1
|
Wei F, Zhang Y. Palladium-Catalyzed Cascade Distal C-H Methylation and Cyclization for the Construction of Spirooxindole Skeletons. Org Lett 2024; 26:9221-9226. [PMID: 39423361 DOI: 10.1021/acs.orglett.4c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transition metal-catalyzed C-H methylation represents a straightforward approach for introducing methyl groups into organic molecules. Herein, we report a palladium-catalyzed alkene-relayed remote C-H methylation reaction that utilizes dimethyl carbonate as the methylation reagent. The aryl groups distal to a bromo group were dimethylated via C-H activation, leading to the formation of spirooxindoles as the final products through C(sp3)-H activation and C(sp3)-C(sp3) coupling. This cascade process involves the formation of four C-C bonds and the activation of three C-H bonds. The reaction not only provides a new approach to C-H methylation but also offers a novel method for constructing spirooxindole skeletons by merging skeleton construction and methylation into a single step.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Sau S, Kondalarao K, Naskar P, Sahoo AK. Sulfoximine Aided Ru(II)-Catalyzed Asymmetric Double C(sp 2)-H Hydroarylations of Olefins. Org Lett 2024; 26:9334-9339. [PMID: 39432324 DOI: 10.1021/acs.orglett.4c03524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Presented here is a sulfoximine-directed Ru(II)-catalyzed asymmetric intramolecular double C(sp2)-H hydroarylation of olefins. This process provides a diastereoselective and enantiospecific synthetic route to highly substituted tetrahydrobenzodifurans. Notably, the reaction accommodates labile functional groups and is scalable to gram quantities.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Paushali Naskar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
3
|
Hu YH, Gan ZY, Li QT, Chen YT, Chen ME, Zhang LH, Zou JC, Zhang FM. Spokewise Total Syntheses of Four Erythrina Alkaloids and Telescoped Syntheses of Six Additional Alkaloids. J Org Chem 2024; 89:14164-14176. [PMID: 39291865 DOI: 10.1021/acs.joc.4c01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Based on rich sulfur-involving chemical transformations, a novel spokewise synthetic strategy, a subclass of the collective strategies, has been developed to concisely synthesize four erythrina alkaloids through a single-step transformation from a common synthetic precursor. Moreover, six additional erythrina alkaloids have also been synthesized by subsequent 1-2 steps chemical transformations. The current synthetic approaches provide a valuable platform for collective total syntheses of erythrina alkaloids and pseudo-natural erythrina alkaloids.
Collapse
Affiliation(s)
- Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhang-Yan Gan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qin-Tong Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu-Ting Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Chi Zou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
4
|
Wei F, Zhang Y. Ligand-Enabled Palladium-Catalyzed [3 + 2] Annulation of Aryl Iodides with Maleimides via C(sp 3)-H Activation. Org Lett 2024; 26:6209-6213. [PMID: 38994868 DOI: 10.1021/acs.orglett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Palladium-catalyzed intermolecular [3 + 2] annulation reactions via C-H activation represent a powerful and charming tool for assembling cyclopentanes. Herein, we have developed a strategy for the palladium-catalyzed intermolecular alkene-relayed annulation reaction of aryl iodides and maleimides via C(sp3)-H activation for the construction of polycyclic structures. In contrast to directed-group-enabled intermolecular maleimide-relayed [3 + 2] annulation reactions, this protocol stands out for its utilization of aryl iodides as substrates. Notably, monoprotected amino acids played a crucial role as ligands in this reaction, which is rarely observed in C-H activation reactions initiated with organohalides.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Chen G, Chu F, Zhang S, Li W, Zhou S, Wei W, Chen W, Wang X, Yue L, Feng H, Cui Y, Pan Y. Ortho C-H Bond Activations in an Atmospheric Microwave Plasma Ion Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:951-959. [PMID: 38597607 DOI: 10.1021/jasms.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
C-H bond ortho-substitution reaction has always been a significant and challenging topic in organic chemistry. We proposed a synthesis method based on microwave plasma torches. High-resolution mass spectrometry was used to monitor rapid reaction products. 2-Alkylbenzimidazole can be formed through the reaction of phenylnitrenium ion and nitriles on a millisecond scale. This reaction can achieve the one-step formation of benzimidazoles from benzene ring single-substituted compounds without the addition of external oxidants or catalysts. A similar C-H bond activation reaction can be accomplished with ketones. Meanwhile, the microwave plasma reactor was modified, and the resulting 2-methylbenzimidazole was successfully collected, indicating the device has good application potential in organic reactions such as C-H bond activation reaction.
Collapse
Affiliation(s)
- Guanru Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Fengjian Chu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Shuheng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Xiaozhi Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Lei Yue
- College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Yanli Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027 Zhejiang, P. R. China
| |
Collapse
|
6
|
Miyakoshi T, Kronenberg D, Tamaki S, Lombardi R, Baudoin O. Studies towards the Enantioselective Synthesis of Cryptowolinol via Pd 0-Catalyzed C(sp 3)-H Arylation/Parallel Kinetic Resolution. Org Lett 2024; 26:2923-2927. [PMID: 38567800 DOI: 10.1021/acs.orglett.4c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We report a model study towards the enantioselective synthesis of the dibenzopyrrocoline alkaloid (-)-cryptowolinol. The key step involves a challenging enantioselective Pd0-catalyzed C(sp3)-H arylation performed with a chiral NHC ligand, which proceeds via parallel kinetic resolution (PKR). A very efficient PKR process was achieved on a deoxygenated model substrate and was successfully transposed to a potential intermediate en route to (-)-cryptowolinol.
Collapse
Affiliation(s)
- Takeru Miyakoshi
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Domenic Kronenberg
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Sota Tamaki
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Rafael Lombardi
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
7
|
Suzuki H, Kiyobe S, Matsuda T. Rhodium-catalysed additive-free carbonylation of benzamides with diethyl dicarbonate as a carbonyl source. Org Biomol Chem 2024; 22:2744-2748. [PMID: 38470370 DOI: 10.1039/d4ob00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Phthalimides are prevalent in numerous pharmaceuticals, prompting various phthalimide syntheses through C-H activation. Nevertheless, the necessity for stoichiometric additives limits their practicality and versatility. Herein, we introduced diethyl dicarbonate as a carbonyl source for an additive-free carbonylation of benzamides. This transformation signifies an operationally simple and CO-free phthalimide synthesis.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Seigo Kiyobe
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
8
|
Ji Y, Liu Y, Guan W, Guo C, Jia H, Hong B, Li H. Enantioselective Divergent Syntheses of Diterpenoid Pyrones. J Am Chem Soc 2024; 146:9395-9403. [PMID: 38497763 DOI: 10.1021/jacs.4c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Capitalizing a synergy between late-stage C(sp3)-H alkynylation and a series of transition metal-catalyzed alkyne functionalization reactions, we reported herein enantioselective divergent synthesis of 10 diterpenoid pyrones within 14-16 steps starting from chiral pool enoxolone, including the first enantioselective synthesis of higginsianins A, B, D, E, and metarhizin C. Our synthesis also highlights an unprecedented biomimetic oxidative rearrangement of α-pyrone into 3(2H)-furanone, as well as applications of Echavarren C(sp3)-H alkynylation reaction and Toste chiral counterion-mediated Au-catalyzed intramolecular allene hydroalkoxylation in natural product synthesis.
Collapse
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Yaqian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| |
Collapse
|
9
|
Teng MY, Wu YJ, Chen JH, Huang FR, Liu DY, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Carbonylation towards Chiral Isoindolinones. Angew Chem Int Ed Engl 2024; 63:e202318803. [PMID: 38205884 DOI: 10.1002/anie.202318803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
10
|
Jin Y, Hok S, Bacsa J, Dai M. Convergent and Efficient Total Synthesis of (+)-Heilonine Enabled by C-H Functionalizations. J Am Chem Soc 2024; 146:1825-1831. [PMID: 38226869 PMCID: PMC10811669 DOI: 10.1021/jacs.3c13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
We report a convergent and efficient total synthesis of the C-nor D-homo steroidal alkaloid (+)-heilonine with a hexacyclic ring system, nine stereocenters, and a trans-hydrindane moiety. Our synthesis features four selective C-H functionalizations to form key C-C bonds and stereocenters, a Stille carbonylative cross-coupling to connect the AB ring system with the DEF ring system, and a Nazarov cyclization to construct the five-membered C ring. These enabling transformations significantly reduced functional group manipulations and delivered (+)-heilonine in 11 or 13 longest linear sequence (LLS) steps.
Collapse
Affiliation(s)
- Yuan Jin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sovanneary Hok
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Odena C, Gómez-Bengoa E, Martin R. Ring Walking Mediated by Ni-Ni Species as a Vehicle for Enabling Distal C(sp 2)-H Functionalization of Aryl Pivalates. J Am Chem Soc 2024; 146:112-117. [PMID: 38153272 DOI: 10.1021/jacs.3c12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Herein, we report the utilization of Ni-Ni species as a manifold for enabling a "ring-walking" event by dynamic translocation of the metal center over the arene backbone. Experimental and computational studies support a translocation occurring via a 1,2-hydride shift. The synthetic applicability of the method is illustrated in a series of C-C bond formations that occur at distal C(sp2)-H sites of simple aryl pivalates.
Collapse
Affiliation(s)
- Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU, Apdo. 1072, 20080 San Sebastian, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Chen L, Zhang M, Liu M, Liu Z, Qiu Y, Zhang Z, Yu F, Huang J. Rh(III)-catalyzed selective mono- and dual-functionalization/cyclization of 1-aryl-5-aminopyrazoles with iodonium ylides. Chem Commun (Camb) 2024; 60:432-435. [PMID: 38086626 DOI: 10.1039/d3cc05266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An efficient Rh(III)-catalyzed selective mono- and dual-C-H bond functionalization/cyclization with iodonium ylide as a single coupling partner was demonstrated, in which fused benzodiazepine skeletons were obtained in excellent yields. This method greatly improved an effective approach to dual C-H unsymmetrical functionalization.
Collapse
Affiliation(s)
- Longkun Chen
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Meichen Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Yuetong Qiu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhilai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
13
|
Kudashev A, Vergura S, Zuccarello M, Bürgi T, Baudoin O. Methylene C(sp 3 )-H Arylation Enables the Stereoselective Synthesis and Structure Revision of Indidene Natural Products. Angew Chem Int Ed Engl 2024; 63:e202316103. [PMID: 37997293 DOI: 10.1002/anie.202316103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3 )-H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki-Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.
Collapse
Affiliation(s)
- Anton Kudashev
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Stefania Vergura
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Marco Zuccarello
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Thomas Bürgi
- University of Geneva, Department of Physical Chemistry, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
14
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
15
|
Prabhakar Ganesh PSK, Muthuraja P, Gopinath P. Rh(III) Catalyzed Redox-Neutral C-H Activation/[5 + 2] Annulation of Aroyl Hydrazides and Sulfoxonium Ylides: Synthesis of Benzodiazepinones. Org Lett 2023; 25:8361-8366. [PMID: 37963274 DOI: 10.1021/acs.orglett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein report the Rh(III) catalyzed redox-neutral C-H activation/[5 + 2] annulation of aroyl hydrazides with sulfoxonium ylides as safe carbene precursors. The reaction shows excellent functional group tolerance, broad substrate scope, and scalability. We demonstrated the synthetic utility of the protocol via the synthesis of various diazepam drug analogues, late-stage functionalization of probenecid drug, and large scale synthesis. Finally, kinetic studies revealed C-H activation as the rate-determining step.
Collapse
Affiliation(s)
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
16
|
Wu YJ, Chen JH, Teng MY, Li X, Jiang TY, Huang FR, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Annulation of Benzylamines with Alkynes: Application to the Modular and Asymmetric Syntheses of Bioactive Molecules. J Am Chem Soc 2023; 145:24499-24505. [PMID: 38104268 DOI: 10.1021/jacs.3c10714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
de Jesus R, Hiesinger K, van Gemmeren M. Preparative Scale Applications of C-H Activation in Medicinal Chemistry. Angew Chem Int Ed Engl 2023; 62:e202306659. [PMID: 37283078 DOI: 10.1002/anie.202306659] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
C-H activation is an attractive methodology to increase molecular complexity without requiring substrate prefunctionalization. In contrast to well-established cross-coupling methods, C-H activation is less explored on large scales and its use in the production of pharmaceuticals faces substantial hurdles. However, the inherent advantages, such as shorter synthetic routes and simpler starting materials, motivate medicinal chemists and process chemists to overcome these challenges, and exploit C-H activation steps for the synthesis of pharmaceutically relevant compounds. In this review, we will cover examples of drugs/drug candidates where C-H activation has been implemented on a preparative synthetic scale (range between 355 mg and 130 kg). The optimization processes will be described, and each example will be examined in terms of its advantages and disadvantages, providing the reader with an in-depth understanding of the challenges and potential of C-H activation methodologies in the production of pharmaceuticals.
Collapse
Affiliation(s)
- Rita de Jesus
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Kerstin Hiesinger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
18
|
Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products. Chem Soc Rev 2023; 52:7461-7503. [PMID: 37811747 DOI: 10.1039/d3cs00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the past few decades, the advent of C-H activation has led to a rethink among chemists about the synthetic strategies employed for multi-step transformations. Indeed, deploying innovative and masterful tricks against the numerous classical organic transformations has been the need of the hour. Despite this, the immense importance of C-H activation remains unfulfilled unless the methodology can be deployed for large-scale industrial processes and towards the concise, step-economic synthesis of prodigious natural products and pharmaceutical drugs. Lately, the growing potential of C-H activation methodology has indeed driven the pioneers of synthetic organic chemists into finding more efficient methods to accelerate the synthesis of such complex molecular scaffolds. This review aims to draw a general overview of the various C-H activation procedures that have been adopted for synthesizing these vast majority of structurally complicated natural products. Our objective lies in drawing a complete picture and taking the readers through the synthesis of a series of such complex organic compounds by simplified techniques, making it step-economic on a larger scale and thus instigating the readers to trigger the use of such methodology and uncover new, unique patterns for future synthesis of such natural products.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shubhanshu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh - 466114, India
| | - Shaeel A Al-Thabati
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdulmohsen Ali Alshehri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
19
|
Sau S, Mukherjee K, Kondalarao K, Gandon V, Sahoo AK. Probing Chiral Sulfoximine Auxiliaries in Ru(II)-Catalyzed One-Pot Asymmetric C-H Hydroarylation and Annulations with Alkynes. Org Lett 2023; 25:7667-7672. [PMID: 37844260 DOI: 10.1021/acs.orglett.3c02969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developed herein is a chiral sulfoximine-enabled Ru(II)-catalyzed asymmetric C-H activation/functionalization involving intramolecular hydroarylation and functionalization/annulation of alkynes. This process constructs dihydrobenzofuran- or indoline-fused isoquinolinones having a tertiary or quaternary stereocenter with good yields and enantioselectivities (up to 97:3 enantiomeric ratio). The chiral sulfoxide precursor used in synthesizing the enantiopure sulfoximines is spontaneously eliminated during the reaction. It can be recovered without losing enantiopurity (∼99% enantiomeric excess) and reused.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
20
|
Hirako N, Yasui T, Yamamoto Y. Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion. Chem Sci 2023; 14:10971-10978. [PMID: 37829027 PMCID: PMC10566469 DOI: 10.1039/d3sc03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
3,4-Fused 2-quinolone frameworks are important structural motifs found in natural products and biologically active compounds. Intermolecular alkenyl C-H activation/annulation of 4-amino-2-quinolone substrates with alkynes is one of the most efficient methods for accessing such structural motifs. However, this is a formidable challenge because 4-amino-2-quinolones have two cleavable C-H bonds: an alkenyl C-H bond at the C3-position and an aromatic C-H bond at the C5-position. Herein, we report the Rh(iii)-catalyzed highly site-selective alkenyl C-H functionalization of 4-amino-2-quinolones to afford 3,4-fused 2-quinolones. This method has a wide substrate scope, including unsymmetrical internal alkynes, with complete regioselectivity. Several control experiments using an isolated key intermediate analog suggested that the annulation reaction proceeds via reversible alkyne insertion involving a binuclear Rh complex although alkyne insertion is generally recognized as an irreversible process due to the high activation barrier of the reverse process.
Collapse
Affiliation(s)
- Naohiro Hirako
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
21
|
Chen XW, Hou ZC, Chen C, Zhang LH, Chen ME, Zhang FM. Enantioselective total syntheses of six natural and two proposed meroterpenoids from Psoralea corylifolia. Chem Sci 2023; 14:5699-5704. [PMID: 37265714 PMCID: PMC10231314 DOI: 10.1039/d3sc00582h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
The first enantioselective total syntheses of six natural and two proposed meroterpenoids isolated from Psoralea corylifolia have been achieved in 7-9 steps from 2-methylcyclohexanone. The current synthetic approaches feature a high level of synthetic flexibility, stereodivergent fashion and short synthetic route, thereby providing a potential platform for the preparation of numerous this-type meroterpenoids and their pseudo-natural products.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zi-Chao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
22
|
Li X, Wang X, Zhang J. Ruthenium-catalysed decarboxylative unsymmetric dual ortho-/ meta-C-H bond functionalization of arenecarboxylic acids. Chem Sci 2023; 14:5470-5476. [PMID: 37234909 PMCID: PMC10208063 DOI: 10.1039/d3sc01226c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we describe a ruthenium-catalysed decarboxylative unsymmetric ortho-C-H azaarylation/meta-C-H alkylation via a traceless directing group relay strategy. The installation of a 2-pyridyl functionality via carboxyl directed ortho-C-H activation is critical to promote decarboxylation and enable meta-C-H bond alkylation to streamline the synthesis of 4-azaaryl-benzo-fused five-membered heterocycles. This protocol is characterized by high regio- and chemoselectivity, broad substrate scopes, and good functional group tolerance under redox-neutral conditions.
Collapse
Affiliation(s)
- Xiankai Li
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Xiaofei Wang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| |
Collapse
|
23
|
Peng P, Zhong Y, Zhou C, Tao Y, Li D, Lu Q. Unlocking the Nucleophilicity of Strong Alkyl C-H Bonds via Cu/Cr Catalysis. ACS CENTRAL SCIENCE 2023; 9:756-762. [PMID: 37122460 PMCID: PMC10141608 DOI: 10.1021/acscentsci.2c01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/03/2023]
Abstract
Direct functionalization of inert C-H bonds is one of the most attractive yet challenging strategies for constructing molecules in organic chemistry. Herein, we disclose an unprecedented and Earth abundant Cu/Cr catalytic system in which unreactive alkyl C-H bonds are transformed into nucleophilic alkyl-Cr(III) species at room temperature, enabling carbonyl addition reactions with strong alkyl C-H bonds. Various aryl alkyl alcohols are furnished under mild reaction conditions even on a gram scale. Moreover, this new radical-to-polar crossover approach is further applied to the 1,1-difunctionalization of aldehydes with alkanes and different nucleophiles. Mechanistic investigations reveal that the aldehyde not only acts as a reactant but also serves as a photosensitizer to recycle the Cu and Cr catalysts.
Collapse
Affiliation(s)
- Pan Peng
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yifan Zhong
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Dandan Li
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials,
College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Qingquan Lu
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| |
Collapse
|
24
|
Monsigny L, Doche F, Besset T. Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein J Org Chem 2023; 19:448-473. [PMID: 37123090 PMCID: PMC10130906 DOI: 10.3762/bjoc.19.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Collapse
Affiliation(s)
- Louis Monsigny
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Floriane Doche
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
25
|
Garai B, Ali MR, Mandal R, Sundararaju B. Cp*Co(III)-Catalyzed C(8)-Nucleophilic Cascade Cyclization of Quinoline N-Oxide with 1,6-Enyne. Org Lett 2023; 25:2018-2023. [PMID: 36926924 DOI: 10.1021/acs.orglett.3c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The C(8)-selective nucleophilic cascade cyclization of quinoline N-oxide with easily derived 1,6-enyne from phenol derivatives is demonstrated. A variety of quinoline N-oxide and alkynes are discovered to be suitable for producing a library of quinoline N-oxide tethered cis-hydrobenzofurans with high yields and excellent functional group tolerance. The utility of the protocol has been accomplished by post-synthetic modification of the cyclized product. The mechanistic studies indicate a base-assisted internal electrophilic-type substitution (BIES)-type pathway for C-H bond activation, and electrospray ionization mass spectrometry (ESI-MS) analysis of the stoichiometric reaction confirmed the formation of a key five-membered cobaltacycle.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Molla Rahamat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
26
|
Dattatri, Kumar Reddy Singam M, Vavilapalli S, Babu Nanubolu J, Sridhar Reddy M. Propargyl Alcohols as Bifunctional Reagents for Divergent Annulations of Biphenylamines via Dual C-H Functionalization/Dual Oxidative Cyclization. Angew Chem Int Ed Engl 2023; 62:e202215825. [PMID: 36583268 DOI: 10.1002/anie.202215825] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The C-H functionalization strategy provides access to valuable molecules that previously required convoluted synthetic attempts. Dual C-H unsymmetrical functionalization, with a single bifunctional reagent, is an effective tactic. Propargyl alcohols (PAs), despite containing a reactive C≡C bond, have not been explored as building blocks via oxidative cleavage. Annulations via C-H activation are a versatile and synthetically attractive strategy. We disclose PA as a new bifunctional reagent for unsymmetrical dual C-H functionalization of biphenylamine for regioselectively annulated outcomes. On tuning the conditions, the annulation bifurcated towards an unusual dual oxidative cyclization. This method accommodates a wide range of PAs and showcases late-stage diversification of some natural products.
Collapse
Affiliation(s)
- Dattatri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Suresh Vavilapalli
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
27
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
28
|
Capurro P, Ricciardiello V, Lova P, Lambruschini C, Protti S, Basso A. Visible-Light-Driven Solventylation Strategy for Olefin Functionalization. ACS OMEGA 2022; 7:48564-48571. [PMID: 36591128 PMCID: PMC9798500 DOI: 10.1021/acsomega.2c07172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Amphiphilic aryl radicals generated upon visible light irradiation of arylazo sulfones have been exploited in the development of a solventylation strategy via hydrogen atom transfer (HAT). The present protocol succeeded in the versatile functionalization of various olefins with carbon-centered radicals deriving from acetone, acetonitrile, chloroform, methylene chloride, nitromethane, methyl acetate, and methyl formate under metal- and photocatalyst-free conditions. The direct addition of the aryl radicals onto the olefin substrates was suppressed under high dilution conditions.
Collapse
Affiliation(s)
- Pietro Capurro
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Valentina Ricciardiello
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paola Lova
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Chiara Lambruschini
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Protti
- PhotoGreenLab,
Dipartimento di Chimica, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andrea Basso
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
29
|
Keshri SK, Madhavan S, Kapur M. Catalyst-Controlled Chemodivergent Reactivity of Vinyl Cyclopropanes: A Selective Approach toward Indoles and Aniline Derivatives. Org Lett 2022; 24:9043-9048. [DOI: 10.1021/acs.orglett.2c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Suchithra Madhavan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
30
|
Han ZJ, Zhang ZX, Lin JJ, Ma B, Yang LX, Pu WG, Li YM, Chen H, Da CS. Rh(III)-Catalyzed Dual C-H Functionalization and C-O/C-N Annulations of Monoamide Fumarates. J Org Chem 2022; 87:15547-15558. [PMID: 36306342 DOI: 10.1021/acs.joc.2c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pyrano[4,3-c]pyridine-diones, which are the key skeleton of bioactive compounds and functional materials, are usually prepared via a multistep synthesis using expensive substrates. This work demonstrates that Rh(III)-catalyzed dual C(sp2)-H functionalization and C-O/C-N annulation of monoamide fumarates can produce pyrano[4,3-c]pyridine-1,5(6H)-diones in high yield (up to 82%) in a single step. The substrates of monoamide fumarates and acetylenes are structurally simple, readily available, and inexpensive. The additive AgSbF6 effectively raised the yields. On account of easier dehydrogenation of OH in the COOH group than NH in the amide group in the reaction, the process first undergoes C-O annulation and then is succeeded by C-N annulation.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Ze-Xuan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Jin Lin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bin Ma
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Wei-Gao Pu
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Yu-Min Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Chao-Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
31
|
Jue Z, Huang Y, Qian J, Hu P. Visible Light-Induced Unactivated δ-C(sp 3 )-H Amination of Alcohols Catalyzed by Iron. CHEMSUSCHEM 2022; 15:e202201241. [PMID: 35916215 DOI: 10.1002/cssc.202201241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An iron-catalyzed remote C(sp3 )-H amination of alcohols through 1,5-hydrogen atom transfer is developed. This protocol provides a method to generate δ-C(sp3 )-N bonds from primary, secondary, and tertiary alcohols under mild conditions. A wide substrate scope and a good functional group tolerance are presented. Mechanistic studies show that a LMCT course of an Fe-OR species and a chlorine radical-induced hydrogen abstraction of an alcohol are possible to generate the alkoxy radical intermediate.
Collapse
Affiliation(s)
- Zhaofan Jue
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Liu X, Tang Z, Si Z, Zhang Z, Zhao L, Liu L. Enantioselective
para
‐C(sp
2
)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angew Chem Int Ed Engl 2022; 61:e202208874. [DOI: 10.1002/anie.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xun‐Shen Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhiqiong Tang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhi‐Yao Si
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Zhikun Zhang
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lei Zhao
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
33
|
Rh(III)-catalyzed twofold unsymmetrical C H alkenylation-annulation/amidation reaction enabled delivery of diverse furoquinazolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Yu Z, Liu Q, Yang Y, You J. Ligand-Determined Single, Double, and Triple C–H Arylation of Aryl Phosphines at Will. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
35
|
Banjare SK, Mahulkar PS, Nanda T, Pati BV, Najiar LO, Ravikumar PC. Diverse reactivity of alkynes in C-H activation reactions. Chem Commun (Camb) 2022; 58:10262-10289. [PMID: 36040423 DOI: 10.1039/d2cc03294e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkynes occupy a prominent role as a coupling partner in the transition metal-catalysed directed C-H activation reactions. Due to low steric requirements and linear geometry, alkynes can effectively coordinate with metal d-orbitals. This makes alkynes one of the most successful coupling partners in terms of the number of useful transformations. Remarkably, by changing the reaction conditions and transition-metals from 5d to 3d, the pattern of reactivity of alkynes also changes. Due to the varied reactivity of alkynes, such as alkenylation, annulation, alkylation, and alkynylation, they have been extensively used for the synthesis of valuable organic molecules. Despite enormous explorations with alkynes, there are still a lot more possible ways by which they can be made to react with M-C bonds generated through C-H activation. Practically there is no limit for the creative use of this approach. In particular with the development of new high and low valent first-row metal catalysts, there is plenty of scope for this chemistry to evolve as one of the most explored areas of research in the coming years. Therefore, a highlight article about alkynes is both timely and useful for synthetic chemists working in this area. Herein, we have highlighted the diverse reactivity of alkynes with various transition metals (Ir, Rh, Ru, Pd, Mn, Fe, Co, Ni, Cu) and their applications, along with some of our thoughts on future prospects.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pranav Shridhar Mahulkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
36
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium-Catalyzed Intramolecular C(sp 3 )-H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022; 61:e202207088. [PMID: 35751877 DOI: 10.1002/anie.202207088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Bioinspired palladium-catalyzed intramolecular cyclization of amino acid derivatives containing a vinyl iodide moiety by C-H activation enabled rapid access to a wide range of functionalized proline derivatives with an exocyclic olefin. To demonstrate the practicality of this methodology, the functionalized prolines were used as intermediates for the synthesis of several natural products: lucentamycin A, oxotomaymycin, oxoprothracarcin, and barmumycin.
Collapse
Affiliation(s)
- Quan-Zhe Li
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Chen
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
37
|
Dethe DH, Srivastava A, Nirpal AK, Beeralingappa NC, Kumar V, Bhat AA. Diversification of ( E,E)-1,6-Dioxo-2,4-Dienes for the Synthesis of (+)-Aspicillin, Isolaurepan, and β-Parinaric Acid. J Org Chem 2022; 87:11021-11030. [PMID: 35921130 DOI: 10.1021/acs.joc.2c01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A divergent formal synthesis of polyhydroxylated macrocyclic lactone (+)-aspicillin and polyene bioactive natural product β-parinaric acid and the total synthesis of non-terpenoid metabolite isolaurepan have been achieved using a ruthenium-catalyzed stereo- and chemoselective oxidative coupling reaction of easily accessible vinyl ketones and acrylates. The crucial transformation involves the efficient synthesis and functionalization of stereodefined (E,E)-1,6-dioxo-2,4-dienes using simple reaction protocols, which enabled straightforward access to a diverse range of bioactive natural products.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Aparna Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arsheed A Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
38
|
Liu XS, Tang Z, Si ZY, Zhang Z, Zhao L, Liu L. Enantioselective para‐C(sp2)−H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun-Shen Liu
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhiqiong Tang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhi-Yao Si
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Zhikun Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lei Zhao
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Lu Liu
- East China Normal University School of Chemistry and Molecular Engineering 500 Dongchuan Road 200241 Shanghai CHINA
| |
Collapse
|
39
|
Klimovica K, Heidlas JX, Romero I, Le TV, Daugulis O. “Sandwich” Diimine‐Copper Catalysts for C−H Functionalization by Carbene Insertion. Angew Chem Int Ed Engl 2022; 61:e202200334. [PMID: 35594167 PMCID: PMC9329213 DOI: 10.1002/anie.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/12/2022]
Abstract
We report here "sandwich" diimine-copper(I) catalysts for C(sp3 )-H bond functionalization. Reactions of alkanes and ethers with trimethylsilyldiazomethane, ethyl diazoacetate, and trifluoromethyl-diazomethane have been demonstrated. We also report C(sp3 )-H bond methylation, benzylation, and diphenylmethylation by diazomethane, aryldiazomethanes, and diphenyldiazomethane. These reactions are rare examples of base-metal catalyzed, intermolecular C(sp3 )-H functionalizations by employing unactivated diazo compounds. Electrophilicity and unique steric environment of "sandwich"-copper catalysts are likely reasons for their catalytic efficiency.
Collapse
Affiliation(s)
- Kristine Klimovica
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Julius X. Heidlas
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Irvin Romero
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Thanh V. Le
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Olafs Daugulis
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| |
Collapse
|
40
|
Bang J, Gi S, Lee Y, Tan KL, Lee S. Meta-Selective C-H Functionalization of Arylsilanes Using a Silicon Tethered Directing Group. Org Lett 2022; 24:5181-5185. [PMID: 35822845 DOI: 10.1021/acs.orglett.2c02015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe meta-selective C-H functionalization of arylsilanes using a Si-tethered directing group. The current method enables a selective alkenylation of arenes bearing a variety of functional groups, and several electron-deficient olefins are also applicable as coupling partners. Further functional group transformations of the silicon-tethered directing group provide multisubstituted arenes efficiently.
Collapse
Affiliation(s)
- Jaehan Bang
- Department of Physics and Chemistry, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Seyun Gi
- School of Undergraduate Studies, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoonjung Lee
- School of Undergraduate Studies, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Kian L Tan
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Sunggi Lee
- Department of Physics and Chemistry, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea.,Center for Basic Science, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
41
|
Naskar G, Jeganmohan M. Ligand‐Enabled [3+2] Annulation of Aromatic Acids with Maleimides by C(sp
3
)−H and C(sp
2
)−H Bond Activation. Chemistry 2022; 28:e202200778. [DOI: 10.1002/chem.202200778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| |
Collapse
|
42
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium‐Catalyzed Intramolecular C(sp3)−H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan-Zhe Li
- Shanghai Jiao Tong University Chemistry CHINA
| | - Si-Hua Hou
- SJTU: Shanghai Jiao Tong University CHEMISTRY CHINA
| | | | | | - Yu Hao
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Chao Chen
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Jia Zhou
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | | | - Shu-Yu Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan RoadB329 Chemsitry BuildingShanghai Jiao Tong University 200240 Shanghai CHINA
| |
Collapse
|
43
|
Nambu H, Amano R, Tamura T, Yakura T. Rhodium(II)‐Catalyzed Site‐Selective Intramolecular Insertion of Aryldiazoacetates into Unactivated Primary C−H Bond: A Direct Route to 2‐Unsubstituted Indanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Ryoya Amano
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takafumi Tamura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences University of Toyama Sugitani Toyama 930-0194 Japan
| |
Collapse
|
44
|
Klimovica K, Heidlas JX, Romero I, Le TV, Daugulis O. “Sandwich” Diimine‐Copper Catalysts for C‐H Functionalization by Carbene Insertion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Olafs Daugulis
- University of Houston Chemistry Fleming 112 77204-5003 Houston UNITED STATES
| |
Collapse
|
45
|
Lu S, Zheng T, Ma J, Deng Z, Qin S, Chen Y, Liang Y. para-Selective C-H Borylation of Aromatic Quaternary Ammonium and Phosphonium Salts. Angew Chem Int Ed Engl 2022; 61:e202201285. [PMID: 35253322 DOI: 10.1002/anie.202201285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Aromatic ammonium and phosphonium salts are important synthetic intermediates and multifunctional materials, but para-selective functionalization of the aromatic salts remains a challenge. Here we develop an ionic ligand based on our newly designed "biphenyl-phenanthroline" skeleton and realize the Ir-catalyzed para-selective C-H borylation of seven types of aromatic quaternary ammonium and phosphonium salts. Gram-scale transformation, late-stage elaboration for drug molecule, and diversification of borylated products demonstrate the potential utility of this reaction. The mechanistic studies and computational analysis elucidate the origin of para-selectivity.
Collapse
Affiliation(s)
- Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhangming Deng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengmeng Qin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
46
|
Ohmatsu K, Fujita H, Suzuki R, Ooi T. Hydrogen-Atom Transfer Catalysis for C–H Alkylation of Benzylic Fluorides. Org Lett 2022; 24:3134-3137. [DOI: 10.1021/acs.orglett.2c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hiroki Fujita
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryuhei Suzuki
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
47
|
Athavan G, Tanner TFN, Whitwood AC, Fairlamb IJS, Perutz RN. Direct Evidence for Competitive C–H Activation by a Well-Defined Silver XPhos Complex in Palladium-Catalyzed C–H Functionalization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Robin N. Perutz
- Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
48
|
Xu YX, Liang YQ, Cai ZJ, Ji SJ. Ruthenium(II)-Catalyzed Chelation-Assisted Desulfitative Arylation of Benzo[h]quinolines with Arylsulfonyl Chlorides. Org Lett 2022; 24:2601-2606. [PMID: 35357174 DOI: 10.1021/acs.orglett.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel chelation-assisted C-H arylation reaction of benzo[h]quinoline is described. This transformation, using [RuCl2(p-cymene)]2 as the catalyst and cheap and easily accessible arylsulfonyl chlorides as the arylation source, featured simple reaction conditions, a broad substrate scope, and functional group tolerance. The successful application of some bioactive-molecule-based sulfonyl chlorides further highlighted the potential utility and importance of this desulfitative C-H arylation protocol.
Collapse
Affiliation(s)
- Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, China
| |
Collapse
|
49
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
50
|
Ferlin F, Anastasiou I, Salameh N, Miyakoshi T, Baudoin O, Vaccaro L. C(sp 3 )-H Arylation Promoted by a Heterogeneous Palladium-N-Heterocyclic Carbene Complex in Batch and Continuous Flow. CHEMSUSCHEM 2022; 15:e202102736. [PMID: 35098689 PMCID: PMC9303704 DOI: 10.1002/cssc.202102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A heterogeneous reusable palladium(II)-bis(N-heterocyclic carbene) catalyst was prepared and shown to catalyze the intramolecular C(sp3 )-H activation/cyclization of N-alkyl-2-bromoanilines furnishing indolines. This new catalytic system was based on a bis-imidazolium ligand immobilized on a spaced cross-linked polystyrene support. The iodide ligands on the catalyst played a central role in the efficiency of the process occurring through a "release and catch" mechanism. The heterogeneous nature of the catalyst was further exploited in the design of a continuous-flow protocol that allowed a more efficient recovery and reuse of the catalyst, as well as a very fast and safe procedure.
Collapse
Affiliation(s)
- Francesco Ferlin
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Ioannis Anastasiou
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Nihad Salameh
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
| | - Takeru Miyakoshi
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| | - Olivier Baudoin
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 19CH-4056BaselSwitzerland
| | - Luigi Vaccaro
- Laboratory of Green SOCDipartimento di ChimicaBiologia e BiotecnologieUniversità degli Studi di PerugiaVia Elce di Sotto, 806124PerugiaItaly
- Peoples Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StMoscow117198Russia
| |
Collapse
|