1
|
Bai X, Qi X, Liu Y, Sun J, Shen T, Pan L. Photothermal Catalytic Degradation of VOCs: Mode, System and Application. Chem Asian J 2025; 20:e202400993. [PMID: 39466004 DOI: 10.1002/asia.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Human production and living processes emit excessive VOCs into the atmosphere, posing significant threats to both human health and the environment. The photothermal catalytic oxidation process is an organic combination of photocatalysis and thermocatalysis. Utilizing photothermal catalytic degradation of VOCs can achieve better catalytic activity at lower temperatures, resulting in more rapid and thorough degradation of these compounds. Photothermal catalysis has been increasingly applied in the treatment of atmospheric VOCs due to its many advantages. A brief introduction on the three modes of photothermal catalysis is presented. Depending on the main driving force of the reactions, they can be categorized into thermal-assisted photocatalysis (TAPC), photo-assisted thermal catalysis (PATC) and photo-driven thermal catalysis (PDTC). The commonly used catalyst design methods and reactor types for photothermal catalysis are also briefly introduced. This paper then focuses on recent developments in specific applications for photothermal catalytic oxidation of different types of VOCs and their corresponding principles. Finally, the problems and challenges facing VOC degradation through this method are summarized, along with prospects for future research.
Collapse
Affiliation(s)
- Xiang Bai
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Xinyu Qi
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Shen
- School of Environmental Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijun Pan
- Shandong Wanjia Environmental Engineering Co., Ltd, Jinan, 250013, China
| |
Collapse
|
2
|
Ma S, Yu X, Li W, Kong J, Long D, Bai X. Bismuth-based photocatalysts for pollutant degradation and bacterial disinfection in sewage system: Classification, modification and mechanism. ENVIRONMENTAL RESEARCH 2025; 264:120297. [PMID: 39515555 DOI: 10.1016/j.envres.2024.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The discharge of polluted water poses a great threat to human health. Therefore, the development of effective sewage treatment technology is a key to achieve sustainable health development of society. Recent research showed that light-driven bismuth-based nanomaterials provided a promising chance for treating sewage system owing to their adjustable electronic features, excellent physical and chemical properties, abundant storage and environmental safety. However, the detailed overview and systematic understanding of the development of highly efficient bismuth-based photocatalysts is still unsatisfactory. In this review, we summarized the classification of bismuth-based photocatalysts, and the relationship between the structural design and the change of optical performance is illustrated. Importantly, the reliable modification strategies for improving photocatalytic capability are emphasized. Finally, the challenges and future development directions of light-driven bismuth-based nanoplatforms in wastewater treatment applications are discussed, hoping to provide an effective guidance for exploring the photocatalytic wastewater treatment process.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinglin Yu
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Wentao Li
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Deng Long
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China.
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Zhang H, Xiao Z, Zhang C, Ye F, Gu J, Yuan E, Li G, Zou JJ, Wang D. Pt-supported on N-doped carbon/TiO 2 nanomaterials derived from NH 2-MIL-125 for efficient photo-thermal RWGS reaction. J Colloid Interface Sci 2024; 680:407-416. [PMID: 39520943 DOI: 10.1016/j.jcis.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To mitigate carbon dioxide (CO2) emissions and advance carbon neutrality, the conversion of CO2 into value-added fuels and chemicals via the reverse water-gas shift (RWGS) reaction is recognized as a promising approach. In this study, we designed platinum (Pt)-loaded nitrogen-doped carbon composite dual-phase titanium dioxide (TiO2) nanomaterials to achieve efficient photo-thermal performance in the RWGS reaction. The incorporation of Pt, nitrogen doping, and the selection of an appropriate calcination temperature enhance light responsiveness and reduce the recombination of photo-generated carriers, thereby improving the efficiency of the photo-thermal RWGS reaction. The optimized catalysts exhibited a high CO2 conversion (42.79 %), a carbon monoxide (CO) production rate (81.46 mmol gcat-1 h-1) and over 99.9 % selectivity under conditions of 400 °C and 1.2 W cm-2 light illumination. In addition, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses revealed that Pt/TiO2@CN-525 was enriched with more oxygen defects, which was facilitate the adsorption and activation of CO2. CO temperature-programmed desorption (CO-TPD) showed that Pt/TiO2@CN-525 possesses a strong desorption capacity for CO. In addition, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) pointed to COOH* as a key intermediate in the reaction process. The photo-thermal co-catalyzed CO2 reduction by CO-TPD as well as in-situ DRIFTS indicated that Pt/TiO2@CN-525 follows the RWGS reaction. This work provides a potential strategy for the synthesis of catalysts for enhancing photo-thermal co-catalyzed RWGS reactions.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhourong Xiao
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Changxuan Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fei Ye
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Wang X, Li Z, Gao R, Yu X, Feng Y, Wang Z, Jing L, Wei Z, Liu Y, Dai H, Zhao Z, Deng J. Photothermal Catalytic Removal of 1,2-DCE with High HCl Selectivity over the Brønsted Acid-Enriched Sulfur-Doped MOFs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39270042 DOI: 10.1021/acs.est.4c07755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.
Collapse
Affiliation(s)
- Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zeya Li
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Kong Q, Jiang S, Wang Z, Xu X, Zhang R, Zhu G, Yang J, Han P, Liu R, Hong F, Luo N, Chen J, Yang B. Highly Stable Cesium Molybdenum Chloride Perovskite Nanocrystals for Photothermal Semihydrogenation Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35752-35760. [PMID: 38917413 DOI: 10.1021/acsami.4c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Metal halide perovskite materials with excellent carrier transport properties have been regarded as a new class of catalysts with great application potential. However, their development is hampered by their instability in polar solvents and high temperatures. Herein, we report a solution-processed Cs2MoCl6 perovskite nanocrystals (NCs) capped with the Mo6+, showing high thermostability in polar solvents. Furthermore, the Pd single atoms (PdSA) can be anchored on the surface of Cs2MoCl6 NCs through the unique coordination structure of Pd-Cl sites, which exhibit excellent semihydrogenation of different alkyne derivatives with high selectivity at full conversion at room temperature. Moreover, the activity could be improved greatly under Xe lamp irradiation. Detailed experimental characterization and DFT calculations indicate the improved activity under light illumination is due to the synergistic effect of photo-to-heat conversion and photoinduced electron transfer from Cs2MoCl6 to PdSA, which facilitates the activation of the C≡C group. This work not only provides a new catalyst for high selective semihydrogenation of alkyne derivatives but also opens a new avenue for metal halides as photothermal catalysts.
Collapse
Affiliation(s)
- Qingkun Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuchao Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongyi Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Guoqing Zhu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Junxia Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Feng Hong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nengchao Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Ko̷benhavn, Denmark
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
6
|
Bai JQ, Xu J, Ma M, Miao Z, Yu J, Liu H, Qian Z, Cai M, Cheng Q, Jiang Y, Sun S. Photo-thermal Catalytic Hydrogenation of Halogenated Nitrobenzenes over Ni/P25 Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12179-12190. [PMID: 38809579 DOI: 10.1021/acs.langmuir.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As haloanilines (HANs) are important organic intermediates and fine chemicals, their preparation over non-noble-metal-based catalysts by catalytic hydrogenation has attracted wide attention. However, the reaction suffers from relatively harsh conditions. Herein, we found that a 3.5%Ni/P25 catalyst exhibited superior photo-thermal catalytic activity with a TOFs of 5207 h-1 for hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline under a 300 W full spectrum, which was much higher than that of photo- and thermal catalysis alone. Moreover, the 3.5%Ni/P25 catalyst could be recycled 4 times and was effective for the hydrogenation of various halonitrobenzenes (HNBs) with superior selectivity. Furthermore, the kinetic research showed that the excellent catalytic performance could be attributed to the better activation and dissociation of H2 by photo-thermal catalysis and the hydrogenation of p-CNB obeyed the condensation routine by ionic hydrogenation over 3.5%Ni/P25.
Collapse
Affiliation(s)
- Jia-Qi Bai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
- Sennics Co., Ltd. Anhui, 1111 West Cuihuliu Road, Circulation Economical Industrial Park, Tongling 244000, People's Republic of China
| | - Jiahui Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Mei Ma
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zhengan Miao
- Sennics Co., Ltd. Anhui, 1111 West Cuihuliu Road, Circulation Economical Industrial Park, Tongling 244000, People's Republic of China
| | - Jiawen Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Huangfei Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Zhangkai Qian
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Qin Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
7
|
Wang P, Zhang X, Shi R, Zhao J, Waterhouse GIN, Tang J, Zhang T. Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles. Nat Commun 2024; 15:789. [PMID: 38278813 PMCID: PMC10817976 DOI: 10.1038/s41467-024-45031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
The selective oxidative dehydrogenation of ethane (ODHE) is attracting increasing attention as a method for ethylene production. Typically, thermocatalysts operating at high temperatures are needed for C-H activation in ethane. In this study, we describe a low temperature ( < 140 °C) photocatalytic route for ODHE, using O2 as the oxidant. A photocatalyst containing PdZn intermetallic nanoparticles supported on ZnO is prepared, affording an ethylene production rate of 46.4 mmol g-1 h-1 with 92.6% ethylene selectivity under 365 nm irradiation. When we employ a simulated shale gas feed, the photocatalytic ODHE system achieves nearly 20% ethane conversion while maintaining an ethylene selectivity of about 87%. The robust interface between the PdZn intermetallic nanoparticles and ZnO support plays a crucial role in ethane activation through a photo-assisted Mars-van Krevelen mechanism, followed by a rapid lattice oxygen replenishment to complete the reaction cycle. Our findings demonstrate that photocatalytic ODHE is a promising method for alkane-to-alkene conversions under mild conditions.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Chen C, Wu M, Chen B, Ma C, Song M, Jiang G. Triggering photocatalytic performance of La 2Co xMn 2-xO 6 via heat activation. Proc Natl Acad Sci U S A 2023; 120:e2310004120. [PMID: 37871212 PMCID: PMC10622888 DOI: 10.1073/pnas.2310004120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
The La-based perovskite (LaBO3) exhibits excellent optical properties. However, its valence band (VB) potential is not sufficiently positive to reach the oxidation potential required for the cleavage of chemical bonds (such as benzylic C-H), limiting its application in photocatalysis. Herein, we report the unconventional effects of heat activation on the reduction of the dissociation energy of benzylic C-H and aqueous H-O, thereby triggering the photocatalytic activity of La2CoxMn2-xO6 perovskites. Additionally, we demonstrate that photocatalysis is the main contributor to substrate conversion in the selective oxidation of toluene and reduction of CO2. Particularly, La2Co1.5Mn0.5O6 shows excellent performance with a product yield of 550.00 mmol gcat-1 and a toluene conversion of 22,866.67 μmol gcat-1 h-1. To the best of our knowledge, this is the highest reported product yield for the selective oxidation of benzylic C-H bond of toluene. Our findings provide insight into the specific role of heat activation in photocatalysis, which is crucial for breaking and overcoming the VB barrier to realize challenging reactions.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Gao J, Ma R, Poovan F, Zhang L, Atia H, Kalevaru NV, Sun W, Wohlrab S, Chusov DA, Wang N, Jagadeesh RV, Beller M. Streamlining the synthesis of amides using Nickel-based nanocatalysts. Nat Commun 2023; 14:5013. [PMID: 37591856 PMCID: PMC10435480 DOI: 10.1038/s41467-023-40614-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.
Collapse
Affiliation(s)
- Jie Gao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Rui Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Fairoosa Poovan
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Lan Zhang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Hanan Atia
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Narayana V Kalevaru
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Wenjing Sun
- Guang-dong Medical University, 523808, Dongguan, China
| | - Sebastian Wohlrab
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany
| | - Denis A Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds, 119991, Moscow, Russia.
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, 18059, Rostock, Germany.
| |
Collapse
|
10
|
Feng C, Bi Y, Chen C, Li S, Wang Z, Xin H, Pan Y, Liu F, Lu Y, Liu Y, Zhang R, Li X. Urea-H 2O 2 defect engineering of δ-MnO 2 for propane photothermal oxidation: Structure-activity relationship and synergetic mechanism determination. J Colloid Interface Sci 2023; 641:48-58. [PMID: 36924545 DOI: 10.1016/j.jcis.2023.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Photothermal catalysis has an advantage in effective and economical elimination technology of volatile organic compounds (VOCs) in the ascendant. Herein, various surface defect engineering routes were adopted to enhance the low-temperature propane oxidation of δ-MnO2. Compared to reducing etchants urea and vitamin C, δ-MnO2 treated with urea - H2O2 exhibited an excellent thermal (T90 = 240 ℃) and photothermal (T90 = 196 ℃) activities of propane oxidation. Urea - H2O2 treatment provided high concentration of Mn4+ and surface-active oxygen (Mn4+-Osur) species as surface-active sites, and produced numerous oxygen vacancies to improve charge separation and superoxide species generation capacity. Thus, the photothermal conversion efficiency and low-temperature reducibility were remarkably enhanced. Furthermore, the photothermal synergistic catalytic mechanism was proposed based on in-situ diffuse reflectance infrared Fourier transform spectroscopy and control experiments. The strategy here offered insight into the rational design of efficient transition catalysts, and in-depth understanding of the photothermal catalytic VOCs removal mechanism.
Collapse
Affiliation(s)
- Chao Feng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yuxi Bi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Shuangju Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongchuan Xin
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Fang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuebing Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
11
|
Red blood cell-like hollow TiO2@WO3 microspheres as highly efficient photocatalysts for degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Sun X, Wang QN, Wang S, Zhang P, Feng Z, Zhang X, Feng Z, Li C. Inhibiting COx formation on WOx-loaded Au/TiO2 photocatalyst for selective oxidation of p-xylene to p-methyl benzaldehyde. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Desseigne M, Madigou V, Coulet MV, Heintz O, Chevallier V, Arab M. Au/WO3 nanocomposite based photocatalyst for enhanced solar photocatalytic activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yuan J, Zhang H. Determining the Reaction Mechanisms of Photo‐Thermo Synergetic Processes by Kinetic Investigations. Chemistry 2022; 28:e202201432. [DOI: 10.1002/chem.202201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Yuan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
- Haihe Laboratory of Sustainable Chemical Transformation Tianjin 300350 China
| | - Hongbo Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
- Haihe Laboratory of Sustainable Chemical Transformation Tianjin 300350 China
| |
Collapse
|
15
|
Yu X, Deng J, Liu Y, Jing L, Gao R, Hou Z, Zhang Z, Dai H. Enhanced Water Resistance and Catalytic Performance of Ru/TiO 2 by Regulating Brønsted Acid and Oxygen Vacancy for the Oxidative Removal of 1,2-Dichloroethane and Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11739-11749. [PMID: 35880312 DOI: 10.1021/acs.est.2c03336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The compositions of volatile organic compounds (VOCs) under actual industrial conditions are often complex; especially, the interaction of intermediate products easily leads to more toxic emissions that are harmful to the atmospheric environment and human health. Herein, we report a comparative investigation on 1,2-dichloroethane (1,2-DCE) and (1,2-DCE + toluene) oxidation over the Ru/TiO2, phosphotungstic acid (HPW)-modified Ru/TiO2, and oxygen vacancy-rich Ru/TiOx catalysts. The doping of HPW successfully introduced the 1,2-DCE adsorption sites to promote its oxidation and exhibited outstanding water resistance. For the mixed VOCs, Ru/HPW-TiO2 promoted the preferential and superfluous adsorption of toluene and resulted in the inhibition of 1,2-DCE degradation. Therefore, HPW modification is a successful strategy in catalytic 1,2-DCE oxidation, but Brønsted acid sites tend to adsorb toluene in the mixed VOC oxidation. The Ru/TiOx catalyst exhibited excellent activity and stability in the oxidation of mixed VOCs and could inhibit the generation of byproducts and Cl2 compared with the Ru/HPW-TiO2 catalyst. Compared with the Brønsted acid modification, the oxygen vacancy-rich catalysts are significantly suitable for the oxidation of multicomponent VOCs.
Collapse
Affiliation(s)
- Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zexu Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
16
|
A Tungsten Chloride Free, One‐Step Hydrothermal Method to Synthesize P25/Blue WO
3‐x
Heterostructures. ChemistrySelect 2022. [DOI: 10.1002/slct.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Zhao Y, Zhang X, Yang J, Gao M, Yang P, Wang Q, Li D, Feng J. A readily available and efficient Pt/
P25
(
TiO
2
) catalyst for glycerol selective oxidation. AIChE J 2022. [DOI: 10.1002/aic.17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Xinyi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Jiarui Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Pengfei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
- Beijing Engineering Center for Hierarchical Catalysts Beijing University of Chemical Technology Beijing China
| |
Collapse
|
18
|
|
19
|
CuOx clusters decorated TiO2 for photocatalytic oxidation of nitrogen in air into nitric oxide under ambient conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Wang C, Weng B, Keshavarz M, Yang MQ, Huang H, Ding Y, Lai F, Aslam I, Jin H, Romolini G, Su BL, Steele JA, Hofkens J, Roeffaers MBJ. Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17185-17194. [PMID: 35385650 DOI: 10.1021/acsami.1c24710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved catalysts capable of performing the Suzuki coupling reaction has attracted considerable attention. Recent findings have shown that the use of photoactive catalysts improves the performance, while the reaction mechanism and temperature-dependent performance of such systems are still under debate. Herein, we report Pd nanocubes/CsPbBr3 as an efficient catalyst for the photothermal Suzuki reaction. The photo-induced and thermal contribution to the overall catalytic performance has been investigated. Light controls the activity at temperatures around and below 30 °C, while thermal catalysis determines the reactivity at higher temperatures. The Pd/CsPbBr3 catalyst exhibits 11 times higher activity than pure CsPbBr3 at 30 °C due to reduced activation barrier and facilitated charge carrier dynamics. Furthermore, the alkoxide radicals (R-O-) for the Suzuki reaction are experimentally and theoretically confirmed, and photogenerated holes are proven to be crucial for cleaving C-B bonds of phenylboronic acids to drive the reaction. This work prescribes a general strategy to study photothermal catalysis and offers a mechanistic guideline for photothermal Suzuki reactions.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Masoumeh Keshavarz
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yang Ding
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Handong Jin
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
21
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
22
|
Wang K, Li SS, Wang J, He ZH, Wang D, Zhang RR, Wang W, Yang Y, Liu ZT. Photothermal oxidation of cyclohexane over CoLaOx/WO3 Z-scheme composites with p-n heterojunction in solvent-free conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yuan J, Guo J, He Z, Che L, Chen S, Zhang H. Evidence of Kinetically Relevant Consistency in Thermal and Photo‐Thermal HCOOH Decomposition over Pd/LaCrO
3
/C
3
N
4
Composite. Chemistry 2022; 28:e202104623. [DOI: 10.1002/chem.202104623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Jin Yuan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Jinqiu Guo
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Zhiwei He
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Leisheng Che
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Shanshan Chen
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Hongbo Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
24
|
Fang Y, Li H, Zhang Q, Wang C, Xu J, Shen H, Yang J, Pan C, Zhu Y, Luo Z, Guo Y. Oxygen Vacancy-Governed Opposite Catalytic Performance for C 3H 6 and C 3H 8 Combustion: The Effect of the Pt Electronic Structure and Chemisorbed Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3245-3257. [PMID: 35005888 DOI: 10.1021/acs.est.1c07573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Revealing the role of engineered surface oxygen vacancies in the catalytic degradation of volatile organic compounds (VOCs) is of importance for the development of highly efficient catalysts. However, because of various structures of VOC molecules, the role of surface oxygen vacancies in different catalytic reactions remains ambiguous. Herein, a defective Pt/TiO2-x catalyst is proposed to uncover the different catalytic mechanisms of C3H6 and C3H8 combustion via experiments and theoretical calculations. The electron transfer, originated from the oxygen vacancy, facilitates the formation of reduced Pt0 species and simultaneously interfacial chemisorbed O2, thus promoting the C3H6 combustion via efficient C═C cleavage. The reduced Pt nanoparticles facilitate the robust chemisorption of bridging dimer O22- (Pt-O-O-Ti) species. This chemisorbed oxygen inhibits the C3H8 combustion by depressing C3H8 adsorption. This work offers insights for the rational design of highly efficient catalysts for activating the C═C bond in alkene or C-H bond in alkane.
Collapse
Affiliation(s)
- Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huijuan Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chenyang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jue Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
25
|
Luo Y, Chi Z, Zhang J, Tian B. Photothermocatalytic System Designed by Facet‐heterojunction to Enhance the Synergistic Effect of Toluene Oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202101958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusheng Luo
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Zhili Chi
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Jinlong Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Baozhu Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals,East China University of Science and Technology Key Laboratory for Advanced Materials and Institute of Fine Chemicals 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
26
|
Hong J, Xu C, Deng B, Gao Y, Zhu X, Zhang X, Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103926. [PMID: 34825527 PMCID: PMC8787404 DOI: 10.1002/advs.202103926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Indexed: 05/07/2023]
Abstract
With the development of society, energy shortage and environmental problems have become more and more outstanding. Solar energy is a clean and sustainable energy resource, potentially driving energy conversion and environmental remediation reactions. Thus, solar-driven chemistry is an attractive way to solve the two problems. Photothermal chemistry (PTC) is developed to achieve full-spectral utilization of the solar radiation and drive chemical reactions more efficiently under relatively mild conditions. In this review, the mechanisms of PTC are summarized from the aspects of thermal and non-thermal effects, and then the interaction and synergy between these two effects are sorted out. In this paper, distinguishing and quantifying these two effects is discussed to understand PTC processes better and to design PTC catalysts more methodically. However, PTC is still a little far away from practical. Herein, several key points, which must be considered when pushing ahead with the engineering application of PTC, are proposed, along with some workable suggestions on the practical application. This review provides a unique perspective on PTC, focusing on the synergistic effects and pointing out a possible direction for practical application.
Collapse
Affiliation(s)
- Jianan Hong
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Chenyu Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Bowen Deng
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporo060‐0814Japan
| | - Yuan Gao
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuan Zhu
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| |
Collapse
|
27
|
Gu D, Zhang G, Zou J. High temperature thermo-photocatalysis driven carbon removal in direct biogas fueled solid oxide fuel cells. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Su J, Su H, Chen J, Li X. Semiconductor‐based nanocomposites for selective organic synthesis. NANO SELECT 2021. [DOI: 10.1002/nano.202100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Juan Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Hui Su
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| | - Xin‐Hao Li
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
29
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn
3
O
4
/CeO
2
Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
30
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn 3 O 4 /CeO 2 Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021; 60:18552-18556. [PMID: 34159698 DOI: 10.1002/anie.202107226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/08/2022]
Abstract
In this work, we have successfully triggered the aqueous auto-redox reactions between reductive Ce(OH)3 and oxidative MnO4 - /Pd2+ ions to form PdO/Mn3 O4 /CeO2 (PMC) nanocomposites. PMC could spontaneously self-assemble into compact encapsulation on the surface of halloysite nanotubes (HNTs) to form the final one dimensional HNTs supported PMCs (HPMC). It is identified that there exists strong synergistic effects among the components of PdO, Mn3 O4 , and CeO2 , and hence HPMC could show excellent performance on photoassisted thermal catalytic CH4 combustion that its light-off temperature was sharply reduced to be 180 °C under visible light irradiation. Based on detailed studies, it is found that the catalytic reaction process well follows the classic MVK mechanism, and adsorption/activation of O2 into active oxygen species (O*) should be the rate-determining step for CH4 conversion.
Collapse
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
31
|
Wei L, Yu C, Yang K, Fan Q, Ji H. Recent advances in VOCs and CO removal via photothermal synergistic catalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63721-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Xie Z, Gomez E, Chen JG. Simultaneously upgrading
CO
2
and light alkanes into value‐added products. AIChE J 2021. [DOI: 10.1002/aic.17249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenhua Xie
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| | - Elaine Gomez
- Department of Chemical Engineering Columbia University New York New York USA
| | - Jingguang G. Chen
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| |
Collapse
|