1
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Wen CF, Yang S, He JJ, Niu Q, Liu PF, Yang HG. Anionic Metal-Organic Framework Derived Cu Catalyst for Selective CO 2 Electroreduction to Hydrocarbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405051. [PMID: 39092657 DOI: 10.1002/smll.202405051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.
Collapse
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Jing He
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Company Limited, Ordos, Inner Mongolia, 016064, China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Company Limited, Ordos, Inner Mongolia, 016064, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Wen Y, Jiang D, Lai Z, Zeng X, Liu B, Xiao Y, Ruan W, Xiong K. Exploring the CO 2 Electrocatalysis Potential of 2D Metal-Organic Transition Metal-Hexahydroxytriquinoline Frameworks: A DFT Investigation. Molecules 2024; 29:2896. [PMID: 38930961 PMCID: PMC11206698 DOI: 10.3390/molecules29122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Metal-organic frameworks have demonstrated great capacity in catalytic CO2 reduction due to their versatile pore structures, diverse active sites, and functionalization capabilities. In this study, a novel electrocatalytic framework for CO2 reduction was designed and implemented using 2D coordination network-type transition metal-hexahydroxytricyclic quinazoline (TM-HHTQ) materials. Density functional theory calculations were carried out to examine the binding energies between the HHTQ substrate and 10 single TM atoms, ranging from Sc to Zn, which revealed a stable distribution of metal atoms on the HHTQ substrate. The majority of the catalysts exhibited high selectivity for CO2 reduction, except for the Mn-HHTQ catalysts, which only exhibited selectivity at pH values above 4.183. Specifically, Ti and Cr primarily produced HCOOH, with corresponding 0.606 V and 0.236 V overpotentials. Vanadium produced CH4 as the main product with an overpotential of 0.675 V, while Fe formed HCHO with an overpotential of 0.342 V. Therefore, V, Cr, Fe, and Ti exhibit promising potential as electrocatalysts for carbon dioxide reduction due to their favorable product selectivity and low overpotential. Cu mainly produces CH3OH as the primary product, with an overpotential of 0.96 V. Zn primarily produces CO with a relatively high overpotential of 1.046 V. In contrast, catalysts such as Sc, Mn, Ni, and Co, among others, produce multiple products simultaneously at the same rate-limiting step and potential threshold.
Collapse
Affiliation(s)
- Yufeng Wen
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Daguo Jiang
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Zhangli Lai
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Xianshi Zeng
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Bo Liu
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Yanan Xiao
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Wen Ruan
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (D.J.); (B.L.); (Y.X.); (W.R.)
| | - Kai Xiong
- Materials Genome Institute, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China;
- Advanced Computing Center, Information Technology Center, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Wen Y, Zeng X, Xiao Y, Ruan W, Xiong K, Lai Z. Density Functional Study of Electrocatalytic Carbon Dioxide Reduction in Fourth-Period Transition Metal-Tetrahydroxyquinone Organic Framework. Molecules 2024; 29:2320. [PMID: 38792181 PMCID: PMC11123802 DOI: 10.3390/molecules29102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the utilisation of organometallic network frameworks composed of fourth-period transition metals and tetrahydroxyquinone (THQ) in electrocatalytic CO2 reduction. Density functional theory (DFT) calculations were employed in analysing binding energies, as well as the stabilities of metal atoms within the THQ frameworks, for transition metal TM-THQs ranging from Y to Cd. The findings demonstrate how metal atoms could be effectively dispersed and held within the THQ frameworks due to sufficiently high binding energies. Most TM-THQ frameworks exhibited favourable selectivity towards CO2 reduction, except for Tc and Ru, which experienced competition from hydrogen evolution reaction (HER) and required solution environments with pH values greater than 5.716 and 8.819, respectively, to exhibit CO2RR selectivity. Notably, the primary product of Y, Ag, and Cd was HCOOH; Mo produced HCHO; Pd yielded CO; and Zr, Nb, Tc, Ru, and Rh predominantly generated CH4. Among the studied frameworks, Zr-THQ displayed values of 1.212 V and 1.043 V, corresponding to the highest limiting potential and overpotential, respectively, while other metal-organic frameworks displayed relatively low ranges of overpotentials from 0.179 V to 0.949 V. Consequently, it is predicted that the TM-THQ framework constructed using a fourth-period transition metal and tetrahydroxyquinone exhibits robust electrocatalytic reduction of CO2 catalytic activity.
Collapse
Affiliation(s)
- Yufeng Wen
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Xianshi Zeng
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Yanan Xiao
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Wen Ruan
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| | - Kai Xiong
- Materials Genome Institute, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China;
- Advanced Computing Center, Information Technology Center, Yunnan University, Kunming 650091, China
| | - Zhangli Lai
- School of Mathematical Sciences and Physics, Jinggangshan University, Ji’an 343009, China; (Y.W.); (X.Z.); (Y.X.); (W.R.)
| |
Collapse
|
5
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
6
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
7
|
Deng T, Jia S, Chen C, Jiao J, Chen X, Xue C, Xia W, Xing X, Zhu Q, Wu H, He M, Han B. Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO 2 Electroreduction to Ethylene. Angew Chem Int Ed Engl 2024; 63:e202313796. [PMID: 38015565 DOI: 10.1002/anie.202313796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2 RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2 H4 ) selectivity with a Faraday efficiency (FE) of 67.3 % at -1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2 RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.
Collapse
Affiliation(s)
- Ting Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Cheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Wei X, Hernandez R. Heat Transfer Enhancement in Tree-Structured Polymer Linked Gold Nanoparticle Networks. J Phys Chem Lett 2023; 14:9834-9841. [PMID: 37890034 PMCID: PMC10642580 DOI: 10.1021/acs.jpclett.3c02367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Human brains use a tree-like neuron network for information processing at high efficiency and low energy consumption. Tree-like structures have also been engineered to enhance mass and heat transfer in various applications. In this work, we reveal the heat transfer mechanism in tree-structured polymer linked gold nanoparticle (AuNP) networks using atomistic simulations. We report both upward and downward heat fluxes between root and leaf nodes in tree-structured polyethylene (PE) and poly(p-phenylene) (PPP) linked AuNP networks at tree levels from 1 to 5. We found that the heat conductance increases with an increasing polymer tree level. The heat transfer enhancement is due to the resulting increase in the low-frequency vibrational modes. This and other thermal properties are affected by the location of the AuNPs in the tree. Moreover, complex tree structures with at least five levels were found to be robust in the sense that disabling half of the leaves did not change the overall heat conductance.
Collapse
Affiliation(s)
- Xingfei Wei
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Liu H, Zhang C, Wang C, Fan K, Zhang Y, Fang L, Li L, Ren C, Yin ZZ, Lü Z. A highly selective and sensitive sensor for promethazine based on molecularly imprinted interface coated Au/Sn bimetal nanoclusters functionalized acupuncture needle microelectrode. Anal Chim Acta 2023; 1269:341395. [PMID: 37290856 DOI: 10.1016/j.aca.2023.341395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Promethazine (PMZ) is an effective antihistamine that is used as a nerve tranquilizer to treat mental disorders. However, drug abuse causes harm to the human body and also pollutes the environment to a certain extent. Therefore, it is crucial to develop a highly selective and sensitive biosensor for PMZ determination. An acupuncture needle (AN) was used as an electrode in 2015, and further research on the electrode's essence in electrochemistry is needed. In this work, a sensor based on a surface imprinted film coordinated Au/Sn biometal was first fabricated on AN via electrochemistry. The obtained cavities showed complementary and suitable sites for "N atom" electron transfer through the phenyl ring structure in promethazine, which is rigorous for the configuration near the interface. Under the optimal conditions, MIP/Au/Sn/ANE exhibits a good linear relationship in the range of 0.5 μM-500 μM, and the detection limit (LOD) is 0.14 μM (S/N = 3). The sensor exhibits good repeatability, stability, and selectivity and can be successfully used to analyze and detect PMZ in human serum and environmental water. The findings are scientifically significant for AN electrochemistry and the sensors have potential for in vivo medicamentosus monitoring in the future.
Collapse
Affiliation(s)
- Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cairui Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chenwei Wang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kai Fan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuqing Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chaoxiang Ren
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Science and Engineering, Jiaxiing University, Jiaxing, 314001, China.
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| |
Collapse
|
10
|
Wang Y, Cao Y, Hai Y, Wang X, Su S, Ding W, Liu Z, Li X, Luo M. Metal-organic framework-derived Cu nanoparticle binder-free monolithic electrodes with multiple support structures for electrocatalytic nitrate reduction to ammonia. Dalton Trans 2023; 52:11213-11221. [PMID: 37522833 DOI: 10.1039/d3dt01412f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Electrocatalytic nitrate reduction to ammonia, which removes nitrates from aquatic ecosystems, is a potential alternative to the classical Haber-Bosch process. Nevertheless, the selectivity of ammonia is often affected by the toxic by-product nitrite. Here, the polyhedral-supported Cu nanoparticle binder-free monolithic electrode (Cu-BTC-Cu) is synthesized by the in situ electroreduction of Cu metal-organic framework (Cu-MOF) precursors. The Cu-BTC-Cu displays a high ammonia yield of 4.00 mg h-1 cm-2cat and a faradaic efficiency of 83.8% in 0.05 M K2SO4 (pH = 7), greatly outperforming the rod-supported (Cu-BTEC-Cu) and unsupported (Cu-BDC-Cu) Cu nanoparticle monolithic electrodes. Impressively, the Cu-BTC-Cu can inhibit significantly the release of by-product NO2- and present favourable stability after 10 consecutive cycles. These preeminent properties can be attributed to the polyhedral structure, which enables better dispersion of Cu nanoparticles and brings more active sites. Moreover, the reaction mechanism of Cu-BTC-Cu is analysed by electrochemical in situ characterization and several key intermediates are captured. This work provides new insights into the modification of the electrocatalytic nitrate reduction activity of Cu-based catalysts and ideas for the design of high-efficiency electrodes.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| |
Collapse
|
11
|
Li C, Ji Y, Wang Y, Liu C, Chen Z, Tang J, Hong Y, Li X, Zheng T, Jiang Q, Xia C. Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO 2 Reduction. NANO-MICRO LETTERS 2023; 15:113. [PMID: 37121938 PMCID: PMC10149437 DOI: 10.1007/s40820-023-01092-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Electrochemically reducing CO2 to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels, but also helps to build a closed-loop anthropogenic carbon cycle. Among various electrocatalysts for electrochemical CO2 reduction, multifunctional metal-organic frameworks (MOFs) have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures. Up to now, great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO2 reduction reaction (CO2RR), and their corresponding reaction mechanisms have been thoroughly studied. In this review, we summarize the recent progress of applying MOFs and their derivatives in CO2RR, with a focus on the design strategies for electrocatalysts and electrolyzers. We first discussed the reaction mechanisms for different CO2RR products and introduced the commonly applied electrolyzer configurations in the current CO2RR system. Then, an overview of several categories of products (CO, HCOOH, CH4, CH3OH, and multi-carbon chemicals) generated from MOFs or their derivatives via CO2RR was discussed. Finally, we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO2 reduction. We aim to provide new insights into this field and further guide future research for large-scale applications.
Collapse
Affiliation(s)
- Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Youpeng Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Zhaoyang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jialin Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yawei Hong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- Research Center for Carbon-Neutral Environmental and Energy Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
12
|
Xu Y, Wei S, Zhang L, Wu Q, Wang F, Fan J, Wang D, Wu T, Cui X. Ion-Assisted Preparation of Bimetallic Porous Nanodendrites for Active and Stable Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207332. [PMID: 36719997 DOI: 10.1002/smll.202207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Delicate electrochemical active surface area (ECSA) engineering over the exposed catalytic interface and surface topology of platinum-based nanomaterial represents an effective pathway to boost its catalytic properties toward the clean energy conversion system. Here, for the first time, the facial and universal production of dendritic Pt-based nanoalloys (Pt-Ni, Co, Fe) with highly porous feature via a novel Zn2+ -mediated solution approach is demonstrated. In the presence of Zn2+ during synthesis, the competition of different galvanic replacement reactions and consequently generated "branch-to-branch" growth mode are believed to play key roles for the in situ fabrication of such unique nanostructure. Due to the fully exposed active sites and ligand effect-induced electronic optimization, electrochemical hydrogen evolution in alkaline media on these catalysts exhibit dramatic activity enhancement, delivering a current density of 30.6 mA cm-2 at a 70 mV overpotential for the Pt3 Ni nanodendrites and over 7.4 times higher than that of commercial Pt/C. This work highlights a general and powerful ion-assisted strategy for exploiting dendritic Pt-based nanostructures with efficient activities for water electrolysis.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuting Wei
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Qiong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Feng Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Yan T, Wang P, Sun WY. Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO 2 Electroreduction to C 2 H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206070. [PMID: 36538751 DOI: 10.1002/smll.202206070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2 RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal-organic framework (MOF), named as Cu-MOF-CF, to realize improved electrochemical CO2 RR performance, is reported. The Cu-MOF-CF shows suppression of CH4 , great increase in C2 H4 selectivity (48.6%), and partial current density of C2 H4 at -1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu-MOF-CF for CO2 RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu-MOF in situ for CF, and the enlarged active surface area by porous Cu-MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2 RR.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Oxidation of metallic Cu by supercritical CO 2 and control synthesis of amorphous nano-metal catalysts for CO 2 electroreduction. Nat Commun 2023; 14:1092. [PMID: 36841816 PMCID: PMC9968285 DOI: 10.1038/s41467-023-36721-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Amorphous nano-metal catalysts often exhibit appealing catalytic properties, because the intrinsic linear scaling relationship can be broken. However, accurate control synthesis of amorphous nano-metal catalysts with desired size and morphology is a challenge. In this work, we discover that Cu(0) could be oxidized to amorphous CuxO species by supercritical CO2. The formation process of the amorphous CuxO is elucidated with the aid of machine learning. Based on this finding, a method to prepare Cu nanoparticles with an amorphous shell is proposed by supercritical CO2 treatment followed by electroreduction. The unique feature of this method is that the size of the particles with amorphous shell can be easily controlled because their size depends on that of the original crystal Cu nanoparticles. Moreover, the thickness of the amorphous shell can be easily controlled by CO2 pressure and/or treatment time. The obtained amorphous Cu shell exhibits high selectivity for C2+ products with the Faradaic efficiency of 84% and current density of 320 mA cm-2. Especially, the FE of C2+ oxygenates can reach up to 65.3 %, which is different obviously from the crystalline Cu catalysts.
Collapse
|
15
|
Yang Y, Tan Z, Wang S, Wang Y, Hu J, Su Z, Zhao Y, Tai J, Zhang J. Cu/Cu 2O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products. Chem Commun (Camb) 2023; 59:2445-2448. [PMID: 36734610 DOI: 10.1039/d2cc06986e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We demonstrate the electrochemical conversion of carbon dioxide into multi-carbon products catalyzed by Cu/Cu2O nanocrystals, with a maximum C2+ faradaic efficiency of 75% in 0.10 M K2SO4 aqueous solution at -2.0 V versus Ag/AgCl and a partial current density of 34 mA cm-2.
Collapse
Affiliation(s)
- Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhonghao Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sha Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jing Tai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Wang C, Lv Z, Yang W, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO 2 reduction reaction. Chem Soc Rev 2023; 52:1382-1427. [PMID: 36723190 DOI: 10.1039/d2cs00843b] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrocatalytic CO2 reduction reaction (ECO2RR) is considered one of the approaches with the most potential to achieve lower carbon emissions in the future, but a huge gap still exists between the current ECO2RR technology and industrial applications. Therefore, the design and preparation of catalysts with satisfactory activity, selectivity and stability for the ECO2RR have attracted extensive attention. As a classic type of functional porous framework, crystalline porous materials (e.g., metal organic frameworks (MOFs) and covalent organic frameworks (COFs)) and derived porous materials (e.g., MOF/COF composites and pyrolysates) have been regarded as superior catalysts for the ECO2RR due to their advantages such as designable porosity, modifiable skeleton, flexible active site structure, regulable charge transfer pathway and controllable morphology. Meanwhile, with the rapid development of nano-characterization and theoretical calculation technologies, the structure-activity relationships of functional porous frameworks have been comprehensively considered, i.e., metallic element type, local coordination environment, and microstructure, corresponding to selectivity, activity and mass transfer efficiency for the ECO2RR, respectively. In this review, the rational design strategy for functional porous frameworks is briefly but precisely generalized based on three key factors including metallic element type, local coordination environment, and microstructure. Then, details about the structure-activity relationships for functional porous frameworks are illustrated in the order of MOFs, COFs, composites and pyrolysates to analyze the effect of the above-mentioned three factors on their ECO2RR performance. Finally, the challenges and perspectives of functional porous frameworks for the further development of the ECO2RR are reasonably proposed, aiming to offer insights for future studies in this intriguing and significant research field.
Collapse
Affiliation(s)
- Changli Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| |
Collapse
|
17
|
Chen P, Zhang P, Kang X, Zheng L, Mo G, Wu R, Tai J, Han B. Efficient Electrocatalytic Reduction of CO 2 to Ethane over Nitrogen-Doped Fe 2O 3. J Am Chem Soc 2022; 144:14769-14777. [PMID: 35924845 DOI: 10.1021/jacs.2c05373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-copper electrocatalysts are seldom reported to generate C2+ products, and the efficiency over these catalysts is low. In this work, we report a nitrogen-doped γ-Fe2O3 (xFe2O3-N@CN) electrocatalyst, which yield C2H6 as the major product in an H-cell. At -2.0 V vs Ag/Ag+, the Faradaic efficiency (FE) for ethane reaches 42% with a current density of 32 mA cm-2. This is the first report about selective CO2 reduction to ethane (C2H6) over an iron-based catalyst. The results showed that the catalyst possessing FeO1.5-nNn sites enriched with oxygen vacancies was beneficial for the stabilization of *COOH intermediates. The exposure of two adjacent surfaces of Fe atoms was conducive to lowering the energy barrier for C-C coupling over FeO1.5-nNn sites, facilitating the generation of C2H6. This work provides a strategy for the design of a novel iron-based catalyst with tunable local coordination and electronic structures for converting CO2 into C2 products in the CO2RR.
Collapse
Affiliation(s)
- Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jing Tai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049 China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162 China
| |
Collapse
|
18
|
Zhangsun H, Wang Q, Xu Z, Wang J, Wang X, Zhao Y, Zhang H, Zhao S, Li L, Li Z, Wang L. NiCu nanoalloy embedded in N-doped porous carbon composite as superior electrochemical sensor for neonicotinoid determination. Food Chem 2022; 384:132607. [DOI: 10.1016/j.foodchem.2022.132607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
19
|
Kang X, Fu G, Fu XZ, Luo JL. Copper-based metal-organic frameworks for electrochemical reduction of CO2. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Liu J, Li P, Bi J, Zhu Q, Han B. Design and Preparation of Electrocatalysts by Electrodeposition for CO
2
Reduction. Chemistry 2022; 28:e202200242. [DOI: 10.1002/chem.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahui Bi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
Lyu F, Hua W, Wu H, Sun H, Deng Z, Peng Y. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Abstract
Carbon dioxide (CO2) electroreduction offers an attractive pathway for converting CO2 to valuable fuels and chemicals. Despite the existence of some excellent electrocatalysts with superior selectivity for specific products, these reactions are conducted at low current densities ranging from several mA cm−2 to tens of mA cm−2, which are far from commercially desirable values. To extend the applications of CO2 electroreduction technology to an industrial scale, long-term operations under high current densities (over 200 mA cm−2) are desirable. In this paper, we review recent major advances toward higher current density in CO2 reduction, including: (1) innovations in electrocatalysts (engineering the morphology, modulating the electronic structure, increasing the active sites, etc.); (2) the design of electrolyzers (membrane electrode assemblies, flow cells, microchannel reactors, high-pressure cells, etc.); and (3) the influence of electrolytes (concentration, pH, anion and cation effects). Finally, we discuss the current challenges and perspectives for future development toward high current densities.
Collapse
|
23
|
Ma Z, Tsounis C, Toe CY, Kumar PV, Subhash B, Xi S, Yang HY, Zhou S, Lin Z, Wu KH, Wong RJ, Thomsen L, Bedford NM, Lu X, Ng YH, Han Z, Amal R. Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO 2 Reduction toward Valuable Products. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhipeng Ma
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Priyank V. Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Bijil Subhash
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Shibo Xi
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore 627833, Singapore
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682, Singapore
| | - Shujie Zhou
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Zeheng Lin
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Kuang-Hsu Wu
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Roong Jien Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education, 1 CREATE Way, Singapore 138602 Singapore
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nicholas M. Bedford
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Xunyu Lu
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales 2070, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
24
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
25
|
Large-scale simulations of CO2 diffusion in metal–organic frameworks with open Cu sites. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Highly Ethylene‐Selective Electrocatalytic CO
2
Reduction Enabled by Isolated Cu−S Motifs in Metal–Organic Framework Based Precatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Zhou
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance School of Physics and Materials Science East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance School of Physics and Materials Science East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - P. Hu
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- School of Chemistry and Chemical Engineering The Queen's University of Belfast Belfast BT9 5AG UK
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
27
|
Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chen Q, Chen ZY, Wu JH. Mechanistic Insight into the ZnO‐Assisted Growth of Sn
6
O
4
(OH)
4
Three‐Dimensional Dendritic Hexapods. ChemistrySelect 2021. [DOI: 10.1002/slct.202103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Chen
- College of Chemistry Chemical Engineering and Materials Science Soochow University 199 RenAi Road Suzhou Jiangsu China 215123
| | - Zhi Yun Chen
- College of Chemistry Chemical Engineering and Materials Science Soochow University 199 RenAi Road Suzhou Jiangsu China 215123
| | - Ji Hong Wu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 199 RenAi Road Suzhou Jiangsu China 215123
| |
Collapse
|
29
|
Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Highly Ethylene-Selective Electrocatalytic CO 2 Reduction Enabled by Isolated Cu-S Motifs in Metal-Organic Framework Based Precatalysts. Angew Chem Int Ed Engl 2021; 61:e202111700. [PMID: 34687123 DOI: 10.1002/anie.202111700] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/11/2022]
Abstract
Copper-based materials are efficient electrocatalysts for the conversion of CO2 to C2+ products, and most these materials are reconstructed in situ to regenerate active species. It is a challenge to precisely design precatalysts to obtain active sites for the CO2 reduction reaction (CO2 RR). Herein, we develop a strategy based on local sulfur doping of a Cu-based metal-organic framework precatalyst, in which the stable Cu-S motif is dispersed in the framework of HKUST-1 (S-HKUST-1). The precatalyst exhibits a high ethylene selectivity in an H-type cell with a maximum faradaic efficiency (FE) of 60.0 %, and delivers a current density of 400 mA cm-2 with an ethylene FE up to 57.2 % in a flow cell. Operando X-ray absorption results demonstrate that Cuδ+ species stabilized by the Cu-S motif exist in S-HKUST-1 during CO2 RR. Density functional theory calculations indicate the partially oxidized Cuδ+ at the Cu/Cux Sy interface is favorable for coupling of the *CO intermediate due to the modest distance between coupling sites and optimized adsorption energy.
Collapse
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - P Hu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
30
|
Zhu ZH, Zhao BH, Hou SL, Jiang XL, Liang ZL, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon-Particle-Modified Metal-Organic Framework for Enhancing the Efficiency of CO 2 Electroreduction into Formate. Angew Chem Int Ed Engl 2021; 60:23394-23402. [PMID: 34406687 DOI: 10.1002/anie.202110387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .
Collapse
Affiliation(s)
- Zi-Hao Zhu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bo-Hang Zhao
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, (Ministry of Education), Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
31
|
Zhu Z, Zhao B, Hou S, Jiang X, Liang Z, Zhang B, Zhao B. A Facile Strategy for Constructing a Carbon‐Particle‐Modified Metal–Organic Framework for Enhancing the Efficiency of CO
2
Electroreduction into Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Hao Zhu
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bo‐Hang Zhao
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Sheng‐Li Hou
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Xiao‐Lei Jiang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Ze‐Long Liang
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhao
- Department of Chemistry Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Nankai University Tianjin 300071 China
| |
Collapse
|
32
|
Xiao YX, Ying J, Tian G, Yang X, Zhang YX, Chen JB, Wang Y, Symes MD, Ozoemena KI, Wu J, Yang XY. Hierarchically Fractal PtPdCu Sponges and their Directed Mass- and Electron-Transfer Effects. NANO LETTERS 2021; 21:7870-7878. [PMID: 34318680 DOI: 10.1021/acs.nanolett.1c02268] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fractal Pt-based materials with hierarchical structures and high self-similarity have attracted more and more attention due to their bioinspiring maximum optimization of energy utilization and mass transfer. However, their high-efficiency design of the mass- and electron-transfer still remains to be a great challenge. Herein, fractal PtPdCu hollow sponges (denoted as PtPdCu-HS) facilitating both directed mass- and electron-transfer are presented. Such directed transfer effects greatly promote electrocatalytic activity, regarded as 3.9 times the mass activity, 7.3 times the specific activity, higher poison tolerance, and higher stability than commercial Pt/C for the methanol oxidation reaction (MOR). A new "directed mass- and electron-transfer" concept, characteristics, and mechanism are proposed at the micro/nanoscale to clarify the structural design and functional enhancement of fractal electrocatalyst. This work displays new possibilities for designing novel nanomaterials with high activity and superior stability toward electrocatalysis or other practical applications.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yue-Xing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiang-Bo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and Engineering and NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Chen C, Yan X, Wu R, Wu Y, Zhu Q, Hou M, Zhang Z, Fan H, Ma J, Huang Y, Ma J, Sun X, Lin L, Liu S, Han B. Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO 2 reduction with high efficiency. Chem Sci 2021; 12:11914-11920. [PMID: 34659731 PMCID: PMC8442700 DOI: 10.1039/d1sc02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm-2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd-O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2 via an adsorption-electrolysis device.
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
34
|
Wu Y, Chen C, Yan X, Sun X, Zhu Q, Li P, Li Y, Liu S, Ma J, Huang Y, Han B. Boosting CO 2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021; 60:20803-20810. [PMID: 34272915 DOI: 10.1002/anie.202105263] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Guided by first-principles calculations, it was found that Cd single-atom catalysts (SACs) have excellent performance in activating CO2 , and the introduction of axial coordination structure to Cd SACs cannot only further decrease the free energy barrier of CO2 reduction, but also suppress the hydrogen evolution reaction (HER). Based on the above discovery, we designed and synthesized a novel Cd SAC that comprises an optimized CdN4 S1 moiety incorporated in a carbon matrix. It was shown that the catalyst exhibited outstanding performance in CO2 electroreduction to CO. The faradaic efficiency (FE) of CO could reach up to 99.7 % with a current density of 182.2 mA cm-2 in a H-type electrolysis cell, and the turnover frequency (TOF) value could achieve 73000 h-1 , which was much higher than that reported to date. This work shows a successful example of how to design highly efficient catalysts guided by theoretical calculations.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yiming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
35
|
Boosting CO
2
Electroreduction over a Cadmium Single‐Atom Catalyst by Tuning of the Axial Coordination Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Han Y, Zhu S, Xu S, Niu X, Xu Z, Zhao R, Wang Q. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO
2
Electroreduction to C
2
Products. ChemElectroChem 2021. [DOI: 10.1002/celc.202100942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yunxi Han
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuaikang Zhu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shuang Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
37
|
Wang Q, Zhangsun H, Zhao Y, Zhuang Y, Xu Z, Bu T, Li R, Wang L. Macro-meso-microporous carbon composite derived from hydrophilic metal-organic framework as high-performance electrochemical sensor for neonicotinoid determination. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125122. [PMID: 33485221 DOI: 10.1016/j.jhazmat.2021.125122] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical analysis enables pesticides monitoring become rapid and efficient. Herein, novel three dimensional nitrogen-doped macro-meso-microporous carbon composites (N/Cu-HPC) derived from polyvinylpyrrolidone (PVP) doped Cu-metal organic framework were successfully formed via one-pot solvothermal method followed by pyrolysis, which were further applied in high-performance electrochemical determination of neonicotinoid. The introduction of PVP endows the N/Cu-HPC good hydrophilicity preventing aggregation as well as more highly electronegative nitrogen species boosting electro-catalytic property dramatically. Interestingly, the macro-meso-microporous architecture improves mass and charge transports between neonicotinoid molecules and active sites such as Cu nanoparticles and carbon atoms possessing Lewis basicity next to pyridinic-N. Based on the N/Cu-HPC, imidacloprid (IDP), thiamethoxam (THA) and dinotefuran (DNF) were detected with wide linear detection ranges (0.5-60 μM for both IDP and DNF, 1-60 μM for THA) and low detection limits (0.026 μM for IDP, 0.062 μM for THA and 0.01 μM for DNF). Meanwhile, this sensor can be successfully used for determination of IDP, THA and DNF in oat, corn and rice with good recoveries (92.0-100.9%, RSD ≤ 4.8%), demonstrating that the N/Cu-HPC possesses a high potential to be an advanced sensing device for monitoring neonicotinoid in agricultural products.
Collapse
Affiliation(s)
- Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhangsun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihao Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
38
|
Ma W, Wu F, Yu P, Mao L. Carbon support tuned electrocatalytic activity of a single-site metal-organic framework toward the oxygen reduction reaction. Chem Sci 2021; 12:7908-7917. [PMID: 34168844 PMCID: PMC8188507 DOI: 10.1039/d1sc00997d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) possess fantastic features such as structural diversity, tunable accessible pores and atomically dispersed active sites, holding tremendous potential as highly versatile platforms for fabricating single-site catalysts. The electrocatalytic activity of single-site MOFs can be improved and tuned via several approaches; however, the exploitation of different carbon supports to modulate the nature of single active sites in MOFs for electrocatalysis has not been reported. Here, we find that the electrocatalytic activity of single-site MOFs toward the oxygen reduction reaction (ORR) can be tuned by using carbon nanomaterials, i.e., carbon nanotubes and graphene, as supports through MOF-support interactions in the manner of geometric and electronic effects. The introduction of MOF-support interactions not only greatly improves the electrocatalytic performance of MOFs toward the ORR in terms of onset and half-wave potentials and current density, but also alters the reaction pathway of the ORR. This finding provides a new horizon for the design and synthesis of single-site MOFs for electrocatalysis.
Collapse
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry, Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| |
Collapse
|
39
|
Chen C, Yan X, Wu Y, Liu S, Sun X, Zhu Q, Feng R, Wu T, Qian Q, Liu H, Zheng L, Zhang J, Han B. The in situ study of surface species and structures of oxide-derived copper catalysts for electrochemical CO 2 reduction. Chem Sci 2021; 12:5938-5943. [PMID: 35342541 PMCID: PMC8869928 DOI: 10.1039/d1sc00042j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Oxide-derived copper (OD-Cu) has been discovered to be an effective catalyst for the electroreduction of CO2 to C2+ products. The structure of OD-Cu and its surface species during the reaction process are interesting topics, which have not yet been clearly discussed. Herein, in situ surface-enhanced Raman spectroscopy (SERS), operando X-ray absorption spectroscopy (XAS), and 18O isotope labeling experiments were employed to investigate the surface species and structures of OD-Cu catalysts during CO2 electroreduction. It was found that the OD-Cu catalysts were reduced to metallic Cu(0) in the reaction. CuOx species existed on the catalyst surfaces during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO−) on Cu instead of on the active sites of the catalyst. It was also found that abundant interfaces can be produced on OD-Cu, which can provide heterogeneous CO adsorption sites (strong binding sites and weak binding sites), leading to outstanding performance for obtaining C2+ products. The Faradaic efficiency (FE) for C2+ products reached as high as 83.8% with a current density of 341.5 mA cm−2 at −0.9 V vs. RHE. CuOx species were shown to exist on OD-Cu during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO−) on Cu instead of on the active sites of the catalyst.![]()
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 China.,Physical Science Laboratory, Huairou National Comprehensive Science Center Beijing 101400 China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
40
|
Ren W, Tan X, Qu J, Li S, Li J, Liu X, Ringer SP, Cairney JM, Wang K, Smith SC, Zhao C. Isolated copper-tin atomic interfaces tuning electrocatalytic CO 2 conversion. Nat Commun 2021; 12:1449. [PMID: 33664236 PMCID: PMC7933149 DOI: 10.1038/s41467-021-21750-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Direct experimental observations of the interface structure can provide vital insights into heterogeneous catalysis. Examples of interface design based on single atom and surface science are, however, extremely rare. Here, we report Cu-Sn single-atom surface alloys, where isolated Sn sites with high surface densities (up to 8%) are anchored on the Cu host, for efficient electrocatalytic CO2 reduction. The unique geometric and electronic structure of the Cu-Sn surface alloys (Cu97Sn3 and Cu99Sn1) enables distinct catalytic selectivity from pure Cu100 and Cu70Sn30 bulk alloy. The Cu97Sn3 catalyst achieves a CO Faradaic efficiency of 98% at a tiny overpotential of 30 mV in an alkaline flow cell, where a high CO current density of 100 mA cm-2 is obtained at an overpotential of 340 mV. Density functional theory simulation reveals that it is not only the elemental composition that dictates the electrocatalytic reactivity of Cu-Sn alloys; the local coordination environment of atomically dispersed, isolated Cu-Sn bonding plays the most critical role.
Collapse
Affiliation(s)
- Wenhao Ren
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Xin Tan
- Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University Canberra, Canberra, ACT, Australia
| | - Jiangtao Qu
- Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, Australia
| | - Sesi Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiantao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Simon P Ringer
- Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Julie M Cairney
- Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, Australia
| | - Kaixue Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University Canberra, Canberra, ACT, Australia
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Li F, Mocci F, Zhang X, Ji X, Laaksonen A. Ionic liquids for CO2 electrochemical reduction. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Lu XF, Fang Y, Luan D, Lou XWD. Metal-Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. NANO LETTERS 2021; 21:1555-1565. [PMID: 33567819 DOI: 10.1021/acs.nanolett.0c04898] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With many apparent advantages including high surface area, tunable pore sizes and topologies, and diverse periodic organic-inorganic ingredients, metal-organic frameworks (MOFs) have been identified as versatile precursors or sacrificial templates for preparing functional materials as advanced electrodes or high-efficiency catalysts for electrochemical energy storage and conversion (EESC). In this Mini Review, we first briefly summarize the material design strategies to show the rich possibilities of the chemical compositions and physical structures of MOFs derivatives. We next highlight the latest advances focusing on the composition/structure/performance relationship and discuss their practical applications in various EESC systems, such as supercapacitors, rechargeable batteries, fuel cells, water electrolyzers, and carbon dioxide/nitrogen reduction reactions. Finally, we provide some of our own insights into the major challenges and prospective solutions of MOF-derived functional materials for EESC, hoping to shed some light on the future development of this highly exciting field.
Collapse
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yongjin Fang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
43
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
44
|
|
45
|
Chen EX, Yang J, Qiu M, Wang X, Zhang YF, Guo YJ, Huang SL, Sun YY, Zhang J, Hou Y, Lin Q. Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium-Pyrogallol Scaffolds in Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52588-52594. [PMID: 33185432 DOI: 10.1021/acsami.0c14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the high efficiency and mild reaction conditions, electrocatalytic CO2 reduction (ECR) has attracted significant attention in recent years. However, the specific mechanism of the formation of the two-electron production (CO or HCOOH) in this reaction is still unclear. Herein, with density functional theory calculation and experimental manipulation, the specific mechanism of the selective two-electron reduction of CO2 has been systematically investigated, employing the polyphenolate-substituted metalloporphyrinic frameworks, ZrPP-1-M (M = Fe, Co, Ni, Cu, and Zn), as model catalysts. Experimental observations and theoretical calculations discovered that ZrPP-1-Co is a more favorable catalyst for ECR among them. Compared with the formation of HCOOH, electroreduction of CO2 into CO has more beneficial thermodynamic and kinetic routes with ZrPP-1-Co as a catalyst. After introducing the r-GO for improving the conductivity, the Faradaic efficiency for CO formation is 82.4% at -0.6 v (vs RHE).
Collapse
Affiliation(s)
- Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mei Qiu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Science, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Xinyue Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong-Fan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yu-Jun Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shan-Lin Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ya-Yong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
46
|
Cui Y, He B, Liu X, Sun J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuandong Cui
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
47
|
Yang S, Zhang J, Peng L, Asgari M, Stoian D, Kochetygov I, Luo W, Oveisi E, Trukhina O, Clark AH, Sun DT, Queen WL. A metal-organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chem Sci 2020; 11:10991-10997. [PMID: 34094347 PMCID: PMC8162436 DOI: 10.1039/d0sc04512h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While metal–organic frameworks (MOF) alone offer a wide range of structural tunability, the formation of composites, through the introduction of other non-native species, like polymers, can further broaden their structure/property spectrum. Here we demonstrate that a polymer, placed inside the MOF pores, can support the collapsible MOF and help inhibit the aggregation of nickel during pyrolysis; this leads to the formation of single atom nickel species in the resulting nitrogen doped carbons, and dramatically improves the activity, CO selectivity and stability in electrochemical CO2 reduction reaction. Considering the vast number of multifarious MOFs and polymers to choose from, we believe this strategy can open up more possibilities in the field of catalyst design, and further contribute to the already expansive set of MOF applications. A metal–organic framework/polymer derived catalyst containing single-atom nickel species shows good performance for electroreduction of CO2 to CO.![]()
Collapse
Affiliation(s)
- Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Jie Zhang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland .,Empa Materials Science & Technology CH-8600 Dübendorf Switzerland
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Dragos Stoian
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Wen Luo
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland .,Empa Materials Science & Technology CH-8600 Dübendorf Switzerland
| | - Emad Oveisi
- Interdiciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Adam H Clark
- Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen Switzerland
| | - Daniel T Sun
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-Valais Sion 1950 Switzerland
| |
Collapse
|
48
|
Abstract
Electroreduction of carbon dioxide (CO2) to value-added chemicals and fuels is a promising approach for sustainable energy conversion and storage. Many electrocatalysts have been designed for this purpose and studied extensively. The role of the electrolyte is particularly interesting and is pivotal for designing electrochemical devices by taking advantage of the synergy between electrolyte and catalyst. Recently, ionic liquids as electrolytes have received much attention due to their high CO2 adsorption capacity, high selectivity, and low energy consumption. In this review, we present a comprehensive overview of the recent progress in CO2 electroreduction in ionic liquid-based electrolytes, especially in the performance of different catalysts, the electrolyte effect, as well as mechanism studies to understand the reaction pathway. Perspectives on this interesting area are also discussed for the construction of novel electrochemical systems.
Collapse
Affiliation(s)
- Dexin Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|