1
|
Zhou H, Pang XY, Xie X, Phillips DL, Gong HY, Sessler JL, Jiang W. Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions. J Am Chem Soc 2024; 146:34842-34851. [PMID: 39637361 DOI: 10.1021/jacs.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active compound protection can allow inherently unstable molecules to be stabilized and latent reactivity to be masked. Synthetic receptors are attractive in terms of providing such protection. Nevertheless, preserving the activity and functionality of organic molecules in water poses a challenge. Here, we show that biomimetic receptors, specifically amide naphthotubes and an amide anthryltube, allow the efficient preservation of functional organic molecules in water. In particular, the amide naphthotubes were found to extend the half-lives of acetal-containing substrates ("acetals") against acid-catalyzed hydrolysis by up to 3000 times. This kinetic protection effect was ascribed to hydrogen bond-based recognition of the organic guests. A substrate dependence was seen that was further exploited to achieve the kinetic resolution of acetal isomers. To the best of our knowledge, the present study constitutes one of the most effective acetal protection strategies reported to date. The recognition-based protection approach reported here appears generalizable as evidenced by the protection of eight different substrates against six distinct chemical reactions. Based on the present findings, we propose that it is possible to design receptors that provide for the protection of specific substrates under a variety of reaction conditions including those carried out in water.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Tao Y, Dong Q, Wan J, Huang FP, Duan J, Zeng MH. Evolution rom [Zn 9] to a record-high [Zn 54] subblock and engineering a hierarchical supramolecular framework for enhanced iodine uptake. Chem Sci 2024:d4sc04474f. [PMID: 39677939 PMCID: PMC11639904 DOI: 10.1039/d4sc04474f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hierarchical supramolecular frameworks are being designed and constructed for various applications, yet the controlled assembly and process understanding incorporating giant building blocks remains a great challenge. Here, we report a strategy of "rivet" substitution and "hinge" linkage for the controlled assembly of the hierarchical supramolecular framework. The replacement of two "rivet" ethylene glycol (EG) molecules for triangular prism [Zn9] (a small block in 1) with a 1,3-propanediol (PDO) provides space for a "hinge" linkage from adjacent ligands, thus providing a hierarchical (from micro- to mesopores, from the internal cavity to external surface) supramolecular framework (2) based on a coordinative subblock with the record number of zinc ions ([Zn54]). Time-dependent powder X-ray diffraction and ESI-MS technology were used to assess the in situ evolution process: logically progressing from [Zn9] to [Zn18], then to [Zn27], and finally to [Zn54]. The sequential transformation entails two types of half-opening cavities and two types of internal microcages. Further aggregation of [Zn54] in dia topology engenders the formation of a one-dimensional channel (10 Å), and an additional mesocage with a volume of 16 × 16 × 55 Å3. The diverse pore system exhibits an impressive uptake capability (3.19 g g-1) for iodine vapor at 75 °C and effective ethylene purification. Our investigations represent a valuable avenue for assembling a giant subblock and hierarchical supramolecular framework, facilitating multi-functional molecular accommodation.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Qiubing Dong
- College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241000 China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 China
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University Urumqi 830017 China
| | - Ming-Hua Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| |
Collapse
|
3
|
Shen D, Zhang Z, Kesharwani T, Wu H, Zhang L, Stern CL, Chen H, Guo QH, Cai K, Chen AXY, Stoddart JF. Electrostatically Dominated Pre-Organization in Cyclodextrin Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024:e202415404. [PMID: 39415338 DOI: 10.1002/anie.202415404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Electrostatic interactions between oppositely charged entities play a key role in pre-organizing substrates and stabilizing transition states of reactions in enzymes. The use of electrostatic interactions to pre-organize ions in nanoconfined pores, however, has not been investigated to its full potential. Herein, we describe how carboxylate anions can be pre-organized at the behest of their electrostatic interactions with K+ cations in nanoconfined tunnels present in γ-cyclodextrin metal-organic frameworks, i.e., CD-MOFs. Several carboxylate anions, which are all much smaller than the cavities of the tunnels, were visualized by X-ray crystallography when nanoconfined in CD-MOFs, despite the large voids present in the tunnels. These anions were found to be aligned within a planar array defined by four K+ cations, positioned around the periphery of the tunnels. The strong electrostatic interactions between the carboxylate anions and the K+ cations dictate the orientation of the anions and override the influence of all other possible noncovalent bonding interactions between them and the tunnels. Consequently, the aligned pairs of γ-cyclodextrin rings constituting the tunnels become distorted, resulting in them having lower symmetry and fewer disordered carboxylate anions in the solid state. Our findings offer a transformative strategy for controlling the packing and orientation of ions in nanoconfined environments.
Collapse
Affiliation(s)
- Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei, 230601, China
| | - Zhongyuan Zhang
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei, 230601, China
| | - Tanay Kesharwani
- Center for Regenerative Nanomedicine, Northwestern University, 303 East Superior Street, Chicago, Illinois, 60611, United States
- Department of Chemistry, University of West Florida, 11000 University Parkway, Pensacola, FL-32514, United States
| | - Huang Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Long Zhang
- Center for Regenerative Nanomedicine, Northwestern University, 303 East Superior Street, Chicago, Illinois, 60611, United States
| | - Charlotte L Stern
- Center for Regenerative Nanomedicine, Northwestern University, 303 East Superior Street, Chicago, Illinois, 60611, United States
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Kang Cai
- Department of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
- Center for Regenerative Nanomedicine, Northwestern University, 303 East Superior Street, Chicago, Illinois, 60611, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW-2052, Australia
| |
Collapse
|
4
|
Nobre PC, Cordeiro P, Chipoline IC, Menezes V, Santos KVS, Ángel AYB, Alberto EE, Nascimento V. Telluride-Based Pillar[5]arene: A Recyclable Catalyst for Alkylation Reactions in Aqueous Solution. J Org Chem 2024; 89:12982-12988. [PMID: 39233358 PMCID: PMC11421007 DOI: 10.1021/acs.joc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The syntheses of previously unknown sulfide- and telluride-pillar[n]arenes are reported here. These macrocycles, among others, were tested as catalysts for alkylation reactions in aqueous solutions. Telluride-pillar[5]arene (P[5]-TePh) showed the best performance, emulating the behavior of the methyltransferase enzyme cofactor S-adenosyl-l-methionine. Using 1.0 mol % of P[5]-TePh, benzyl bromides reacted with NaCN/NaN3 in water, yielding organic nitriles/azides. The catalyst was recycled and efficiently reused for up to six cycles. 1H NMR experiments indicate a possible interaction between the substrate and P[5]-TePh's cavity.
Collapse
Affiliation(s)
- Patrick C Nobre
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ingrid C Chipoline
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Victor Menezes
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Kaila V S Santos
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Alix Y Bastidas Ángel
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eduardo E Alberto
- Departamento de Química, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro 24020-141, Brazil
| |
Collapse
|
5
|
Zheng T, Tan L, Lee M, Li Y, Sim E, Lee M. Active Molecular Gripper as a Macrocycle Synthesizer. J Am Chem Soc 2024; 146:25451-25455. [PMID: 39225691 DOI: 10.1021/jacs.4c10029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A confined space preorganizes substrates, which substantially changes their chemical reactivity and selectivity; however, the performance as a reaction vessel is hampered by insensitivity to environmental changes. Here, we show a dynamic confined space formed by substrate grasping of an amphiphilic host with branched aromatic arms as an active molecular gripper capable of performing substrate grasping, macrocyclization, and product release acting as a macrocycle synthesizer. The confined reaction space is formed by the substrate grasping of the molecular gripper, which is further stabilized by gel formation. Confining a linear substrate in the closed form of the gripper triggers a spontaneous ring-forming reaction to release a macrocycle product by opening. The consecutive open-closed switching enables repetitive tasks to be performed with remarkable working efficiency.
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Linfeng Tan
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Minhyeok Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongsheng Li
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Eunji Sim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Myongsoo Lee
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Ma C, Cao Q, Yu L, Ma Z, Gan Q. Chirality Interplay between the Interior and Exterior of Metal-Organic Cages. Angew Chem Int Ed Engl 2024; 63:e202410731. [PMID: 38923638 DOI: 10.1002/anie.202410731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A series of metal-organic cages featuring two stereogenic elements, in terms of the twisting of amide moieties within the ligand backbones and the rotation of diazaanthracene segments along the ligand ridges, were exploited. These two chiral components are correlative and serve as relays for transmitting chirality information between the internal and external cages. The chirality information induced by a chiral guest inside the cage cavity can pass through the cage framework and influence the orientation of the diazaanthracene segments on the periphery of the cage. In turn, the chirality of a stereogenic center within the diazaanthracene segments can transfer back into the cavity, enabling discrimination of enantiomeric guests.
Collapse
Affiliation(s)
- Chunmiao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingcheng Cao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
8
|
Yadav R, Maiti A, Schorpp M, Graf J, Weigend F, Greb L. Supramolecular trapping of a cationic all-metal σ-aromatic {Bi 4} ring. Nat Chem 2024; 16:1523-1530. [PMID: 38760432 PMCID: PMC11374680 DOI: 10.1038/s41557-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
Aromaticity in organic molecules is well defined, but its role in metal-only rings remains controversial. Here we introduce a supramolecular stabilization approach of a cationic {Bi4} rhomboid within the symmetric charge sphere of two bowl-shaped dianionic calix[4]pyrrolato indinates. Crystallographic and spectroscopic characterization, quantum chemical analysis and magnetically induced ring currents indicate σ-aromaticity in the formally tetracationic 16-valence electron [Bi4]4+ ring. Computational screening for other p-block elements identifies the planar rhomboid as the globally preferred structure for 16-valence electron four-atomic clusters. The aromatic [Bi4]4+ is isoelectronic to the [Al4]4-, a motif previously observed as antiaromatic in Li3[Al4]- in the gas phase. Thus, subtle factors such as charge isotropy seem to decide over aromaticity or antiaromaticity, advising for caution in debates based on the Hückel model-a concept valid for second-row elements but less deterministic for the heavier congeners.
Collapse
Affiliation(s)
- Ravi Yadav
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Avijit Maiti
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | | - Jürgen Graf
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
10
|
Sukumaran DP, Shoyama K, Dubey RK, Würthner F. Cooperative Binding and Chirogenesis in an Expanded Perylene Bisimide Cyclophane. J Am Chem Soc 2024; 146:22077-22084. [PMID: 39045838 DOI: 10.1021/jacs.4c08073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The encapsulation of more than one guest molecule into a synthetic cavity is a highly desirable yet a highly challenging task to achieve for neutral supramolecular hosts in organic media. Herein, we report a neutral perylene bisimide cyclophane, which has a tailored chiral cavity with an interchromophoric distance of 11.2 Å, capable of binding two aromatic guests in a π-stacked fashion. Detailed host-guest binding studies with a series of aromatic guests revealed that the encapsulation of the second guest in this cyclophane is notably more favored than the first one. Accordingly, for the encapsulation of the coronene dimer, a cooperativity factor (α) as high as 485 was observed, which is remarkably high for neutral host-guest systems. Furthermore, a successful chirality transfer, from the chiral host to encapsulated coronenes, resulted in a chiral charge-transfer (CT) complex and the rare observation of circularly polarized emission originating from the CT state for a noncovalent donor-acceptor assembly in solution. The involvement of the CT state also afforded an enhancement in the luminescence dissymmetry factor (glum) value due to its relatively large magnetic transition dipole moment. The 1:2 binding pattern and chirality-transfer were unambiguously verified by single-crystal X-ray diffraction analysis of the host-guest superstructures.
Collapse
Affiliation(s)
- Divya P Sukumaran
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| |
Collapse
|
11
|
Li TR, Das C, Cornu I, Prescimone A, Piccini G, Tiefenbacher K. Window[1]resorcin[3]arenes: A Novel Macrocycle Able to Self-Assemble to a Catalytically Active Hexameric Cage. JACS AU 2024; 4:1901-1910. [PMID: 38818056 PMCID: PMC11134363 DOI: 10.1021/jacsau.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The hexameric resorcin[4]arene capsule has been utilized as one of the most versatile supramolecular capsule catalysts. Enlarging its size would enable expansion of the substrate size scope. However, no larger catalytically active versions have been reported. Herein, we introduce a novel class of macrocycles, named window[1]resorcin[3]arene (wRS), that assemble to a cage-like hexameric host. The new host was studied by NMR, encapsulation experiments, and molecular dynamics simulations. The cage is able to bind tetraalkylammonium ions that are too large for encapsulation inside the hexameric resorcin[4]arene capsule. Most importantly, it retained its catalytic activity, and the accelerated conversion of a large substrate that does not fit the closed hexameric resorcin[4]arene capsule was observed. Thus, it will help to expand the limited substrate size scope of the closed hexameric resorcin[4]arene capsule.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Chintu Das
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Ivan Cornu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute
of Technical and Macromolecular Chemistry RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse
26, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Mobian P, Pham DJ, Chaumont A, Barloy L, Khalil G, Kyritsakas N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J Am Chem Soc 2024; 146:14067-14078. [PMID: 38728688 DOI: 10.1021/jacs.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.
Collapse
Affiliation(s)
- Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - David-Jérôme Pham
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140 (team MSM), F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Georges Khalil
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Nathalie Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 (team LTM), F-67000 Strasbourg, France
| |
Collapse
|
13
|
Noll N, Würthner F. Bioinspired Water Preorganization in Confined Space for Efficient Water Oxidation Catalysis in Metallosupramolecular Ruthenium Architectures. Acc Chem Res 2024; 57:1538-1549. [PMID: 38710509 PMCID: PMC11112732 DOI: 10.1021/acs.accounts.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
ConspectusNature has established a sustainable way to maintain aerobic life on earth by inventing one of the most sophisticated biological processes, namely, natural photosynthesis, which delivers us with organic matter and molecular oxygen derived from the two abundant resources sunlight and water. The thermodynamically demanding photosynthetic water splitting is catalyzed by the oxygen-evolving complex in photosystem II (OEC-PSII), which comprises a distorted tetramanganese-calcium cluster (CaMn4O5) as catalytic core. As an ubiquitous concept for fine-tuning and regulating the reactivity of the active site of metalloenzymes, the surrounding protein domain creates a sophisticated environment that promotes substrate preorganization through secondary, noncovalent interactions such as hydrogen bonding or electrostatic interactions. Based on the high-resolution X-ray structure of PSII, several water channels were identified near the active site, which are filled with extensive hydrogen-bonding networks of preorganized water molecules, connecting the OEC with the protein surface. As an integral part of the outer coordination sphere of natural metalloenzymes, these channels control the substrate and product delivery, carefully regulate the proton flow by promoting pivotal proton-coupled electron transfer processes, and simultaneously stabilize short-lived oxidized intermediates, thus highlighting the importance of an ordered water network for the remarkable efficiency of the natural OEC.Transferring this concept from nature to the engineering of artificial metal catalysts for fuel production has fostered the fascinating field of metallosupramolecular chemistry by generating defined cavities that conceptually mimic enzymatic pockets. However, the application of supramolecular approaches to generate artificial water oxidation catalysts remained scarce prior to our initial reports, since such molecular design strategies for efficient activation of substrate water molecules in confined nanoenvironments were lacking. In this Account, we describe our research efforts on combining the state-of-the art Ru(bda) catalytic framework with structurally programmed ditopic ligands to guide the water oxidation process in defined metallosupramolecular assemblies in spatial proximity. We will elucidate the governing factors that control the quality of hydrogen-bonding water networks in multinuclear cavities of varying sizes and geometries to obtain high-performance, state-of-the-art water oxidation catalysts. Pushing the boundaries of artificial catalyst design, embedding a single catalytic Ru center into a well-defined molecular pocket enabled sophisticated water preorganization in front of the active site through an encoded basic recognition site, resulting in high catalytic rates comparable to those of the natural counterpart OEC-PSII.To fully explore their potential for solar fuel devices, the suitability of our metallosupramolecular assemblies was demonstrated under (electro)chemical and photocatalytic water oxidation conditions. In addition, testing the limits of structural diversity allowed the fabrication of self-assembled linear coordination oligomers as novel photocatalytic materials and long-range ordered covalent organic framework (COF) materials as recyclable and long-term stable solid-state materials for future applications.
Collapse
Affiliation(s)
- Niklas Noll
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
14
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
15
|
Zhang LW, Wang XD, Ao YF, Wang DX, Wang QQ. Chiral Bis-phosphate Macrocycles for Catalytic, Efficient, and Enantioselective Electrophilic Fluorination. Chemistry 2024; 30:e202400498. [PMID: 38380876 DOI: 10.1002/chem.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Incorporation of privileged catalytic scaffolds into a macrocyclic skeleton represents an attractive strategy to furnish supramolecular catalysis systems with enzyme-mimetic cavity and multi-site cooperation. Herein we reported the synthesis, structure, binding properties and catalytic application of a series of chiral bis-phosphate macrocycles toward the challenging asymmetric electrophilic fluorination. With a large, integrated chiral cavity and two cooperative phosphate sites, these macrocycles exhibited good inclusion toward 1,4-diazabicyclo[2.2.2]octane (DABCO) dicationic ammoniums through complementary ion-pair and C-H⋅⋅⋅O interactions, as confirmed by crystallographic and solution binding studies. In fluorocyclization of tryptamines with Selectfluor reagent which has a similar DABCO-based dicationic structure, only 2 mol% macrocycle catalyst afforded the desired pyrroloindoline products in moderate yields and up to 91 % ee. For comparison, the acyclic mono-phosphate analogue gave obviously lower reactivity and enantioselectivity (<20 % ee), suggesting a remarkable macrocyclic effect. The high catalytic efficiency and superior stereocontrol were ascribed to the tight ion-pair binding and cavity-directed noncovalent interaction cooperation.
Collapse
Affiliation(s)
- Lie-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Nishijima A, Osugi Y, Uemura T. Fabrication of Self-Expanding Metal-Organic Cages Using a Ring-Openable Ligand. Angew Chem Int Ed Engl 2024; 63:e202404155. [PMID: 38453647 DOI: 10.1002/anie.202404155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Metal-organic cages (MOCs), which are formed via coordination-driven assembly, are being extensively developed for various applications owing to the utility of their accessible molecular-sized cavity. While MOC structures are uniquely and precisely predetermined by the metal coordination number and ligand configuration, tailoring MOCs to further modulate the size, shape, and chemical environment of the cavities has become intensively studied for a more efficient and adaptive molecular binding. Herein, we report self-expanding MOCs that exhibit remarkable structural variations in cage size and flexibility while maintaining their topology. A cyclic ligand with an oligomeric chain tethering the two benzene rings of stilbene was designed and mixed with RhII ions to obtain the parent MOCs. These MOCs were successfully transformed into expanded MOCs via the selective cleavage of the double bond in stilbene. The expanded MOCs could effectively trap multidentate N-donor molecules in their enlarged cavity, in contrast to the original MOCs with a narrow cavity. As the direct synthesis of expanded MOCs is impractical because of the entropically disfavored structures, self-expansion using ring-openable ligands is a promising approach that allows precision engineering and the production of functional MOCs that would otherwise be inaccessible.
Collapse
Affiliation(s)
- Ami Nishijima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Yuto Osugi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| |
Collapse
|
17
|
Zhang TT, Lu Y, Lu JH, Zhao AT, Redshaw C, Xiao X. Detection of basic amino acids under highly alkaline conditions using a perylene amine-derived probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123835. [PMID: 38183734 DOI: 10.1016/j.saa.2024.123835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
pH plays a crucial part in numerous chemical and physiological processes. In this work, a new perylene diimide derivative that acts as a pH-sensitive dye with Bay Area Carboxylic Acid functionality. The derivative utilizes the outstanding thermal, chemical and photochemical stability found in PDI materials and has remarkable UV-visible absorption and fluorescence emission qualities. Based on these properties, a fluorescent probe (PCA) was synthesised using a perylene tetracarbodiimide (PDI) backbone for the recognition of alkaline pH. In alkaline environments where the pH values are between 10 and 14, the fluorescence intensity significantly decreases, and a blue shift occurs, which is a standard feature of alkaline pH probes. The probe demonstrates exceptional sensing ability within the pH range of 10.00-14.00, with notable stability and reversibility. Encapsulation of the probe in a thin polymer film material enhances the pH sensing capability of the system. New sensor has been developed to detect basic amino acids by utilizing the probes' pH response characteristics. this sensor has also been applied to detect the concentration of arginine.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yun Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ji-Hong Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - An-Ting Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
18
|
Yao Y, Shao C, Wang S, Gong Q, Liu J, Jiang H, Wang Y. Dual-controlled guest release from coordination cages. Commun Chem 2024; 7:43. [PMID: 38413721 PMCID: PMC10899651 DOI: 10.1038/s42004-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Despite having significant applications in the construction of controlled delivery systems with high anti-interference capability, to our knowledge dual-controlled molecular release has not yet been achieved based on small molecular/supramolecular entities. Herein, we report a dual-controlled release system based on coordination cages, for which releasing the guest from the cage demands synchronously altering the coordinative metal cations and the solvent. The cages, Hg5L2 and Ag5L2, are constructed via coordination-driven self-assembly of a corannulene-based ligand. While Hg5L2 shows a solvent-independent guest encapsulation in all the studied solvents, Ag5L2 is able to encapsulate the guests in only some of the solvents, such as acetone-d6, but will liberate the encapsulated guests in 1,1,2,2-tetrachloroethane-d2. Hg5L2 and Ag5L2 are interconvertible. Thus, the release of guests from Hg5L2 in acetone-d6 can be achieved, but requires two separate operations, including metal substitutions and a change of the solvent. Dual-controlled systems as such could be useful in complicated molecular release process to avoid those undesired stimulus-responses.
Collapse
Affiliation(s)
- Yuqing Yao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Chengyuan Shao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shuwei Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qiufang Gong
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jia Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
19
|
Lorenzetto T, Bordignon F, Munarin L, Mancin F, Fabris F, Scarso A. Substrate Selectivity Imparted by Self-Assembled Molecular Containers and Catalysts. Chemistry 2024; 30:e202301811. [PMID: 37466005 DOI: 10.1002/chem.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Recent trends in catalysis are devoted to mimicking some peculiar features of enzymes like site selectivity, through functional group recognition, and substrate selectivity, through recognition of the entire surface of the substrate. The latter is a specific feature of enzymes that is seldomly present in homogeneous catalysis. Supramolecular catalysis, thanks to the self-assembly of simple subunits, enables the creation of cavities and surfaces whose confinement effects drive the preferential binding of a substrate among others with consequent substrate selectivity. The topic is an emerging field that exploits recognition phenomena to discriminate the reagents based on their size and shape. This review deals this cutting-edge field of research covering examples of supramolecular self-assembled molecular containers and catalysts operating in organic as well as aqueous media, with special emphasis for catalytic systems dealing with direct competitive experiments involving two or more substrates.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Francesca Bordignon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Luca Munarin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| |
Collapse
|
20
|
Cornu I, Syntrivanis LD, Tiefenbacher K. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst. Nat Protoc 2024; 19:313-339. [PMID: 38040980 DOI: 10.1038/s41596-023-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023]
Abstract
The tail-to-head terpene (THT) cyclization is a biochemical process that gives rise to many terpene natural product skeletons encountered in nature. Historically, it has been difficult to achieve THT synthetically without using an enzyme. In this protocol, a hexameric resorcin[4]arene capsule acts as an artificial enzyme mimic to carry out biomimetic THT cyclizations and related carbocationic rearrangements. The precursor molecule bears a leaving group (usually an alcohol or acetate group) and undergoes the THT reaction in the presence of the capsule catalyst and HCl as a cocatalyst. Careful control of several parameters (including water content, amount of HCl cocatalyst, temperature and solvent) is crucial to successfully carrying out the reaction. To facilitate the application of this unique capsule-catalysis methodology, we therefore developed a very detailed procedure that includes the preparation and analysis of all reaction components. In this protocol, we describe how to prepare two different terpenes: isolongifolene and presilphiperfolan-1β-ol. The two procedures differ in the water content required for efficient product formation, and thus exemplify the two common use cases of this methodology. The influence of other crucial reaction parameters and means of precisely controlling them are described. A commercially available substrate, nerol, can be used as simple test substrate to validate the reaction setup. Each synthetic procedure requires 5-7 d, including 1-5 h of hands-on time. The protocol applies to the synthesis of many complex terpene natural products that would otherwise be difficult to access in synthetically useful yields.
Collapse
Affiliation(s)
- Ivan Cornu
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
21
|
Weh M, Kroeger AA, Anhalt O, Karton A, Würthner F. Mutual induced fit transition structure stabilization of corannulene's bowl-to-bowl inversion in a perylene bisimide cyclophane. Chem Sci 2024; 15:609-617. [PMID: 38179532 PMCID: PMC10762775 DOI: 10.1039/d3sc05341e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024] Open
Abstract
Corannulene is known to undergo a fast bowl-to-bowl inversion at r.t. via a planar transition structure (TS). Herein we present the catalysis of this process within a perylene bisimide (PBI) cyclophane composed of chirally twisted, non-planar chromophores, linked by para-xylylene spacers. Variable temperature NMR studies reveal that the bowl-to-bowl inversion is significantly accelerated within the cyclophane template despite the structural non-complementarity between the binding site of the host and the TS of the guest. The observed acceleration corresponds to a decrease in the bowl-to-bowl inversion barrier of 11.6 kJ mol-1 compared to the uncatalyzed process. Comparative binding studies for corannulene (20 π-electrons) and other planar polycyclic aromatic hydrocarbons (PAHs) with 14 to 24 π-electrons were applied to rationalize this barrier reduction. They revealed high binding constants that reach, in tetrachloromethane as a solvent, the picomolar range for the largest guest coronene. Computational models corroborate these experimental results and suggest that both TS stabilization and ground state destabilization contribute to the observed catalytic effect. Hereby, we find a "mutual induced fit" between host and guest in the TS complex, such that mutual geometric adaptation of the energetically favored planar TS and curved π-systems of the host results in an unprecedented non-planar TS of corannulene. Concomitant partial planarization of the PBI units optimizes noncovalent TS stabilization by π-π stacking interactions. This observation of a "mutual induced fit" in the TS of a host-guest complex was further validated experimentally by single crystal X-ray analysis of a host-guest complex with coronene as a qualitative transition state analogue.
Collapse
Affiliation(s)
- Manuel Weh
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Institute for Nanoscale Science & Technology, Flinders University Adelaide South Australia 5042 Australia
| | - Olga Anhalt
- Center for Nanosystems Chemistry, Bavarian Polymer Institute, Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- School of Science and Technology, University of New England Armidale NSW 2351 Australia
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry, Bavarian Polymer Institute, Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
22
|
Zuo M, Li T, Feng H, Wang K, Zhao Y, Wang L, Hu XY. Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306746. [PMID: 37658491 DOI: 10.1002/smll.202306746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The development of organic materials that deliver room-temperature phosphorescence (RTP) is highly interesting for potential applications such as anticounterfeiting, optoelectronic devices, and bioimaging. Herein, a molecular chaperone strategy for controlling isolated chromophores to achieve high-performance RTP is demonstrated. Systematic experiments coupled with theoretical evidence reveal that the host plays a similar role as a molecular chaperone that anchors the chromophores for limited nonradiative decay and directs the proper conformation of guests for enhanced intersystem crossing through noncovalent interactions. For deduction of structure-property relationships, various structure-related descriptors that correlate with the RTP performance are identified, thus offering the possibility to quantitatively design and predict the phosphorescent behaviors of these systems. Furthermore, application in thermal printing is well realized for these RTP materials. The present work discloses an effective strategy for efficient construction of organic RTP materials, delivering a modular model which is expected to help expand the diversity of desirable RTP systems.
Collapse
Affiliation(s)
- Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Haohui Feng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Yue Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| |
Collapse
|
23
|
Wang H, Wang Y, Xu W, Zhang H, Lv J, Wang X, Zheng Z, Zhao Y, Yu L, Yuan Q, Yu L, Zheng B, Gao L. Host-Guest-Interaction Enhanced Nitric Oxide Photo-Generation within a Pillar[5]arene Cavity for Antibacterial Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54266-54279. [PMID: 37969079 DOI: 10.1021/acsami.3c10862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Supramolecular macrocycles with intrinsic cavities have been widely explored as containers to fabricate versatile functional materials via specific host-guest recognitions. However, relatively few studies have focused on the modulation of guest reactivity within a macrocyclic cavity. Here, we demonstrate the confinement effect of pillar[5]arene with an electron-rich and precise cavity that can dramatically enhance guest photoactivity and nitric oxide (NO) generation upon visible light irradiation. Mechanism studies reveal that it is achieved through increasing the ground state nitro-aromatic torsion angle, suppressing the intersystem crossing relaxation path of the S1 state, and accelerating the isomerization reaction path of guest molecules. This NO-generating system displays broad-spectrum antibacterial, biofilm inhibition, and dispersal activities. Moreover, it can accelerate the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in vivo.
Collapse
Affiliation(s)
- Haojie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
24
|
Schmid D, Li TR, Goldfuss B, Tiefenbacher K. Exploring the Glycosylation Reaction Inside the Resorcin[4]arene Capsule. J Org Chem 2023; 88:14515-14526. [PMID: 37796244 DOI: 10.1021/acs.joc.3c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In the past decade, there has been an increased interest in applying supramolecular capsule and cage catalysis to the current challenges in synthetic organic chemistry. In this context, we recently reported the resorcin[4]arene capsule-catalyzed conversion of α-glycosyl halides into β-glycosides with high selectivity. Interestingly, this methodology enabled the formation of a wide range of β-pyranosides as well as β-furanosides, although these two donor classes exhibit different reactivities and usually require different reaction conditions and catalysts. Evidence was provided that a proton wire plays a key role in this reaction by enabling dual activation of the glycosyl donor and acceptor. Here, we describe a detailed investigation of several aspects of this reactivity. Besides a mechanistic study, we elucidated the size limitation, the origin of catalytic turnover, and the electrophile scope of nonglycosylic halides. Moreover, a screening of the sensitivity to changes in the reaction conditions provides guidelines to facilitate reproducibility. Furthermore, we demonstrate the compatibility with environmentally benign solvent alternatives, including the renewable solvent limonene.
Collapse
Affiliation(s)
- Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Kashin AS, Prima DO, Arkhipova DM, Ananikov VP. An Unusual Microdomain Factor Controls Interaction of Organic Halides with the Palladium Phase and Influences Catalytic Activity in the Mizoroki-Heck Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302999. [PMID: 37381097 DOI: 10.1002/smll.202302999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.
Collapse
Affiliation(s)
- Alexey S Kashin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Darya O Prima
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Daria M Arkhipova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
26
|
Chen Q, Denisov SA, Dobrovolskii D, Mostafavi M. Observation of Nanoconfinement Effect on the Kinetics of Hydrated Electron in the Nanoscale Water Pools of Water-AOT-Cyclohexane Microemulsions by Picosecond Pulse Radiolysis. J Phys Chem B 2023; 127:7974-7982. [PMID: 37681575 DOI: 10.1021/acs.jpcb.3c04302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The decay kinetics of the hydrated electron (eaq-) in aerosol OT (AOT)-based ternary microemulsions with pool sizes ranging from 0.34 to 4.85 nm were studied using picosecond pulse radiolysis coupled with transient absorption UV-vis spectroscopy. Electron transfer from oil to water and the subsequent solvation occurred within a time resolution of 7 ps. The decay kinetics of eaq- were accurately modeled using a double-exponential decay model, revealing the occurrence of two types of reactions, i.e., the recombination reaction at the water-oil interface and the radical-radical reactions in the water pools. The apparent lifetimes of both types of decays decreased significantly as the size of water pools decreased, indicating the influence of nanoconfinement effects. Moreover, the importance of the water-oil interface increased with decreasing water content, regardless of the presence or absence of NO3- as an electron scavenger in the water pools. Our findings provide a comprehensive understanding on the kinetics of the radiation reaction in AOT-based microemulsions.
Collapse
Affiliation(s)
- Qingde Chen
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay, 91405 Orsay, Cedex, France
- Beijing National Laboratory for Molecular Sciences, Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Sergey A Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay, 91405 Orsay, Cedex, France
| | - Denis Dobrovolskii
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay, 91405 Orsay, Cedex, France
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay, 91405 Orsay, Cedex, France
| |
Collapse
|
27
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
28
|
Xu S, Zhang H, Li Y, Liu J, Li R, Xing Y. Thermoreversible and tunable supramolecular hydrogels based on chitosan and metal cations. Int J Biol Macromol 2023; 242:124906. [PMID: 37210055 DOI: 10.1016/j.ijbiomac.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
A new thermoreversible and tunable hydrogel CS-M with high water content prepared by metal cation (M = Cu2+, Zn2+, Cd2+ and Ni2+) and chitosan (CS) was reported. The influence of metal cations on the thermosensitive gelation of CS-M systems were studied. All prepared CS-M systems were in the transparent and stable sol state and could become the gel state at gelation temperature (Tg). These systems after gelation could recover to its original sol state at low temperature. CS-Cu hydrogel was mainly investigated and characterized due to its large Tg scale (32-80 °C), appropriate pH range (4.0-4.6) and low Cu2+ concentration. The result showed that the Tg range was influenced and could be tuned by adjusting Cu2+ concentration and system pH within an appropriate range. The influence of anions (Cl-, NO3- and Ac-) in cupric salts in the CS-Cu system was also investigated. Scale application as heat insulation window was investigated outdoors. The different supramolecular interactions of the -NH2 group in chitosan at different temperatures were proposed to dominate the thermoreversible process of CS-Cu hydrogel.
Collapse
Affiliation(s)
- Shikuan Xu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jingjing Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Rong Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yanjun Xing
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
29
|
Némethová I, Schmid D, Tiefenbacher K. Supramolecular Capsule Catalysis Enables the Exploration of Terpenoid Chemical Space Untapped by Nature. Angew Chem Int Ed Engl 2023; 62:e202218625. [PMID: 36727480 DOI: 10.1002/anie.202218625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Terpenes represent the largest and the most diverse class of natural compounds. This is remarkable as the whole variety is accessed from just a handful of highly conserved linear precursors. Modification of the cyclization precursors would enable a dramatic expansion of the accessible chemical space. However, natural enzymes do not enable us to tap into this potential, as they do not tolerate larger deviations from the prototypical substrate structure. Herein we report that supramolecular capsule catalysis enables facile access to diverse and novel terpenoid skeletons that formally can be traced back to C3-phenyl, benzyl, and homoprenyl derivatives of farnesol. Novel skeletons related to the presilphiperfolane core structure, as well as novel neoclovene derivatives were accessed efficiently in only four synthetic steps. Importantly, the products obtained carry functional groups that may be readily derivatized further.
Collapse
Affiliation(s)
- Ivana Némethová
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Dario Schmid
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
30
|
Xue W, Pesce L, Bellamkonda A, Ronson TK, Wu K, Zhang D, Vanthuyne N, Brotin T, Martinez A, Pavan GM, Nitschke JR. Subtle Stereochemical Effects Influence Binding and Purification Abilities of an Fe II4L 4 Cage. J Am Chem Soc 2023; 145:5570-5577. [PMID: 36848676 PMCID: PMC9999408 DOI: 10.1021/jacs.3c00294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A tetrahedral FeII4L4 cage assembled from the coordination of triangular chiral, face-capping ligands to iron(II). This cage exists as two diastereomers in solution, which differ in the stereochemistry of their metal vertices, but share the same point chirality of the ligand. The equilibrium between these cage diastereomers was subtly perturbed by guest binding. This perturbation from equilibrium correlated with the size and shape fit of the guest within the host; insight as to the interplay between stereochemistry and fit was provided by atomistic well-tempered metadynamics simulations. The understanding thus gained as to the stereochemical impact on guest binding enabled the design of a straightforward process for the resolution of the enantiomers of a racemic guest.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | | | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Thierry Brotin
- Laboratoire de Chimie, Université Lyon, Ens de Lyon, CNRS UMR 5182, Lyon F69342, France
| | - Alexandre Martinez
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland.,Department of Applied Science and Techology, Politecnico di Torino, 10129 Torino, Italy
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
31
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
32
|
Li TR, Piccini G, Tiefenbacher K. Supramolecular Capsule-Catalyzed Highly β-Selective Furanosylation Independent of the S N1/S N2 Reaction Pathway. J Am Chem Soc 2023; 145:4294-4303. [PMID: 36751707 DOI: 10.1021/jacs.2c13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The resorcin[4]arene capsule was found to catalyze β-selective furanosylation reactions for a variety of different furanosyl donors: α-d- and α-l-arabinosyl-, α-l-fucosyl-, α-d-ribosyl-, α-d-xylosyl-, and even α-d-lyxosyl fluorides. The scope is only limited by the inherently finite volume inside the closed capsular catalyst. The catalyst is readily available on a multi-100 g scale and can be recycled for at least seven rounds without significant loss in activity, yield, and selectivity. The mechanistic investigations indicated that the furanosylation mechanism is shifted toward an SN1 reaction on the mechanistic continuum between the prototypical SN1 and SN2 substitution types, as compared to the pyranosylation reaction inside the same catalyst. This is especially true for the lyxosyl donor, as indicated by the nucleophile reaction order of 0.26, and supported by metadynamics calculations. The mechanistic shift toward SN1 is of high interest as it indicates that this catalyst not only enables β-selective furanosylations and pyranoslyations independently of the substrate configuration but in addition also independently of the operating mechanism. To our knowledge, there is no alternative catalyst available that displays such properties.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
33
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
34
|
Zheng J, von Krbek LKS, Ronson TK, Nitschke JR. Host Spin-Crossover Thermodynamics Indicate Guest Fit. Angew Chem Int Ed Engl 2022; 61:e202212634. [PMID: 36264645 PMCID: PMC10098494 DOI: 10.1002/anie.202212634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Spin-crossover (SCO) metal-organic cages capable of switching between high-spin and low-spin states have the potential to be used as magnetic sensors and switches. Variation of the donor strength of heterocyclic aldehyde subcomponents in imine-based ligands can tune the ligand field for a FeII center, which results in both homoleptic and heteroleptic cages with diverse SCO behaviors. The tetrahedral SCO cage built from 1-methyl-1H-imidazole-2-carbaldehyde is capable of encapsulating various guests, which stabilize different cage spin states depending on guest size. Conversely, the SCO tetrahedron exhibits different affinities for guests in different spin states, which is inferred to result from subtle structural differences of the cavity caused by the change in metal center spin state. Examination of SCO thermodynamics across a series of host-guest complexes enabled sensitive probing of guest fit to the host cavity, providing information complementary to binding-constant determination.
Collapse
Affiliation(s)
- Jieyu Zheng
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Larissa K. S. von Krbek
- Kekulé-Institut für Organische Chemie and BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Tanya K. Ronson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | |
Collapse
|
35
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
36
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO
3
2−
)‐Monourea Coordination. Angew Chem Int Ed Engl 2022; 61:e202210478. [DOI: 10.1002/anie.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xinrui Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an 710600 China
| | - Yu Tao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhipeng Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yuqi Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
37
|
Li J, Jin H, Shang Z, Wang J, Tian D, Ding Y, Hu A. Synthesis of cycloparaphenylene under spatial nanoconfinement. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Kanagaraj K, Rebek J, Yu Y. Self-assembled hexameric capsule: A highly β-selective O-glycosylation reaction enabled via proton wire mechanism. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
40
|
Wang K, Zuo M, Zhang T, Yue H, Hu XY. Pillar[5]arene–modified peptide-guanidiniocarbonylpyrrol amphiphiles with gene transfection properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
42
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO32‐)‐Monourea Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fen Ma
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xinrui Qiao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Zuo
- Xi'an Polytechnic University College of Emvironmental and Chemical Engineering CHINA
| | - Yu Tao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Anyang Li
- Northwest University College of Chemistry and Materials Science CHINA
| | - Zhipeng Luo
- Northwest University College of Chemistry and Materials Science CHINA
| | - Yuqi Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xueru Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xiaoqing Wang
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Sun
- Northwest University College of Chemistry and Materials Science CHINA
| | - Chuandong Jia
- Northwest University College of Chemistry and Materials Science No.1, Xuefu Ave. Chang'an District 710127 Xi'an CHINA
| |
Collapse
|
43
|
Bujol RJ, Fronczek FR, Elgrishi N. On the synthesis and characterization of two different titanium-based supramolecular structures of identical stoichiometry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ryan J. Bujol
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
44
|
Jayawardana SG, Madura EC, García-López V. Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
47
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
48
|
Wu X, Liu M, Zheng C, Wang Y, Zheng Y, Qian Y, Liao Z, Fang G, Shen J. Solvent-mediated handedness inversed and amplified circularly polarized luminescence system based on camptothecin derivative. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Carpenter JP, Ronson TK, Rizzuto FJ, Héliot T, Grice P, Nitschke JR. Incorporation of a Phosphino(pyridine) Subcomponent Enables the Formation of Cages with Homobimetallic and Heterobimetallic Vertices. J Am Chem Soc 2022; 144:8467-8473. [PMID: 35511929 PMCID: PMC9121369 DOI: 10.1021/jacs.2c02261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Biological systems employ multimetallic assemblies to achieve a range of functions. Here we demonstrate the preparation of metal-organic cages that contain either homobimetallic or heterobimetallic vertices. These vertices are constructed using 2-formyl-6-diphenylphosphinopyridine, which forms ligands that readily bridge between a pair of metal centers, thus enforcing the formation of bimetallic coordination motifs. Two pseudo-octahedral homometallic MI12L4 cages (MI = CuI or AgI) were prepared, with a head-to-head configuration of their vertices confirmed by X-ray crystallography and multinuclear NMR for AgI. The phosphino-pyridine subcomponent also enabled the formation of a class of octanuclear CdII4CuI4L4 tetrahedral cages, representing an initial example of self-assembled cages containing well-defined heterobimetallic vertices.
Collapse
Affiliation(s)
| | | | | | - Théophile Héliot
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Peter Grice
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
50
|
Abstract
Supramolecular metal–organic cages, a class of molecular containers formed via coordination-driven self-assembly, have attracted sustained attention for their applications in catalysis, due to their structural aesthetics and unique properties. Their inherent confined cavity is considered to be analogous to the binding pocket of enzymes, and the facile tunability of building blocks offers a diverse platform for enzyme mimics to promote organic reactions. This minireview covers the recent progress of supramolecular metal–organic coordination cages for boosting organic reactions as reaction vessels or catalysts. The developments in the utilizations of the metal–organic cages for accelerating the organic reactions, improving the selectivity of the reactions are summarized. In addition, recent developments and successes in tandem or cascade reactions promoted by supramolecular metal–organic cages are discussed.
Collapse
|