1
|
Drev M, Brodnik H, Grošelj U, Perdih F, Svete J, Štefane B, Požgan F. 2-Bromopyridines as Versatile Synthons for Heteroarylated 2-Pyridones via Ru(II)-Mediated Domino C-O/C-N/C-C Bond Formation Reactions. Molecules 2024; 29:4418. [PMID: 39339413 PMCID: PMC11433726 DOI: 10.3390/molecules29184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia (F.P.); (J.S.)
| |
Collapse
|
2
|
Strassfeld DA, Chen CY, Park HS, Phan DQ, Yu JQ. Hydrogen-bond-acceptor ligands enable distal C(sp 3)-H arylation of free alcohols. Nature 2023; 622:80-86. [PMID: 37674074 PMCID: PMC11139439 DOI: 10.1038/s41586-023-06485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
The functionalization of C-H bonds in organic molecules is one of the most direct approaches for chemical synthesis. Recent advances in catalysis have allowed native chemical groups such as carboxylic acids, ketones and amines to control and direct C(sp3)-H activation1-4. However, alcohols, among the most common functionalities in organic chemistry5, have remained intractable because of their low affinity for late transition-metal catalysts6,7. Here we describe ligands that enable alcohol-directed arylation of δ-C(sp3)-H bonds. We use charge balance and a secondary-coordination-sphere hydrogen-bonding interaction-evidenced by structure-activity relationship studies, computational modelling and crystallographic data-to stabilize L-type hydroxyl coordination to palladium, thereby facilitating the assembly of the key C-H cleavage transition state. In contrast to previous studies in C-H activation, in which secondary interactions were used to control selectivity in the context of established reactivity8-13, this report demonstrates the feasibility of using secondary interactions to enable challenging, previously unknown reactivity by enhancing substrate-catalyst affinity.
Collapse
Affiliation(s)
| | - Chia-Yu Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - D Quang Phan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Zhang B, Ruan J, Seidel D, Chen W. Palladium-Catalyzed Arylation of Endocyclic 1-Azaallyl Anions: Concise Synthesis of Unprotected Enantioenriched cis-2,3-Diarylpiperidines. Angew Chem Int Ed Engl 2023; 62:e202307638. [PMID: 37461285 PMCID: PMC10530244 DOI: 10.1002/anie.202307638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Unprotected cis-2,3-diarylpiperidines are synthesized through an unprecedented palladium-catalyzed cross-coupling reaction between aryl halides and elusive endocyclic 1-azaallyl anions. These intermediates are generated in situ by the deprotonation of 2-aryl-1-piperideines, precursors that are readily prepared in two operations from simple piperidines. An asymmetric version of this reaction with (2R, 3R)-iPr-BI-DIME as the ligand provides products in moderate to good yields and enantioselectivities. This study significantly expands the synthetic utility of endocyclic 1-azaallyl anions.
Collapse
Affiliation(s)
- Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. of China
| |
Collapse
|
4
|
Meng G, Hu L, Tomanik M, Yu JQ. β- and γ-C(sp 3 )-H Heteroarylation of Free Carboxylic Acids: A Modular Synthetic Platform for Diverse Quaternary Carbon Centers. Angew Chem Int Ed Engl 2023; 62:e202214459. [PMID: 36307373 PMCID: PMC10150778 DOI: 10.1002/anie.202214459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/26/2023]
Abstract
PdII -catalyzed C(sp3 )-H activation of free carboxylic acids represents a significant advance from conventional cyclopalladation initiated reactions. However, developing a modular synthetic platform for diverse quaternary and tertiary carbon centers based on this reactivity, two challenges remain to be addressed: mono-selectivity in each consecutive C-H functionalization step; compatibility with heteroatoms. While the exclusive mono-selectivity was achieved by β-lactonization/nucleophilic attack, the latter limitation remains to be overcome. Herein, we report the PdII -catalyzed β- and γ-C(sp3 )-H heteroarylation of free carboxylic acids using pyridine-pyridone ligands capable of overcoming these limitations. A sequence of three consecutive C(sp3 )-H activation reactions of pivalic acid provides an unique platform for constructing diverse quaternary carbon centers containing heteroaryls which could serve as an enabling tool for escaping the flat land in medicinal chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Liang Hu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin Tomanik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010439. [PMID: 36615631 PMCID: PMC9823451 DOI: 10.3390/molecules28010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Chiral 2-substituted chromanes are important substructures in organic synthesis and appear in numerous natural products. Herein, the correlation between specific optical rotations (SORs) and the stereochemistry at C2 of chiral 2-substituted chromanes was investigated through data mining, quantum-chemical calculations using density functional theory (DFT), and mechanistic analyses. For 2-aliphatic (including acyloxy and alkenyl) chromanes, the P-helicity of the dihydropyran ring usually corresponds to a positive SOR; however, 2-aryl chromanes with P-helicity tend to exhibit negative SORs. 2-Carboxyl (including alkoxycarbonyl and carbonyl) chromanes often display small experimental SORs, and theoretical calculations for them are prone to error because of the fluctuating conformational distribution with computational parameters. Several typical compounds were discussed, including detailed descriptions of the asymmetric synthesis, absolute configuration (AC) assignment methods, and systematic conformational analysis. We hope this work will enrich the knowledge of the stereochemistry of chiral 2-substituted chromanes.
Collapse
|
6
|
Wakikawa T, Sekine D, Murata Y, Bunno Y, Kojima M, Nagashima Y, Tanaka K, Yoshino T, Matsunaga S. Native Amide-Directed C(sp 3 )-H Amidation Enabled by Electron-Deficient Rh III Catalyst and Electron-Deficient 2-Pyridone Ligand. Angew Chem Int Ed Engl 2022; 61:e202213659. [PMID: 36305194 DOI: 10.1002/anie.202213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Trivalent group-9 metal catalysts with a cyclopentadienyl-type ligand (CpMIII ; M=Co, Rh, Ir, Cp=cyclopentadienyl) have been widely used for directed C-H functionalizations, albeit that their application to challenging C(sp3 )-H functionalizations suffers from the limitations of the available directing groups. In this report, we describe directed C(sp3 )-H amidation reactions of simple amide substrates with a variety of substituents. The combination of an electron-deficient CpE Rh catalyst (CpE =1,3-bis(ethoxycarbonyl)-substituted Cp) and an electron-deficient 2-pyridone ligand is essential for high reactivity.
Collapse
Affiliation(s)
- Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuta Murata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Youka Bunno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
7
|
Xue Y, Zhou RB, Luo J, Hu BC, Liu ZQ, Jiang C. Palladium-catalyzed C(sp 3)-H nitrooxylation of masked alcohols. Org Biomol Chem 2022; 21:75-79. [PMID: 36448655 DOI: 10.1039/d2ob01919a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic alcohols with AgNO2 is reported. An 8-formylquinoline-derived oxime is installed as an exo-type directing group for sp3 C-H activation and selectfluor acts as the oxidant. The reaction tolerates a variety of functional groups and shows good selectivity for β-C-H nitrooxylation of alcohols.
Collapse
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ruo-Bing Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bing-Cheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
8
|
Li YH, Ouyang Y, Chekshin N, Yu JQ. Pd II-Catalyzed γ-C(sp 3)-H (Hetero)Arylation of Ketones Enabled by Transient Directing Groups. ACS Catal 2022; 12:10581-10586. [PMID: 37305173 PMCID: PMC10249709 DOI: 10.1021/acscatal.2c03400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd(II)-catalyzed γ-C(sp3)-H (hetero)arylation of aliphatic ketones is developed using α-amino acid as transient directing groups (TDG). A variety of aliphatic ketones were (hetero)arylated at the γ-position via a 5,6-membered fused cyclopalladation intermediate to afford the remotely arylated products in up to 88% yield. The crucial ligand effect of 2-pyridone is further enhanced by reducing the loading of acid additives. Consequentially, the improved reactivity of this catalytic system has also made possible the cyclic γ-methylene C(sp3)-H arylation of ketones. Mechanistic investigtigation and comparison to the γ-C-H arylation of aldehydes revealed a structural insight for designing site selective TDG.
Collapse
Affiliation(s)
- Yi-Hao Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Marset X. Palladium-catalysed C sp3-H functionalisation of unactivated 8-aminoquinoline amides in deep eutectic solvents. Org Biomol Chem 2022; 20:7071-7075. [PMID: 36001018 DOI: 10.1039/d2ob01333a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Csp3-H activation of aliphatic amides is described for the first time in deep eutectic solvents (DESs) without the need for Ag salts. The use of eutectic mixtures improves the yields obtained with volatile organic solvents, and allows for the reuse of the catalyst. Post-synthetic modifications can also be performed in DESs, increasing the sustainability of the process and the value of the products obtained.
Collapse
Affiliation(s)
- Xavier Marset
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain.
| |
Collapse
|
10
|
Zhuang Z, Liu S, Cheng J, Yeung K, Qiao JX, Meanwell NA, Yu J. Ligand-Enabled β-C(sp 3 )-H Lactamization of Tosyl-Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022; 61:e202207354. [PMID: 35790471 PMCID: PMC9439703 DOI: 10.1002/anie.202207354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The development of C(sp3 )-H functionalization reactions that use common protecting groups and practical oxidants remains a significant challenge. Herein we report a monoprotected aminoethyl thioether (MPAThio) ligand-enabled β-C(sp3 )-H lactamization of tosyl-protected aliphatic amides using tert-butyl hydrogen peroxide (TBHP) as the sole oxidant. This protocol features exceedingly mild reaction conditions, reliable scalability, and the use of practical oxidants and protecting groups. Further derivatization of the β-lactam products enables the synthesis of a range of biologically important motifs including β-amino acids, γ-amino alcohols, and azetidines.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Shuang Liu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Jin‐Tang Cheng
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Kap‐Sun Yeung
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early Development100 Binney StreetCambridgeMA 02142USA
| | - Jennifer X. Qiao
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Nicholas A. Meanwell
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Jin‐Quan Yu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
11
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
12
|
Wu CY, He C, Chen XL, Tang BC, Yu ZC, Wang HY, Wu YD, Wu AX. Pd-Catalyzed Hydroxyl-Directed Cascade Hydroarylation/C-H Germylation of Nonterminal Alkenes and Aryl Iodides. J Org Chem 2022; 87:9184-9196. [PMID: 35758885 DOI: 10.1021/acs.joc.2c00927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd-catalyzed cascade hydroarylation and C-H germylation of nonterminal alkenes and aryl iodides enabled by hydroxyl assistance have been developed. The key step in this C-H germylation cascade is the formation of a highly reactive oxo-palladacycle intermediate, which markedly restrained the β-H elimination process. Mechanistically, control experiments indicated that the hydroxyl group played an important role in this process. This transformation shows excellent reactivity and selectivity for most substrates investigated.
Collapse
Affiliation(s)
- Chun-Yan Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huai-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Zhuang Z, Liu S, Cheng JT, Yeung KS, Qiao JX, Meanwell NA, Yu JQ. Ligand‐Enabled β‐C(sp3)−H Lactamization of Tosyl‐Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhe Zhuang
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Shuang Liu
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Jin-Tang Cheng
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Early Development UNITED STATES
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Research Research and Early Development UNITED STATES
| | | | - Jin-Quan Yu
- The Scripps Research Institute chemistry 10550 N Torrey Pines Road 92037 La Jolla UNITED STATES
| |
Collapse
|
14
|
Yang K, Li Z, Liu C, Li Y, Hu Q, Elsaid M, Li B, Das J, Dang Y, Maiti D, Ge H. Ligand-promoted palladium-catalyzed β-methylene C-H arylation of primary aldehydes. Chem Sci 2022; 13:5938-5943. [PMID: 35685787 PMCID: PMC9132077 DOI: 10.1039/d2sc01677j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)-H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C-H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Yunjian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Mazen Elsaid
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Bijin Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Jayabrata Das
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072
| | - Debabrata Maiti
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| |
Collapse
|
15
|
Cheng JT, Xiao LJ, Qian SQ, Zhuang Z, Liu A, Yu JQ. Palladium(II)-Catalyzed Selective Arylation of Tertiary C-H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angew Chem Int Ed Engl 2022; 61:e202117233. [PMID: 35112447 PMCID: PMC9084898 DOI: 10.1002/anie.202117233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/11/2022]
Abstract
We report the first example of selective PdII -catalyzed tertiary C-H activation of cyclobutylmethyl ketones using a transient directing group. An electron-deficient 2-pyridone ligand was identified as the optimal external ligand to enable tertiary C-H activation. A variety of cyclobutylmethyl ketones bearing quaternary carbon centers was readily accessed without preinstalling internal directing groups in up to 81 % yield and >95 : 5 regioisomeric ratios of tertiary C-H arylation to β-methylene (β-methyl) or γ-C-H arylation.
Collapse
Affiliation(s)
- Jin-Tang Cheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Jun Xiao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shao-Qun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Li YH, Ouyang Y, Chekshin N, Yu JQ. Pd II-Catalyzed Site-selective β- and γ-C(sp 3)-H Arylation of Primary Aldehydes Controlled by Transient Directing Groups. J Am Chem Soc 2022; 144:4727-4733. [PMID: 35286807 PMCID: PMC9084563 DOI: 10.1021/jacs.1c13586] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pd(II)-catalyzed site-selective β- and γ-C(sp3)-H arylation of primary aldehydes is developed by rational design of L,X-type transient directing groups (TDG). External 2-pyridone ligands are identified to be crucial for the observed reactivity. By minimizing the loading of acid additives, the ligand effect is enhanced to achieve high reactivities of the challenging primary aldehyde substrates. Site selectivity can be switched from the proximate to the relatively remote position by changing the bite angle of TDG to match the desired palladacycle size. Experimental and computational investigations support this rationale for designing TDG to potentially achieve remote site-selective C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Yi-Hao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
18
|
Cheng J, Xiao L, Qian S, Zhuang Z, Liu A, Yu J. Palladium(II)‐Catalyzed Selective Arylation of Tertiary C−H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin‐Tang Cheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Li‐Jun Xiao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Shao‐Qun Qian
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - An Liu
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
19
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
20
|
Wu JX, Yao QX, Duan WZ, Li DC, Huang XQ, Dou JM, Wang HW. Rh III-Catalyzed heteroarylation of N-2,6-difluorophenyl arylamides with heteroaryl boronate esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01868j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient strategy to aryl-heteroaryl formation via RhIII-catalyzed C–H heteroarylation of arenes with N-heterocyclic boronates has been disclosed.
Collapse
Affiliation(s)
- Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Wen-Zeng Duan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
21
|
Liu S, Zhuang Z, Qiao JX, Yeung KS, Su S, Cherney EC, Ruan Z, Ewing WR, Poss MA, Yu JQ. Ligand Enabled Pd(II)-Catalyzed γ-C(sp 3)-H Lactamization of Native Amides. J Am Chem Soc 2021; 143:21657-21666. [PMID: 34914877 PMCID: PMC9116424 DOI: 10.1021/jacs.1c10183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
γ-Lactams form important structural cores of a range of medicinally relevant natural products and clinical drugs, principal examples being the new generation of immunomodulatory imide drugs (IMiDs) and the brivaracetam family. Compared to conventional multistep synthesis, an intramolecular γ-C-H amination of aliphatic amides would allow for the direct construction of valuable γ-lactam motifs from abundant amino acid precursors. Herein we report a novel 2-pyridone ligand enabled Pd(II)-catalyzed γ-C(sp3)-H lactamization of amino acid derived native amides, providing the convenient synthesis of γ-lactams, isoindolinones, and 2-imidazolidinones. C6-Substitution of the 2-pyridone ligand is crucial for the lactam formation. This protocol features the use of N-acyl amino acids, which serve as both the directing group and cyclization partner, practical and environmentally benign tert-butyl hydrogen peroxide (TBHP) as the sole bystanding oxidant, and a broad substrate scope. The utility of this protocol was demonstrated through the two-step syntheses of a lenalidomide analog and brivaracetam from readily available carboxylic acids and amino acids.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X. Qiao
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, United States
| | - Shun Su
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, CA 92121, United States
| | - Emily C. Cherney
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheming Ruan
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William R. Ewing
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Poss
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States,Corresponding Author.
| |
Collapse
|
22
|
Wang HW, Wu JX, Li DC, Qiao YH, Yao QX, Sun WC, Dou JM. The synthesis of aryl-heteroaryl derivatives via the Rh III-catalyzed heteroarylation of arenes and heteroaromatic boronates. Org Biomol Chem 2021; 20:686-693. [PMID: 34951443 DOI: 10.1039/d1ob02201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient RhIII-catalyzed strategy for constructing aryl-heteroaryl derivatives with removable ketoxime ether auxiliaries via direct C-H heteroarylation based on arenes and heteroaromatic boronates has been disclosed. This protocol could tolerate various pyridine, pyrimidine, pyrazole, thiophene, and furan heteroaromatic boronates well, providing the desired products with high reactivities and excellent regioselectivity. The easy synthetic accessibility may offer potential for application in the synthesis of heterocyclic drug molecules containing aryl-heteroaryl motifs.
Collapse
Affiliation(s)
- Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Yu-Han Qiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Wen-Can Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
23
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
24
|
Sahoo SR, Dutta S, Al-Thabaiti SA, Mokhtar M, Maiti D. Transition metal catalyzed C-H bond activation by exo-metallacycle intermediates. Chem Commun (Camb) 2021; 57:11885-11903. [PMID: 34693418 DOI: 10.1039/d1cc05042g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
exo-Metallacycles have become the key reaction intermediates in activating various remote C(sp2)-H and C(sp3)-H bonds in the past decade and aided in achieving unusual site-selectivity. Various novel exo-chelating auxiliaries have assisted metals to reach desired remote C-H bonds of different alcohol and amine-derived substrates. As a result, a wide range of organic transformations of C-H bonds like halogenation, acetoxylation, amidation, sulfonylation, olefination, acylation, arylation, etc. were accessible using the exo-metallacycle strategy. In this review, we have summarized the developments in C-H bond activation via four-, five-, six-, seven- and eight-membered exo-metallacycles and the key reaction intermediates, including the mechanistic aspects, are discussed concisely.
Collapse
Affiliation(s)
- Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Shaeel A Al-Thabaiti
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| |
Collapse
|
25
|
Zhuang Z, Herron AN, Yu J. Synthesis of Cyclic Anhydrides via Ligand‐Enabled C–H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
26
|
Li M, Akintelu SA, Yao B. Post-Assembly Modification of Peptides by Ligand-Enabled β-C(sp 3)-H Arylation of Alanine at the C-Terminus: Overcoming the Inhibition Effect of Peptide Bonds. Org Lett 2021; 23:4807-4812. [PMID: 34060311 DOI: 10.1021/acs.orglett.1c01481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postassembly modification of peptides via C(sp3)-H functionalization on aliphatic side chains provides a straightforward approach to access functionalized peptides as therapeutics. However, C(sp3)-H functionalization of C-terminal residues remains underdeveloped due to the inhibition effect of secondary amides in the backbone. Herein, we report a ligand-enabled, bidentate auxiliary-assisted β-C(sp3)-H arylation method, which is well tolerant of secondary amides. A wide range of peptides (tri- to dodecapeptides) underwent position-specific modification of alanine at the C-terminus.
Collapse
Affiliation(s)
- Ming Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
27
|
Zhuang Z, Herron AN, Yu JQ. Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021; 60:16382-16387. [PMID: 33977635 DOI: 10.1002/anie.202104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
The development of C(sp3 )-H functionalizations of free carboxylic acids has provided a wide range of versatile C-C and C-Y (Y=heteroatom) bond-forming reactions. Additionally, C-H functionalizations have lent themselves to the one-step preparation of a number of valuable synthetic motifs that are often difficult to prepare through conventional methods. Herein, we report a β- or γ-C(sp3 )-H carbonylation of free carboxylic acids using Mo(CO)6 as a convenient solid CO source and enabled by a bidentate ligand, leading to convenient syntheses of cyclic anhydrides. Among these, the succinic anhydride products are versatile stepping stones for the mono-selective introduction of various functional groups at the β position of the parent acids by decarboxylative functionalizations, thus providing a divergent strategy to synthesize a myriad of carboxylic acids inaccessible by previous β-C-H activation reactions. The enantioselective carbonylation of free cyclopropanecarboxylic acids has also been achieved using a chiral bidentate thioether ligand.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
28
|
Tao Q, Li YN, Tang WJ, Liu PY, Yu F, He YP. Di-ortho-C H arylation of phenylalanine: A bimetallic interaction between Pd(IV)-Ag(I). Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Marset X, Recort‐Fornals M, Kpante M, Zieliński A, Golz C, Wolf LM, Alcarazo M. Towards an Effective Synthesis of Difunctionalized Heptacyclo [6.6.0.0
2,6
.0
3,13
.0
4,11
.0
5,9
.0
10,14
]tetradecane: Ligand Effects on the Cage Assembly and Selective C−H Arylation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xavier Marset
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Martí Recort‐Fornals
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Malkaye Kpante
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts 01854 United States
| | - Adam Zieliński
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Lawrence M. Wolf
- Department of Chemistry University of Massachusetts Lowell Lowell Massachusetts 01854 United States
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
30
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|
31
|
Nnamdi FU, Diner C, Champagne PA, Organ MG. Experimental and Computational Study on the Anti-Markovnikov Hydrofunctionalization of Olefins Using Glycine-Extended AQ-Auxiliaries. Chemistry 2021; 27:3855-3860. [PMID: 33617055 DOI: 10.1002/chem.202004881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 11/07/2022]
Abstract
Two similar tridentate directing groups derived from glycine and 8-aminoquinoline were shown to enable the palladium-catalyzed anti-Markovnikov hydrofunctionalization of 4-pentenylamine with drastically different efficiencies. A computational investigation into the origin of the reactivity difference between these isomeric, carbonyl-transposed auxiliaries suggests that protonation state, thus charge of the substrate-metal complex prior to nucleopalladation is key. These investigations have culminated in a directing group design that can undergo Pd-catalyzed hydrofunctionalization under relatively mild conditions, as low as room temperature.
Collapse
Affiliation(s)
- Fred U Nnamdi
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Colin Diner
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
32
|
Bhattacharya T, Ghosh A, Maiti D. Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C-H activation. Chem Sci 2021; 12:3857-3870. [PMID: 34163654 PMCID: PMC8179444 DOI: 10.1039/d0sc06937j] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Among numerous solvents available for chemical transformations, 1,1,1,3,3,3-hexafluoro-2-propanol (popularly known as HFIP) has attracted enough attention of the scientific community in recent years. Several unique features of HFIP compared to its non-fluoro analogue isopropanol have helped this solvent to make a difference in various subdomains of organic chemistry. One such area is transition metal-catalyzed C-H bond functionalization reactions. While, on one side, HFIP is emerging as a green and sustainable deep eutectic solvent (DES), on the other side, a major proportion of Pd-catalyzed C-H functionalization is heavily relying on this solvent. In particular, for distal aromatic C-H functionalizations, the exceptional impact of HFIP to elevate the yield and selectivity has made this solvent irreplaceable. Recent research studies have also highlighted the H-bond-donating ability of HFIP to enhance the chiral induction in Pd-catalyzed atroposelective C-H activation. This perspective aims to portray different shades of HFIP as a magical solvent in Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra 400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
33
|
Niu PP, Liu PY, Meng YN, Yu F, He YP. MIA-Directed 2-Pyridione-Enabled Selective Ortho-C–H Arylation of Phenylalanine: A Mechanistic Study. J Org Chem 2021; 86:3096-3106. [PMID: 33442983 DOI: 10.1021/acs.joc.0c02872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peng-Peng Niu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Peng-Yu Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Yue-Ning Meng
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Fang Yu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Yu-Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| |
Collapse
|
34
|
Huang A, Han Y, Wu P, Gao Y, Huo Y, Chen Q, Li X. Ligand-accelerated site-selective Csp 2–H and Csp 3–H alkynylations of alcohols via Pd( ii) catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01095f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ligand accelerated site-selective C–H alkynylation, including secondary and tertiary Csp3–H alkynylation of weakly coordinated yet synthetically promising alcohols, via putative 6, 7 and 8-membered palladacycle intermediates, was developed.
Collapse
Affiliation(s)
- Aidong Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yishen Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Peiqing Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
35
|
Mingo MM, Rodríguez N, Arrayás RG, Carretero JC. Remote C(sp 3)–H functionalization via catalytic cyclometallation: beyond five-membered ring metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d1qo00389e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive recent momentum gained in C(sp3)–H activation, achieving high regioselectivity in molecules containing different C–H bonds with similar high energy without abusing tailored substitution remains as one of the biggest challenges.
Collapse
Affiliation(s)
- Mario Martínez Mingo
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
| | - Nuria Rodríguez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, c/Fco. Tomás y Valiente 7, Cantoblanco 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Spain
| |
Collapse
|
36
|
Gou Q, Yuan B, Ran M, Ren J, Zhang MZ, Tan X, Yuan T, Zhang X. C(sp 3)-H Monoarylation of Methanol Enabled by a Bidentate Auxiliary. Org Lett 2020; 23:118-123. [PMID: 33351637 DOI: 10.1021/acs.orglett.0c03786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the assistance of a practical directing group (COAQ), the first catalytic protocol for the palladium-catalyzed C(sp3)-H monoarylation of methanol has been developed, offering an invaluable synthesis means to establish extensive derivatives of crucial arylmethanol functional fragments. Furthermore, the gram-scale reaction, broad substrate scope, excellent functional group compatibility, and even the practical synthesis of medicines further demonstrate the usefulness of this strategy.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Man Ran
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Jian Ren
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China
| | - Ming-Zhong Zhang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Xiaoping Tan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| | - Tengrui Yuan
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 China
| |
Collapse
|
37
|
Xu F, Song YY, Zhou HM, Liu CS, Lu YZ, Du JP. A one-pot process for synthesis of eight-membered cyclopalladated amidines via cascade C H activation and insertion. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|