system. Herein, we present a photoinduced copper-catalyzed azidoarylation of alkenes at a late stage with arylthianthrenium salts, allowing access to highly functionalized acyclic (hetero)arylethylamine scaffolds that are otherwise difficult to access. A mechanistic study is consistent with a rac-BINAP-CuI-azide (2) as the photoactive catalytic species. We show the utility of the new method by the expedient synthesis of racemic melphalan in four steps through C-H functionalization.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Sagnik Chatterjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Guo Y, Wei L, Wen Z, Jiang H, Qi C. Photoredox-catalyzed coupling of aryl sulfonium salts with CO 2 and amines to access O-aryl carbamates. Chem Commun (Camb) 2023; 59:764-767. [PMID: 36541669 DOI: 10.1039/d2cc06033g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient photoredox-catalyzed three-component coupling reaction of aryl sulfonium salts, carbon dioxide and amines has been developed for the first time. This reaction provides a new strategy for the synthesis of a range of valuable O-aryl carbamates from readily available arenes via a site-selective thianthrenation/carbamoyloxylation two-step process. Mild conditions, broad substrate scope and good functional group tolerance are the features of the transformation. The synthetic utility of the method was demonstrated by the late-stage modification of bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Yanhui Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Li Wei
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhonglin Wen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
18
|
Oxidation-Cyclisation of Biphenyl Thioethers to Dibenzothiophenium Salts for Ultrarapid 18F-Labelling of PET Tracers. Int J Mol Sci 2022; 23:ijms232415481. [PMID: 36555122 PMCID: PMC9779140 DOI: 10.3390/ijms232415481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
18F-labelled radiotracers are in high demand and play an important role for diagnostic imaging with positron emission tomography (PET). Challenges associated with the synthesis of the labelling precursors and the incorporation of [18F]fluoride with practical activity yields at batch scale are the main limitations for the development of new 18F-PET tracers. Herein, we report a high-yielding and robust synthetic method to access naked dibenzothiophenium salt precursors of complex PET tracers and their labelling with [18F]fluoride. C-S cross-coupling of biphenyl-2-thioacetate with aryl halides followed by sequential oxidation-cyclisation of the corresponding thioethers gives dibenzothiophenium salts in good to excellent yields. Labelling of neutral and electron-deficient substrates with [18F]fluoride is ultrarapid and occurs under mild conditions (1 min at 90 °C) with high activity yields. The method enables facile synthesis of complex and sensitive radiotracers, as exemplified by radiofluorination of three clinically relevant PET tracers [18F]UCB-J, [18F]AldoView and [18F]FNDP, and can accelerate the development and clinical translation of new 18F-radiopharmaceuticals.
Collapse
|
19
|
Zhang M, Wang B, Cao Y, Liu Y, Wang Z, Wang Q. Visible-Light-Driven Synthesis of Aryl Xanthates and Aryl Dithiocarbamates via an Electron Donor–Acceptor Complex. Org Lett 2022; 24:8895-8900. [DOI: 10.1021/acs.orglett.2c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
| | - Beibei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yunpeng Cao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
20
|
Yang C, Slavětínská LP, Fleuti M, Klepetářová B, Tichý M, Gurská S, Pavliš P, Džubák P, Hajdúch M, Hocek M. Synthesis of Polycyclic Hetero-Fused 7-Deazapurine Heterocycles and Nucleosides through C-H Dibenzothiophenation and Negishi Coupling. J Am Chem Soc 2022; 144:19437-19446. [PMID: 36245092 PMCID: PMC9619403 DOI: 10.1021/jacs.2c07517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
![]()
A new approach for synthesizing polycyclic heterofused
7-deazapurine
heterocycles and the corresponding nucleosides was developed based
on C–H functionalization of diverse (hetero)aromatics with
dibenzothiophene-S-oxide followed by the Negishi
cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling
afforded a series of (het)aryl-pyrimidines that were converted to
fused deazapurine heterocycles through azidation and thermal cyclization.
The fused heterocycles were glycosylated to the corresponding 2′-deoxy-
and ribonucleosides, and a series of derivatives were prepared by
nucleophilic substitutions at position 4. Four series of new polycyclic
thieno-fused 7-deazapurine nucleosides were synthesized using this
strategy. Most of the deoxyribonucleosides showed good cytotoxic activity,
especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted
thieno-fused 7-deazapurine nucleosides were fluorescent, and the former
one was converted to 2′-deoxyribonucleoside triphosphate for
enzymatic synthesis of labeled oligonucleotides.
Collapse
Affiliation(s)
- Chao Yang
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Pavliš
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry
& Czech Advanced Technology and Research Institute, Palacky University and University Hospital in Olomouc, Hněvotínská
5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic,Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic,E-mail:
| |
Collapse
|
21
|
Xue B, Huang PP, Zhu MZ, Fu SQ, Ge JH, Li X, Liu PN. Highly Efficient and para-Selective C-H Functionalization of Polystyrene Providing a Versatile Platform for Diverse Applications. ACS Macro Lett 2022; 11:1252-1257. [PMID: 36260783 DOI: 10.1021/acsmacrolett.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Postpolymerization modification of polystyrene (PS) can afford numerous value-added materials with different functions and applications, but it has been hampered by the lack of efficient methods. We report herein a highly efficient and para-selective conversion of the C-H bonds of the aromatic ring of PS into diverse functional groups using a combination of thianthrenation and thio-Suzuki-Miyaura coupling reaction. Notably, the thianthrenation efficiency of PS is as high as 99% and the degree of thianthrenation can be conveniently controlled using stoichiometric tuning of the amount of thianthrene-S-oxide added, resulting in 24-99 mol % thianthrenation. In the subsequent thio-Suzuki-Miyaura coupling reaction, 18 functionalized PS containing various functional groups (-CH2OH, -OMe, -SMe, -OTBS, -CH3, -NHBoc, -OCOMe, -CHO, -COMe, -Si(Me)3, etc.) were successfully prepared with a high degree of functionalization (64-99 mol %). The obtained functionalized PS can be readily converted into diverse functional materials, including solid-phase synthesis resins, aggregation-induced emission fluorophores, as well as ionomer binders and ion-exchange membranes for energy conversion devices. This method imparts diverse functionality onto PS with extremely high efficiency and selectivity, providing a versatile platform to transform existing commodity PS plastics into high-performance materials.
Collapse
Affiliation(s)
- Boxin Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pan-Pan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Zhi Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shu-Qing Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ji-Hong Ge
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. C(sp 3)-H/C(sp 3)-H Dehydrogenative Radical Coupling of Glycine Derivatives. Org Lett 2022; 24:7577-7582. [PMID: 36214657 DOI: 10.1021/acs.orglett.2c02951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a general C(sp3)-H/C(sp3)-H dehydrogenative coupling strategy for the preparation of various natural or unnatural amino acids from readily available glycine derivatives and hydrocarbons through a combination of SET and HAT process.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
23
|
Li B, Wang K, Yue H, Drichel A, Lin J, Su Z, Rueping M. Catalyst-Free C(sp 2)-H Borylation through Aryl Radical Generation from Thiophenium Salts via Electron Donor-Acceptor Complex Formation. Org Lett 2022; 24:7434-7439. [PMID: 36191259 DOI: 10.1021/acs.orglett.2c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl borates lie at the heart of carbon-carbon bond couplings, and they are widely applied to the synthesis of functional materials, pharmaceutical compounds, and natural products. Currently, synthetic methods for aryl borates are mostly limited to metal-catalyzed routes, and nonmetallic strategies remain comparatively underdeveloped. Herein, we report a mild, scalable, visible-light-induced cross-coupling between aryl dibenzothiophenium triflate salts and bis(catecholato)-diboron for the construction of C-B bonds in the absence of base, transition metal-ligand complex, or photoredox catalyst. Mechanistic studies reveal that this transformation is achieved through an electron donor-acceptor (EDA) complex activation in the absence of a catalyst. The mild reaction conditions allow the preparation of aromatic borates in good yields with excellent functional group tolerance. This photochemical protocol was also successfully applied to the late-stage modification of natural products and the synthesis of a drug intermediate, greatly demonstrating broadened utility.
Collapse
Affiliation(s)
- Bo Li
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal23955-6900, Saudi Arabia.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Ke Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Huifeng Yue
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal23955-6900, Saudi Arabia
| | - Alwin Drichel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Jingjing Lin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Zhenying Su
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074Aachen, Germany
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Xu Y, Cen P, Ma L, Tian M, Zhang X, Zhang Q, Yu K, Zhang H, Gu W, He Q. Highly efficient radiosynthesis and biological evaluation of [18F]safinamide, a radiolabelled anti-parkinsonian drug for PET imaging. ChemMedChem 2022; 17:e202200472. [PMID: 36068922 DOI: 10.1002/cmdc.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
As an add-on drug approved for Parkinson's disease treatment, safinamide has multiple functions, such as selective and reversible monoamine oxidase-B inhibition, voltage-sensitive sodium/potassium channel blockage, and glutamate release inhibition. Meanwhile, safinamide shows tremendous therapeutic potential in the context of other central nervous system diseases (e.g., ischaemic stroke, amyotrophic lateral sclerosis, depression, etc.). In this work, [18F]safinamide, which is safinamide labelled by the positron-emitting radionuclide [18F]fluorine, was synthesized automatically based on iodonium ylide precursors with high radiochemical yield and high molar activity. Density functional theory was applied to calculate the Gibbs free energy change during iodonium ylide-mediated fluorination and to interpret the effect of tetraethylammonium (TEA+) as the counter cation in these reactions to improve the nucleophilicity of [18F/19F]fluoride. In addition, positron emission tomography studies on Sprague Dawley rats were carried out to determine the imaging characteristics, pharmacokinetics, and metabolism of the [18F]safinamide radiotracer. The results displayed the complete biodistribution of the radiotracer, especially in rat brains, and revealed that [18F]safinamide has moderate brain uptake, rapid and reversible binding kinetics, and good stability.
Collapse
Affiliation(s)
- Yangyang Xu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Peili Cen
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Lijuan Ma
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Mei Tian
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Xue Zhang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, CHINA
| | - Qinghua Zhang
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Kaiwu Yu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Hong Zhang
- Zhejiang University, Department of Nuclear Medicine and PET/CT Center, CHINA
| | - Wangjun Gu
- Zhejiang University, College of Chemical & Biological Engineering, CHINA
| | - Qinggang He
- Zhejiang University, Chemical Engineering, 38 Zheda Rd., 310027, Hangzhou, CHINA
| |
Collapse
|
25
|
Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis DA, Cornella J. Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides. J Am Chem Soc 2022; 144:14489-14504. [PMID: 35921250 PMCID: PMC9394462 DOI: 10.1021/jacs.2c01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/10/2023]
Abstract
In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
26
|
Wang M, Zhang X, Ma M, Zhao B. Palladium-Catalyzed Synthesis of Esters from Arenes through C-H Thianthrenation. Org Lett 2022; 24:6031-6036. [PMID: 35929821 DOI: 10.1021/acs.orglett.2c02330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The efficient palladium-catalyzed synthesis of esters from readily available arenes has been developed. These C-H bond esterifications were achieved relying on the regioselective thianthrenation to generate the aryl-TT salts, which were treated as reactive electrophilic substrates to couple with phenol formate and N-hydroxysuccinimide (NHS) formate giving access to phenol esters and NHS esters, respectively, in the absence of carbon monoxide. A wide range of functional esters could be prepared with high efficiency under this redox-neutral palladium-catalytic condition. Late-stage functionalization and investigations of synthetic applications demonstrated the potential application of the established platform and these products.
Collapse
Affiliation(s)
- Mengning Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomei Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
27
|
Zhu J, Ye Y, Huang Y. Palladacycle-Catalyzed Olefinic C–P Cross-Coupling of Alkenylsulfonium Salts with Diarylphosphines to Access Alkenylphosphines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Yun Ye
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| |
Collapse
|
28
|
Zhao B, Wang Q, Zhu T, Feng B, Ma M. Palladium-Catalyzed Synthesis of C-1 Deuterated Aldehydes from (Hetero) Arenes Mediated by C (sp 2)-H Thianthrenation. Org Lett 2022; 24:5608-5613. [PMID: 35880900 DOI: 10.1021/acs.orglett.2c02328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed deuterated formylation of aryl sulfonium salts is prepared conveniently from readily available arenes, which enables the expedient synthesis of a series of structurally diverse C-1 deuterated aldehydes with 96%-99% deuterium incorporation. The easy to handle and cost-effective DCOONa provides a deuterium source, which can be introduced onto the formyl units with excellent selectivity under the palladium-catalytic redox neutral conditions. This catalytic route can accomplish the direct late-stage C-H functionalization of bioactive molecules and natural product derivatives assisted by C (sp2)-H thianthrenation. Moreover, on the basis of this practical approach, several deuterated drugs and analogues could be prepared with excellent levels of deuterium incorporation.
Collapse
Affiliation(s)
- Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuzhu Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianxiang Zhu
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Feng
- College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C–F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abbey N. Ragan
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Yannick Kraemer
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Wang-Yeuk Kong
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Supreeth Prasad
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Dean J. Tantillo
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Cody Ross Pitts
- University of California Davis Department of Chemistry One Shields Avenue 95616 Davis UNITED STATES
| |
Collapse
|
30
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
31
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C-F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022; 61:e202208046. [PMID: 35859267 DOI: 10.1002/anie.202208046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.
Collapse
Affiliation(s)
- Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Supreeth Prasad
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
32
|
Xu G, Han Z, Guo L, Lu H, Gao H. Transition-Metal-Free Cascade Approach for the Synthesis of Functionalized Biaryls by S NAr of Arylhydroxylamines with Arylsulfonium Salts. J Org Chem 2022; 87:10449-10453. [PMID: 35831025 DOI: 10.1021/acs.joc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a transition-metal-free protocol for the synthesis of functionalized biaryls through nucleophilic aromatic substitution (SNAr) of arylhydroxylamines to arylsulfonium salts. With this protocol, structurally diverse functionalized biaryls were obtained smoothly in moderate to good yields. Merits of this transformation include mild reaction conditions, broad substrate scope, great functional group tolerance, feasibility of a one-pot procedure, and ease of handing and scale-up.
Collapse
Affiliation(s)
- Gaofei Xu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Zongtao Han
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 262737, China
| | - Lirong Guo
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan 250100, Shandong, China
| |
Collapse
|
33
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022; 61:e202201240. [DOI: 10.1002/anie.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
34
|
Wang Y, Lin Q, Shi H, Cheng D. Fluorine-18: Radiochemistry and Target-Specific PET Molecular Probes Design. Front Chem 2022; 10:884517. [PMID: 35844642 PMCID: PMC9277085 DOI: 10.3389/fchem.2022.884517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
The positron emission tomography (PET) molecular imaging technology has gained universal value as a critical tool for assessing biological and biochemical processes in living subjects. The favorable chemical, physical, and nuclear characteristics of fluorine-18 (97% β+ decay, 109.8 min half-life, 635 keV positron energy) make it an attractive nuclide for labeling and molecular imaging. It stands that 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is the most popular PET tracer. Besides that, a significantly abundant proportion of PET probes in clinical use or under development contain a fluorine or fluoroalkyl substituent group. For the reasons given above, 18F-labeled radiotracer design has become a hot topic in radiochemistry and radiopharmaceutics. Over the past decades, we have witnessed a rapid growth in 18F-labeling methods owing to the development of new reagents and catalysts. This review aims to provide an overview of strategies in radiosynthesis of [18F]fluorine-containing moieties with nucleophilic [18F]fluorides since 2015.
Collapse
Affiliation(s)
- Yunze Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Nuclear Medicine, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
35
|
Wang Q, Hao X, Jin K, Zhang R, Duan C, Li Y. Visible-light-catalyzed C-H arylation of (hetero)arenes via arylselenonium salts. Org Biomol Chem 2022; 20:4427-4430. [PMID: 35587033 DOI: 10.1039/d2ob00507g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photo-induced C-H arylation of (hetero)arenes has been developed. Aryl selenonium salts as an aryl source led to the arylation of aromatic (hetero)cyclic compounds via C-Se bond activation under blue LED irradiation. The method simply utilizes the safe and clean energy source and yields a range of site-selective biphenyl or bi-heterocyclic products in medium to good yields. Furthermore, the borylation and Sonogashira coupling of aryl selenonium salts proceed in good yields as well. From the results, it is shown that selenonium salts are more reactive than sulfonium salts.
Collapse
Affiliation(s)
- Qiyue Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
36
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
37
|
Yoshida T, Honda Y, Morofuji T, Kano N. Transition-Metal-Free O-Arylation of Alcohols and Phenols with S-Arylphenothiaziniums. J Org Chem 2022; 87:7565-7573. [PMID: 35578794 DOI: 10.1021/acs.joc.2c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the transition-metal-free O-arylation of alcohols and phenols with S-arylphenothiaziniums, which can be easily synthesized from boronic acids. Aryl substituents derived from arylboronic acids were selectively introduced into the hydroxy groups in alcohols and phenols, and a variety of aryl ethers were synthesized. This selectivity is supported by theoretical calculations.
Collapse
Affiliation(s)
- Tatsuki Yoshida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Honda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
38
|
He FS, Bao P, Tang Z, Yu F, Deng WP, Wu J. Photoredox-Catalyzed α-Sulfonylation of Ketones from Sulfur Dioxide and Thianthrenium Salts. Org Lett 2022; 24:2955-2960. [PMID: 35416676 DOI: 10.1021/acs.orglett.2c01132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoredox-catalyzed sulfonylation of silyl enol ethers with DABCO·(SO2)2 and thianthrenium salts is achieved, providing diverse β-keto sulfones in moderate to good yields. This protocol features easily accessible starting materials and good functional group compatibility, enabling the introduction of various functionalized sulfonyl groups into ketones. Furthermore, as one of the important industrial raw materials, methanol can be employed as the methyl source to prepare α-methylsulfonated ketones through a methyl thianthrenium intermediate for the first time.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Ping Bao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
39
|
Zhang Q, Xue X, Hong B, Gu Z. Torsional strain inversed chemoselectivity in a Pd-catalyzed atroposelective carbonylation reaction of dibenzothiophenium. Chem Sci 2022; 13:3761-3765. [PMID: 35432889 PMCID: PMC8966737 DOI: 10.1039/d2sc00341d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
A palladium-catalyzed enantioselective ring-opening/carbonylation of cyclic diarylsulfonium salts is reported. In comparison to thioethers, the sulfonium salts displayed high reactivity and enabled the reaction to be performed under mild conditions (room temperature). The steric repulsion of the two non-hydrogen substituents adjacent to the axis led cyclic diarylsulfonium salts to be distorted, which enabled the ring-opening reaction to proceed with significant preference for breaking the exocyclic C-S bond.
Collapse
Affiliation(s)
- Qiuchi Zhang
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Xiaoping Xue
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University Fuzhou Fujian 350108 P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China .,College of Materials and Chemical Engineering, Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
40
|
Ma NN, Ren JA, Liu X, Chu XQ, Rao W, Shen ZL. Nickel-Catalyzed Direct Cross-Coupling of Aryl Sulfonium Salt with Aryl Bromide. Org Lett 2022; 24:1953-1957. [PMID: 35244408 DOI: 10.1021/acs.orglett.2c00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct cross-couplings of aryl sulfonium salts with aryl halides could be achieved by using nickel as a reaction catalyst. The reactions proceeded efficiently via C-S bond activation in the presence of magnesium turnings and lithium chloride in THF at ambient temperature to afford the corresponding biaryls in moderate to good yields, potentially serving as an attractive alternative to conventional cross-coupling reactions employing preprepared organometallic reagents.
Collapse
Affiliation(s)
- Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Ao Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
41
|
Zhang L, Ritter T. A Perspective on Late-Stage Aromatic C-H Bond Functionalization. J Am Chem Soc 2022; 144:2399-2414. [PMID: 35084173 PMCID: PMC8855345 DOI: 10.1021/jacs.1c10783] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Late-stage functionalization of C-H bonds (C-H LSF) can provide a straightforward approach to the efficient synthesis of functionalized complex molecules. However, C-H LSF is challenging because the C-H bond must be functionalized in the presence of various other functional groups. In this Perspective, we evaluate aromatic C-H LSF on the basis of four criteria─reactivity, chemoselectivity, site-selectivity, and substrate scope─and provide our own views on current challenges as well as promising strategies and areas of growth going forward.
Collapse
Affiliation(s)
- Li Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
42
|
Cironis N, Yuan K, Thomas S, Ingleson MJ. XtalFluor‐E effects the C3‐H sulfenylation of indoles to form di‐indole sulfides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kang Yuan
- University of Edinburgh Chemsitry UNITED KINGDOM
| | - Stephen Thomas
- University of Edinburgh School of Chemistry Joseph Black Building,King's Buildings, West Mains Road EH9 3FJ Edinburgh UNITED KINGDOM
| | | |
Collapse
|
43
|
Chen W, Wang H, Tay NES, Pistritto VA, Li KP, Zhang T, Wu Z, Nicewicz DA, Li Z. Arene radiofluorination enabled by photoredox-mediated halide interconversion. Nat Chem 2022; 14:216-223. [PMID: 34903859 PMCID: PMC9617144 DOI: 10.1038/s41557-021-00835-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Positron emission tomography (PET) is a powerful imaging technology that can visualize and measure metabolic processes in vivo and/or obtain unique information about drug candidates. The identification of new and improved molecular probes plays a critical role in PET, but its progress is somewhat limited due to the lack of efficient and simple labelling methods to modify biologically active small molecules and/or drugs. Current methods to radiofluorinate unactivated arenes are still relatively limited, especially in a simple and site-selective way. Here we disclose a method for constructing C-18F bonds through direct halide/18F conversion in electron-rich halo(hetero)arenes. [18F]F- is introduced into a broad spectrum of readily available aryl halide precursors in a site-selective manner under mild photoredox conditions. Notably, our direct 19F/18F exchange method enables rapid PET probe diversification through the preparation and evaluation of an [18F]-labelled O-methyl tyrosine library. This strategy also results in the high-yielding synthesis of the widely used PET agent L-[18F]FDOPA from a readily available L-FDOPA analogue.
Collapse
Affiliation(s)
- Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas E S Tay
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vincent A Pistritto
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kang-Po Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tao Zhang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Chao MN, Chezal JM, Debiton E, Canitrot D, Witkowski T, Levesque S, Degoul F, Tarrit S, Wenzel B, Miot-Noirault E, Serre A, Maisonial-Besset A. A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs. Pharmaceuticals (Basel) 2022; 15:ph15020162. [PMID: 35215275 PMCID: PMC8877694 DOI: 10.3390/ph15020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F− with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%).
Collapse
Affiliation(s)
- Maria Noelia Chao
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Jean-Michel Chezal
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Eric Debiton
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Damien Canitrot
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Tiffany Witkowski
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sophie Levesque
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63000 Clermont-Ferrand, France
| | - Françoise Degoul
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sébastien Tarrit
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany;
| | - Elisabeth Miot-Noirault
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Audrey Serre
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Aurélie Maisonial-Besset
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Correspondence:
| |
Collapse
|
45
|
Jang E, Kim HI, Jang HS, Sim J. Photoredox-Catalyzed Oxidative Radical-Polar Crossover Enables the Alkylfluorination of Olefins. J Org Chem 2022; 87:2640-2650. [PMID: 35020397 DOI: 10.1021/acs.joc.1c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The three-component alkylfluorination of olefins via an oxidative radical-polar crossover under visible light-induced photocatalysis is disclosed. A key feature of this reaction is the incorporation of two synthetically meaningful components involving a three-dimensional alkyl group and a fluorine atom using easily preparable N-hydroxyphthalimide esters as the alkyl donors and a low-cost hydrogen fluoride as the fluorine source. Furthermore, a one-step procedure using commercially available carboxylic acids demonstrated the versatility of this new method.
Collapse
Affiliation(s)
- Eunbin Jang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hoe In Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hye Su Jang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
46
|
Li Q, Huang J, Cao Z, Zhang J, Wu J. Photoredox-catalyzed reaction of thianthrenium salts, sulfur dioxide and hydrazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00768a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoredox-catalyzed reaction of thianthrenium salts, hydrazines and DABCO·(SO2)2 is accomplished, providing diverse arenesulfonohydrazides in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qiangwei Li
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zenghui Cao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
47
|
Tian ZY, Zhang CP. Visible-Light-Initiated Catalyst-Free Trifluoromethylselenolation of Arylsulfonium Salts with [Me4N][SeCF3]. Org Chem Front 2022. [DOI: 10.1039/d2qo00235c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox potential gap between arylsulfonium salt and [Me4N][SeCF3] has been clearly disclosed by CV measurements. Construction of carbon-selenium bond by overcoming this gap without using catalysts and additives is...
Collapse
|
48
|
State of the art of radiochemistry for 11C and 18F PET tracers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Yoshida T, Honda Y, Morofuji T, Kano N. N-Methylphenothiazine S-Oxide Enabled Oxidative C(sp 2)-C(sp 2) Coupling of Boronic Acids with Organolithiums via Phenothiaziniums. Org Lett 2021; 23:9664-9668. [PMID: 34878797 DOI: 10.1021/acs.orglett.1c03986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the development of a transition-metal-free oxidative C(sp2)-C(sp2) coupling of readily available boronic acids and organolithiums via phenothiazinium ions. Various biaryl, styrene, and diene derivatives were obtained using this reaction system. The key to this process is N-methylphenothiazine S-oxide (PTZSO), which allows efficient conversion of boronic acids to phenothiazinium ions. The mechanism of phenothiazinium formation using PTZSO was investigated using theoretical calculations and experiments, which provided insight into the unique reactivity of PTZSO.
Collapse
Affiliation(s)
- Tatsuki Yoshida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Honda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
50
|
Chen Y, Wen S, Tian Q, Zhang Y, Cheng G. Transition Metal-Free C-H Thiolation via Sulfonium Salts Using β-Sulfinylesters as the Sulfur Source. Org Lett 2021; 23:7905-7909. [PMID: 34579530 DOI: 10.1021/acs.orglett.1c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We disclose a direct C(sp)-, C(sp2)-, and C(sp3)-H thiolation reaction using β-sulfinylesters as the versatile sulfur source. The key step of this protocol is chemoselective C-S bond cleavage of the sulfonium salts that are formed in situ from the corresponding alkenes, alkynes, and 1,3-dicarboxyl compounds with β-sulfinylesters. The successful capture of the acrylate byproduct supports a retro-Michael reaction mechanism.
Collapse
Affiliation(s)
- Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|