1
|
Torrisi J, Chvojka M, Jurček P, Zhang X, Zeng H, Šindelář V, Valkenier H. Anion Transport by Bambusuril-Bile Acid Conjugates: Drastic Effect of the Cholesterol Content. Angew Chem Int Ed Engl 2025:e202424754. [PMID: 39791967 DOI: 10.1002/anie.202424754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Artificial anion transporters offer a potential way to treat deficiencies in cellular anion transport of genetic origins. In contrast to the large variety of mobile anion carriers and self-assembled anion channels reported, unimolecular anion channels are less investigated. Herein, we present a unique example of a unimolecular anion channel based on a bambusuril (BU) macrocycle, a well-established anion receptor. The BU structure was expanded by appending various bile acid residues allowing a single molecule to span the membrane. Chloride transport mediated by BUs through lipid bilayers was investigated in liposomes and these studies revealed a surprisingly high dependence of the anion transport activity on the cholesterol content in the liposomal membrane.
Collapse
Affiliation(s)
- Jacopo Torrisi
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Engineering of Molecular NanoSystems, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| | - Pia Jurček
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Xinxin Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| |
Collapse
|
2
|
Mao L, Hou S, Shi L, Guo J, Zhu B, Sun Y, Chang J, Xin P. Synthetic anion channels: achieving precise mimicry of the ion permeation pathway of CFTR in an artificial system. Chem Sci 2024; 16:371-377. [PMID: 39620072 PMCID: PMC11605520 DOI: 10.1039/d4sc06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a naturally occurring anion channel essential for numerous biological processes, possesses a positively charged ion conduction pathway within its transmembrane domain, which serves as the core module for promoting the movement of anions across cell membranes. In this study, we developed novel artificial anion channels by rebuilding the positively charged ion permeation pathway of the CFTR in artificial systems. These synthetic molecules can be efficiently inserted into lipid bilayers to form artificial ion channels, which exhibit a preference for anions during the transmembrane transport process. More importantly, the positively charged amino acid residues located in the ion permeation pathway of these artificial channels can promote the transmembrane transport of anions through electrostatic interactions, which is consistent with the mechanism of anion transmembrane transport achieved by CFTR.
Collapse
Affiliation(s)
- Linlin Mao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Shuaimin Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University Macao 999078 China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| |
Collapse
|
3
|
Jia C, Luo D, Zhou J, Xie X, Yuen In Lam H, Li P, Mu Y, Zeng Z, Ren C. Engineered Reactive Oxygen Species (ROS)-Responsive Artificial H +/Cl - Ion Channels for Targeted Cancer Treatment. Angew Chem Int Ed Engl 2024:e202419800. [PMID: 39620598 DOI: 10.1002/anie.202419800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Reactive oxygen species (ROS)-responsive ion channels regulate the ion flow across the membranes in response to alterations in the cellular redox state, playing a crucial role in cellular adaptation to oxidative stress. Despite their significance, replicating ROS-responsive functionality in artificial ion channels remains elusive. In this study, we introduce a novel class of artificial H+/Cl- ion channels activatable by elevated ROS levels in cancer cells. ROS-induced decaging of the phenylboronate group triggers the rapid release of the channel-forming units, leading to self-assembly of the H-bonded cascades facilitating the synergistic transport of H+ and Cl- ions, with H+/Cl- ion transport selectivity of 7.7. Upon activation, ROS-C-Cl exhibits significant apoptotic activity against human breast cancer cells, achieving an IC50 of 2.8 μM, comparable to that of paclitaxel. Exploiting the intrinsic oxidative microenvironment of cancer cells, along with the enhanced oxidative stress arising from H+/Cl- co-transport, ROS-C-Cl demonstrates exceptional selectivity in targeting cancer cells with a selectivity index of 10.2 over normal breast cells, outperforming that of paclitaxel by 19.4 folds.
Collapse
Affiliation(s)
- Chunyan Jia
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Daoxin Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Jin Zhou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Pengzhe Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhiping Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| |
Collapse
|
4
|
Ren B, Sun Y, Xin P. Recent Advances in Artificial Anion Channels and Their Selectivity. Chempluschem 2024; 89:e202400466. [PMID: 39212532 DOI: 10.1002/cplu.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nature performs critical physiological functions using a series of structurally and functionally diverse membrane proteins embedded in cell membranes, in which native ion protein channels modify the electrical potential inside and outside the cell membrane through charged ion movements. Consequently, the cell responds to external stimuli, playing an essential role in various life activities, such as nerve excitation conduction, neurotransmitter release, muscle movement, and control of cell differentiation. Supramolecular artificial channels, which mimic native protein channels in structure and function, adopt unimolecular or self-assembled structures, such as crown ethers, cyclodextrins, cucurbiturils, column arenes, cyclic peptide nanotubes, and metal-organic artificial channels, in channel construction strategies. Owing to the various driving forces involved, artificial synthetic ion channels can be divided into artificial cation and anion channels in terms of ion selectivity. Cation selectivity usually originates from ion coordination, whereas anion selectivity is related to hydrogen bonding, ion pairing, and anion-dipole interactions. Several studies have been conducted on artificial cation channels, and several reviews have summarized them in detail; however, the research on anions is still in the initial stages, and related reviews have rarely been reported. Hence, this article primarily focuses on the recent research on anion channels.
Collapse
Affiliation(s)
- Bowen Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Zhang D, Chang W, Shen J, Zeng H. Aromatic foldamer-derived transmembrane transporters. Chem Commun (Camb) 2024; 60:13468-13491. [PMID: 39466066 DOI: 10.1039/d4cc04388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This review is the first to focus on transmembrane transporters derived from aromatic foldamers, with most studies reported over the past decade. These foldamers have made significant strides in mimicking the essential functions of natural ion channel proteins. With their aromatic backbones rigidified by intramolecular hydrogen bonds or differential repulsive forces, this innovative family of molecules stands out for its structural diversity and functional adaptability. They achieve efficient and selective ion and molecule transport across lipid bilayers via carefully designed helical structures and tunable large cavities. Recent developments in this field highlight the transformative potential of foldamers in therapeutic applications and biomaterial engineering. Key advances include innovative molecular engineering strategies that enable highly selective ion transport by fine-tuning structural and functional attributes. Specific modifications to macrocyclic or helical foldamer structures have allowed precise control over ion selectivity and transport efficiency, with notable selectivity for K+, Li+, H+ and water molecules. Although challenges remain, future directions may focus on more innovative molecular designs, optimizing synthetic methods, improving membrane transport properties, integrating responsive designs that adapt to environmental stimuli, and fostering interdisciplinary collaborations. By emphasizing the pivotal role of aromatic foldamers in modern chemistry, this review aims to inspire further development, offering new molecular toolboxes and strategies to address technological and biological challenges in chemistry, biology, medicine, and materials science.
Collapse
Affiliation(s)
- Danyang Zhang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Wenju Chang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
6
|
Gou F, Wang Q, Yang Z, Chang W, Shen J, Zeng H. Artificial Lithium Channels Built from Polymers with Intrinsic Microporosity. Angew Chem Int Ed Engl 2024:e202418304. [PMID: 39352859 DOI: 10.1002/anie.202418304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
In sharp contrast to numerous artificial potassium channels developed over the past decade, the study of artificial lithium-transporting channels has remained limited. We demonstrate here the use of an interesting class of polymers with intrinsic microporosity (PIM) for constructing artificial lithium channels. These PIM-derived lithium channels show exceptionally efficient (γLi +>40 pS) and highly selective transport of Li+ ions, with selectivity factors of>10 against both Na+ and K+. By simply adjusting the initial reaction temperature, we can tune the transport property in a way that PIMs synthesized at initial reaction temperatures of 60 °C and 80 °C exhibit improved transport efficiency and selectivity, respectively, in the dioleoyl phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Fei Gou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuting Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zihong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenju Chang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | | |
Collapse
|
7
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
8
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Mimicking the Shape and Function of the ClC Chloride Channel Selective Pore by Combining a Molecular Hourglass Shape with Anion-π Interactions. Chemistry 2024; 30:e202304222. [PMID: 38270386 DOI: 10.1002/chem.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
9
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
10
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
11
|
Zhong Q, Cao Y, Xie X, Wu Y, Chen Z, Zhang Q, Jia C, Wu Z, Xin P, Yan X, Zeng Z, Ren C. Non-Covalently Stapled H + /Cl - Ion Channels Activatable by Visible Light for Targeted Anticancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314666. [PMID: 37864456 DOI: 10.1002/anie.202314666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
The development of stimuli-responsive artificial H+ /Cl- ion channels, capable of specifically disturbing the intracellular ion homeostasis of cancer cells, presents an intriguing opportunity for achieving high selectivity in cancer therapy. Herein, we describe a novel family of non-covalently stapled self-assembled artificial channels activatable by biocompatible visible light at 442 nm, which enables the co-transport of H+ /Cl- across the membrane with H+ /Cl- transport selectivity of 6.0. Upon photoirradiation of the caged C4F-L for 10 min, 90 % of ion transport efficiency can be restored, giving rise to a 10.5-fold enhancement in cytotoxicity against human colorectal cancer cells (IC50 =8.5 μM). The mechanism underlying cancer cell death mediated by the H+ /Cl- channels involves the activation of the caspase 9 apoptosis pathway as well as the scarcely reported disruption of the autophagic processes. In the absence of photoirradiation, C4F-L exhibits minimal toxicity towards normal intestine cells, even at a concentration of 200 μM.
Collapse
Affiliation(s)
- Qishuo Zhong
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of, Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Yin Cao
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of, Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Xiaopan Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuhang Wu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiqing Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiuping Zhang
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Jia
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhen Wu
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaosheng Yan
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiping Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of, Xiamen University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
12
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Reversing the ion transport selectivity through arm modification of an artificial molecular hourglass. Chem Commun (Camb) 2023. [PMID: 37997041 DOI: 10.1039/d3cc04573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
An arm modification strategy, by replacing relatively rigid, electron-deficient side arms with flexible ether chain arms and linking them onto a tetraoxacalix[2]arene[2]triazine skeleton, was utilized to design an artificial molecular hourglass. The planar bilayer experiments confirmed the unimolecular channel mechanism and suggested reversed ion selectivity from the previously reported anion selectivity to weak cation selectivity.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Aftahy K, Arrasate P, Bashkirov PV, Kuzmin PI, Maurizot V, Huc I, Frolov VA. Molecular Sensing and Manipulation of Protein Oligomerization in Membrane Nanotubes with Bolaamphiphilic Foldamers. J Am Chem Soc 2023; 145:25150-25159. [PMID: 37948300 PMCID: PMC10682987 DOI: 10.1021/jacs.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Adaptive and reversible self-assembly of supramolecular protein structures is a fundamental characteristic of dynamic living matter. However, the quantitative detection and assessment of the emergence of mesoscale protein complexes from small and dynamic oligomeric precursors remains highly challenging. Here, we present a novel approach utilizing a short membrane nanotube (sNT) pulled from a planar membrane reservoir as nanotemplates for molecular reconstruction, manipulation, and sensing of protein oligomerization and self-assembly at the mesoscale. The sNT reports changes in membrane shape and rigidity caused by membrane-bound proteins as variations of the ionic conductivity of the sNT lumen. To confine oligomerization to the sNT, we have designed and synthesized rigid oligoamide foldamer tapes (ROFTs). Charged ROFTs incorporate into the planar and sNT membranes, mediate protein binding to the membranes, and, driven by the luminal electric field, shuttle the bound proteins between the sNT and planar membranes. Using Annexin-V (AnV) as a prototype, we show that the sNT detects AnV oligomers shuttled into the nanotube by ROFTs. Accumulation of AnV on the sNT induces its self-assembly into a curved lattice, restricting the sNT geometry and inhibiting the material uptake from the reservoir during the sNT extension, leading to the sNT fission. By comparing the spontaneous and ROFT-mediated entry of AnV into the sNT, we reveal how intricate membrane curvature sensing by small AnV oligomers controls the lattice self-assembly. These results establish sNT-ROFT as a powerful tool for molecular reconstruction and functional analyses of protein oligomerization and self-assembly, with broad application to various membrane processes.
Collapse
Affiliation(s)
- Kathrin Aftahy
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Pedro Arrasate
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
| | - Pavel V. Bashkirov
- Research
Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Petr I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow 119071, Russia
| | - Victor Maurizot
- Univ. Bordeaux,
CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Pessac 33600, France
| | - Ivan Huc
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Vadim A. Frolov
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
14
|
Shen J, R D, Li Z, Oh H, Behera H, Joshi H, Kumar M, Aksimentiev A, Zeng H. Sulfur-Containing Foldamer-Based Artificial Lithium Channels. Angew Chem Int Ed Engl 2023; 62:e202305623. [PMID: 37539755 DOI: 10.1002/anie.202305623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Unlike many other biologically relevant ions (Na+ , K+ , Ca2+ , Cl- , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.
Collapse
Affiliation(s)
- Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Deepa R
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Harekrushna Behera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Himanshu Joshi
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
15
|
Jin L, Sun C, Li Z, Shen J, Zeng H. A K +-selective channel with a record-high K +/Na + selectivity of 20.1. Chem Commun (Camb) 2023; 59:3610-3613. [PMID: 36891811 DOI: 10.1039/d2cc04396c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
For compounds each containing a phenylalanine moiety with its two ends amidated to have a 15-crown-5 unit and an alkyl chain, a simple tuning of the alkyl chain length delivered a K+-selective channel with a record-high K+/Na+ selectivity of 20.1.
Collapse
Affiliation(s)
- Lei Jin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
| | - Chang Sun
- College of Textile Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
16
|
Cholesterol-stabilized membrane-active nanopores with anticancer activities. Nat Commun 2022; 13:5985. [PMID: 36216956 PMCID: PMC9551035 DOI: 10.1038/s41467-022-33639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively. Bacterial cells utilize cholesterol-enhanced pore formation to specifically target eukaryotic cells. Here, the authors present a class of bio-inspired, cholesterol-enhanced nanopores which display anticancer activities in vitro.
Collapse
|
17
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
19
|
Shen J, Roy A, Joshi H, Samineni L, Ye R, Tu YM, Song W, Skiles M, Kumar M, Aksimentiev A, Zeng H. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. NANO LETTERS 2022; 22:4831-4838. [PMID: 35674810 DOI: 10.1021/acs.nanolett.2c01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water transport rate and selectivity with structural simplicity and robustness. Produced by a facile one-pot copolymerization reaction under mild conditions, the best-performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F atoms being the most electronegative in the periodic table are proposed as being critical to enabling the ultrafast and superselective water transport properties by decreasing the channel's cavity and enhancing the channel wall smoothness via reducing intermolecular forces with water molecules or hydrated ions.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Arundhati Roy
- Department of Pharmacy, Ludwig Maximilian University Munich Butenandtstraße 5-13, Munich 81377, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruijuan Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu-Ming Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Woochul Song
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Skiles
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
20
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
21
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
22
|
Yuan L, Jiang P, Hu J, Zeng H, Huo Y, Li Z, Zeng H. A highly active and selective chalcogen bond-mediated perchlorate channel. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Wan X, Li S, Tian Y, Xu J, Shen LC, Zuilhof H, Zhang M, Sue ACH. Twisted pentagonal prisms: AgnL2 metal-organic pillars. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Recent progress of vibrational spectroscopic study on the interfacial structure of biomimetic membranes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
27
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
28
|
Shen J, Ye R, Zeng H. Crystal Packing‐Guided Construction of Hetero‐Oligomeric Peptidic Ensembles as Synthetic 3‐in‐1 Transporters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Ruijuan Ye
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Huaqiang Zeng
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| |
Collapse
|
29
|
|
30
|
Cheng M, Zhu F, Zhang S, Zhang X, Dhinakaran MK, Li H. A Funnel-Shaped Chloride Nanochannel Inspired By ClC Protein. NANO LETTERS 2021; 21:4086-4091. [PMID: 33885312 DOI: 10.1021/acs.nanolett.1c01055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chloride transport participates in a great variety of physiological activities, such as regulating electrical excitability and maintaining acid-base equilibrium. However, the high flux is the prerequisite to ensure the realization of the above functions. Actually, the high flux of ion transport is significant, not only for living things but also for practical applications. Herein, inspired by chloride channel (ClC) protein, a novel NH2-pillar[5]arene functionalized funnel-shaped nanochannel was designed and constructed. The introduction of functional molecules changed surface charge property and endowed the nanochannel with Cl- selectivity, which facilitated Cl- transport. Moreover, by adjusting the asymmetric degree of the nanochannel, the Cl- transport flux can be improved greatly. The successful construction of an artificial ion channel with high flux will be much useful for practical applications like microfluidic devices, sensors, and ion separation.
Collapse
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xingrou Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
31
|
Shen J, Ye R, Zeng H. Crystal Packing-Guided Construction of Hetero-Oligomeric Peptidic Ensembles as Synthetic 3-in-1 Transporters. Angew Chem Int Ed Engl 2021; 60:12924-12930. [PMID: 33755290 DOI: 10.1002/anie.202101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Strategies to generate heteromeric peptidic ensembles via a social self-sorting process are limited. Herein, we report a crystal packing-inspired social self-sorting strategy broadly applicable to diverse types of H-bonded peptidic frameworks. Specifically, a crystal structure of H-bonded alkyl chain-appended monopeptides reveals an inter-chain separation distance of 4.8 Å dictated by the H-bonded amide groups, which is larger than 4.1 Å separation distance desired by the tightly packed straight alkyl chains. This incompatibility results in loosely packed alkyl chains, prompting us to investigate and validate the feasibility of applying bulky tert-butyl groups, modified with an anion-binding group, to alternatively interpenetrate the straight alkyl chains, modified with a crown ether group. Structurally, this social self-sorting approach generates highly stable hetero-oligomeric ensembles, having alternated anion- and cation-binding units vertically aligned to the same side. Functionally, these hetero-oligomeric ensembles promote transmembrane transport of cations, anions and more interestingly zwitterionic species such as amino acids.
Collapse
Affiliation(s)
- Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
32
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
33
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
34
|
Zhang H, Ye R, Mu Y, Li T, Zeng H. Small Molecule-Based Highly Active and Selective K + Transporters with Potent Anticancer Activities. NANO LETTERS 2021; 21:1384-1391. [PMID: 33464086 DOI: 10.1021/acs.nanolett.0c04134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report here a novel class of cation transporters with extreme simplicity, opening a whole new dimension of scientific research for finding small molecule-based cation transporters for therapeutic applications. Comprising three modular components (a headgroup, a flexible alkyl chain-derived body, and a crown ether-derived foot for ion binding), these transporters efficiently (EC50 = 0.18-0.41 mol % relative to lipid) and selectively (K+/Na+ selectivity = 7.0-9.5) move K+ ions across the membrane. Importantly, the most active (EC50 = 0.18-0.22 mol %) and highly selective series of transporters A12, B12, and C12 concurrently possess potent anticancer activities with IC50 values as low as 4.35 ± 0.91 and 6.00 ± 0.13 μM toward HeLa and PC3 cells, respectively. Notably, a mere replacement of the 18-crown-6 unit in the structure with 12-crown-4 or 15-crown-5 units completely annihilates the cation-transporting ability.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Ruijuan Ye
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tianhu Li
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| | - Huaqiang Zeng
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang, Jiangsu 215400, China
| |
Collapse
|
35
|
Yan T, Liu S, Luo Y, Zou Y, Liu J. Research Progress on the Macrocycle-Derived Artificial Transmembrane Ion Channels. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. J Am Chem Soc 2020; 142:13273-13277. [DOI: 10.1021/jacs.0c02881] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Davis JT, Gale PA, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2020; 49:6056-6086. [PMID: 32692794 DOI: 10.1039/c9cs00662a] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in anion transport by synthetic supramolecular systems are discussed in this article. Developments in the design of discrete molecular carriers for anions and supramolecular anion channels are reviewed followed by an overview of the use of these systems in biological systems as putative treatments for diseases such as cystic fibrosis and cancer.
Collapse
Affiliation(s)
- Jeffery T Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - Philip A Gale
- School of Chemistry (F11), The University of Sydney, NSW 2006, Australia.
| | - Roberto Quesada
- Departmento de Química, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
38
|
Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H. Polypyridine‐Based Helical Amide Foldamer Channels: Rapid Transport of Water and Protons with High Ion Rejection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Shen
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jingrong Fan
- School of Biological Sciences Nanyang Technological University Singapore 637551 Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Ning Li
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yuguang Mu
- School of Biological Sciences Nanyang Technological University Singapore 637551 Singapore
| | - Huaqiang Zeng
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| |
Collapse
|
39
|
Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H. Polypyridine-Based Helical Amide Foldamer Channels: Rapid Transport of Water and Protons with High Ion Rejection. Angew Chem Int Ed Engl 2020; 59:13328-13334. [PMID: 32346957 DOI: 10.1002/anie.202003512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Indexed: 12/31/2022]
Abstract
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom-scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one-pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer-based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single-file water chains in the 2.8 Å tubular cavity, rich in hydrogen-bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2 O⋅S-1 ⋅channel-1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.
Collapse
Affiliation(s)
- Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Jingrong Fan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Huaqiang Zeng
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|