1
|
Yanbaeva M, Soyka J, Holthoff JM, Rietsch P, Engelage E, Ruff A, Resch-Genger U, Weiss R, Eigler S, Huber SM. Dimethylene-Cyclopropanide Units as Building Blocks for Fluorescence Dyes. Chemistry 2024; 30:e202402476. [PMID: 38997235 DOI: 10.1002/chem.202402476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Many organic dyes are fluorescent in solution. In the solid state, however, quenching processes often dominate, hampering material science applications such as light filters, light-emitting devices, or coding tags. We show that the dimethylene-cyclopropanide scaffold can be used to form two structurally different types of chromophores, which feature fluorescence quantum yields up to 0.66 in dimethyl sulfoxide and 0.53 in solids. The increased fluorescence in the solid state for compounds bearing malonate substituents instead of dicyanomethide ones is rationalized by the induced twist between the planes of the cyclopropanide core and a pyridine ligand.
Collapse
Affiliation(s)
- Margarita Yanbaeva
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Jan Soyka
- Institut für Chemie und Biochemie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Philipp Rietsch
- Institut für Chemie und Biochemie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Adrian Ruff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054, Erlangen, Germany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie Universität Berlin, Altensteinstraße 23a, 14195, Berlin, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Scheiner S. Anions as Lewis Acids in Noncovalent Bonds. Chemistry 2024; 30:e202402267. [PMID: 38975959 DOI: 10.1002/chem.202402267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The ability of an anion to serve as electron-accepting Lewis acid in a noncovalent bond is assessed via DFT calculations. NH3 is taken as the common base, and is paired with a host of ACln - anions, with central atom A=Ca, Sr, Mg, Te, Sb, Hg, Zn, Ag, Ga, Ti, Sn, I, and B. Each anion reacts through its σ or π-hole although the electrostatic potential of this hole is quite negative in most cases. Despite the contact between this negative hole and the negative region of the approaching nucleophile, the electrostatic component of the interaction energy of each bond is highly favorable, and accounts for more than half of the total attractive energy. The double negative charge of dianions precludes a stable complex with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| |
Collapse
|
3
|
Pizzi A, Dhaka A, Beccaria R, Resnati G. Anion⋯anion self-assembly under the control of σ- and π-hole bonds. Chem Soc Rev 2024; 53:6654-6674. [PMID: 38867604 DOI: 10.1039/d3cs00479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The electrostatic attraction between charges of opposite signs and the repulsion between charges of the same sign are ubiquitous and influential phenomena in recognition and self-assembly processes. However, it has been recently revealed that specific attractive forces between ions with the same sign are relatively common. These forces can be strong enough to overcome the Coulomb repulsion between ions with the same sign, leading to the formation of stable anion⋯anion and cation⋯cation adducts. Hydroden bonds (HBs) are probably the best-known interaction that can effectively direct these counterintuitive assembly processes. In this review we discuss how σ-hole and π-hole bonds can break the paradigm of electrostatic repulsion between like-charges and effectively drive the self-assembly of anions into discrete as well as one-, two-, or three-dimensional adducts. σ-Hole and π-hole bonds are the attractive forces between regions of excess electron density in molecular entities (e.g., lone pairs or π bond orbitals) and regions of depleted electron density that are localized at the outer surface of bonded atoms opposite to the σ covalent bonds formed by atoms (σ-holes) and above and below the planar portions of molecular entities (π-holes). σ- and π-holes can be present on many different elements of the p and d block of the periodic table and the self-assembly processes driven by their presence can thus involve a wide diversity of mono- and di-anions. The formed homomeric and heteromeric adducts are typically stable in the solid phase and in polar solvents but metastable or unstable in the gas phase. The pivotal role of σ- and π-hole bonds in controlling anion⋯anion self-assembly is described in key biopharmacological systems and in molecular materials endowed with useful functional properties.
Collapse
Affiliation(s)
- Andrea Pizzi
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Arun Dhaka
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Roberta Beccaria
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Giuseppe Resnati
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| |
Collapse
|
4
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
5
|
Guo P, Pu G, Wang G, Zeng LY, Li WP, Li X, Zhou PP, He CY. Halogen-Bond-Promoted Direct Cross-Coupling of Trifluoromethylated Alkyl Bromides with Coumarins/Quinolinones: Unraveling Trifluoromethyl Effects. Org Lett 2024; 26:3097-3102. [PMID: 38574397 DOI: 10.1021/acs.orglett.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study introduces a novel approach involving XB-mediated cross-coupling of α-trifluoromethylated alkyl bromides with coumarins and quinolinones under visible light irradiation. Both density functional theory (DFT) calculations and experimental studies converge to suggest that the noncovalent interaction between alkyl bromides and DMAP, intensified by the α-trifluoromethyl group, plays a pivotal role in facilitating this chemoselective reaction.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Guoliang Pu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Gairong Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Lin-Yuan Zeng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Wei-Piao Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
| | - Xuefei Li
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, 563002 Zunyi, Guizhou, P. R. China
| | - Pan-Pan Zhou
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, P. R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563002 Guizhou, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education. School of Pharmacy, Zunyi Medical University, 563002 Zunyi, Guizhou, P. R. China
| |
Collapse
|
6
|
Savastano M. Ye Olde supramolecular chemistry, its modern rebranding and overarching trends in chemistry. Dalton Trans 2024; 53:1373-1392. [PMID: 38180341 DOI: 10.1039/d3dt03686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We can describe current contingency of supramolecular chemistry as "post-halogen bonding", with clear reference to the success of the σ-hole model and the halogen bond concepts. This phase is characterized by a strong push towards a new nomenclature for non-covalent interactions, a group-by-group one focusing on the electrophile. As such nomenclature increasingly meets IUPAC endorsement, its proposers report resistances to such ideas, especially in the inorganic and coordination chemistry communities. The whole issue has been generating considerable debate in the last decade. Herein we fully embrace such discussion in the hope of involving a larger share of the relevant communities. Alternative descriptions are here reevaluated, novel views reconnected with older ones, and it is ultimately questioned whether the introduction of such a nomenclature and its subtending ideas would be beneficial. The themes of appreciation of general trends in chemistry, of counterintuitive interactions, of positioning of novel nomenclature with respect to existing ones, and of the extension of group-by-group naming from main block to d-block elements - as key and currently unresolved issues - are discussed. Equivalent, alternative and arguably more comprehensive descriptions are tentatively given, in the hope to overcome controversies together in the pursuit of higher rewards: a comprehensive shared view of supramolecular forces and a common language to express it.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, 00166, Rome, Italy.
| |
Collapse
|
7
|
Pale P, Mamane V. Chalcogen Bonding Catalysis: Tellurium, the Last Frontier? Chemistry 2023:e202302755. [PMID: 37743816 DOI: 10.1002/chem.202302755] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Chalcogen bonding (ChB) is the non-covalent interaction occurring between chalcogen atoms as Lewis acid sites and atoms or groups of atoms able to behave as Lewis bases through their lone pair or π electrons. Analogously to its sister halogen bonding, the high directionality of this interaction was implemented for precise structural organizations in the solid state and in solution. Regarding catalysis, ChB is now accepted as a new mode of activation as demonstrated by the increased number of examples in the last five years. In the family of ChB catalysts, those based on tellurium rapidly appeared to overcome their lighter sulfur and selenium counterparts. In this review, we highlight the Lewis acid properties of tellurium-based derivatives in solution and summarize the start-of-the-art of their applications in catalysis.
Collapse
Affiliation(s)
- Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
8
|
Scheiner S. Does a halogen bond require positive potential on the acid and negative potential on the base? Phys Chem Chem Phys 2023; 25:7184-7194. [PMID: 36815530 DOI: 10.1039/d3cp00379e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
It is usually expected that formation of a halogen bond (XB) requires that a region of positive electrostatic potential associated with a σ or π-hole on the Lewis acid will interact with the negative potential of the base, either a lone pair or π-bond region. Quantum calculations of model systems suggest this not to be necessary. The placement of electron-withdrawing substituents on the base can reverse the sign of the potential in its lone pair or π-bond region to positive, and this base can nonetheless engage in a XB with the positive σ-hole of a Lewis acid. The reverse scenario is also possible in certain circumstances, as a negatively charged σ-hole can form a XB with the negative lone pair region of a base. Despite these classical Coulombic repulsions, the overall electrostatic interaction is attractive in these XBs, albeit only weakly so. The strengths of these bonds are surprisingly insensitive to changes in the partner molecule. For example, even a wide range in the depth of the σ-hole of the approaching acid yields only a minimal change in the strength of the XB to a base with a positive potential.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan, Utah, USA, 84322-0300.
| |
Collapse
|
9
|
Pale P, Mamane V. Chalcogen Bonds: How to Characterize Them in Solution? Chemphyschem 2023; 24:e202200481. [PMID: 36205925 DOI: 10.1002/cphc.202200481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Indexed: 11/08/2022]
Abstract
Chalcogen bonds (ChBs) occur between molecules containing Lewis acidic chalcogen substituents and Lewis bases. Recently, ChB emerged as a pivotal interaction in solution-based applications such as anion recognition, anion transport and catalysis. However, before moving to applications, the involvement of ChB must be established in solution. In this Concept article, we provide a brief review of the currently available experimental investigations of ChB in solution.
Collapse
Affiliation(s)
- Patrick Pale
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- UMR 7177, LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
10
|
Holthoff JM, Engelage E, Ruff A, Galazzo L, Bordignon E, Huber SM, Weiss R. A Potent Auto-Umpolung Ligand for Conjugative Radical Stabilization. Chemistry 2023; 29:e202203149. [PMID: 36239437 PMCID: PMC10099569 DOI: 10.1002/chem.202203149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/23/2022]
Abstract
Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).
Collapse
Affiliation(s)
- Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Adrian Ruff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,PPG Packaging Analytical Labs, PPG Deutschland Business Support GmbH, Erlenbrunnenstr. 20, 72411, Bodelshausen, Germany
| | - Laura Galazzo
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Department of Physical Chemistry (Sciences II), Université de Genève 30 Quai Ernest Ansermet, CH-1211, Genève 4, Switzerland
| | - Enrica Bordignon
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Department of Physical Chemistry (Sciences II), Université de Genève 30 Quai Ernest Ansermet, CH-1211, Genève 4, Switzerland
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054, Erlangen, Germany
| |
Collapse
|
11
|
Muñoz Sánchez GM, Zdilla MJ. Crystal structure of N-butyl-2,3-bis-(di-cyclo-hexyl-amino)-cyclo-propeniminium chloride benzene monosolvate. Acta Crystallogr E Crystallogr Commun 2022; 78:936-941. [PMID: 36072514 PMCID: PMC9443799 DOI: 10.1107/s2056989022008076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
N-Butyl-2,3-bis-(di-cyclo-hexyl-amino)-cyclo-propenimine (1) crystallizes from benzene and hexa-nes in the presence of HCl as a mono-benzene solvate of the hydro-chloride salt, [1H]Cl·C6H6 or C31H54N3 +·Cl-·C6H6, in the P21/n space group. The protonation of 1 results in the generation of an aromatic structure based upon the delocalization of the cyclo-propene double bond around the cyclo-propene ring, giving three inter-mediate C-C bond lengths of ∼1.41 Å, and the delocalization of the imine-type C-N double bond, giving three inter-mediate C-N bond lengths of ∼1.32 Å. Ion-ion and ion-benzene packing inter-actions are described and illustrated.
Collapse
Affiliation(s)
- Gaby M. Muñoz Sánchez
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
12
|
Zhang Y, Wang W. Origin of the unexpected attractive interactions between positive σ-holes and positive π-lumps. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Harry SA, Vemulapalli S, Dudding T, Lectka T. Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. J Org Chem 2022; 87:8413-8419. [PMID: 35658438 DOI: 10.1021/acs.joc.2c00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perhaps the most controversial and rare aspect of the halogen bonding interaction is the potential of fluorine in compounds to serve as a halogen bond donor. In this note, we provide clear and convincing examples of hypothetical molecules in which fluorine is strongly halogen bonding in a metastable state. Of particular note is a polycyclic system inspired by Selectfluor, which has been controversially proposed to engage in halogen bonding.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Srini Vemulapalli
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Wysokiński R, Zierkiewicz W, Michalczyk M, Maris T, Scheiner S. The Role of Hydrogen Bonds in Interactions between [PdCl 4] 2- Dianions in Crystal. Molecules 2022; 27:2144. [PMID: 35408543 PMCID: PMC9000617 DOI: 10.3390/molecules27072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
[PdCl4]2- dianions are oriented within a crystal in such a way that a Cl of one unit approaches the Pd of another from directly above. Quantum calculations find this interaction to be highly repulsive with a large positive interaction energy. The placement of neutral ligands in their vicinity reduces the repulsion, but the interaction remains highly endothermic. When the ligands acquire a unit positive charge, the electrostatic component and the full interaction energy become quite negative, signalling an exothermic association. Raising the charge on these counterions to +2 has little further stabilizing effect, and in fact reduces the electrostatic attraction. The ability of the counterions to promote the interaction is attributed in part to the H-bonds which they form with both dianions, acting as a sort of glue.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA;
| |
Collapse
|
15
|
Shestimerova TA, Bykov AV, Kuznetsov AN, Grishko AY, Wei Z, Dikarev EV, Shevelkov AV. Pattern of covalent and non‐covalent interactions within the pentaiodide anion in the structure of (3‐HOC5H9NH2)I5. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatiana A. Shestimerova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia RUSSIAN FEDERATION
| | - Andrey V. Bykov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia RUSSIAN FEDERATION
| | - Alexey N. Kuznetsov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia. N. S. Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia RUSSIAN FEDERATION
| | - Alexey Y. Grishko
- Department of Materials Sciences, Lomonosov Moscow State University, 119991 Moscow, Russia RUSSIAN FEDERATION
| | - Zheng Wei
- Department of Chemistry, University at Albany, SUNY, Albany New York 12222, United States RUSSIAN FEDERATION
| | - Evgeny V. Dikarev
- Department of Chemistry, University at Albany, SUNY, Albany New York 12222, United States RUSSIAN FEDERATION
| | - Andrei V. Shevelkov
- Lomonosov Moscow State University Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
16
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. The Phosphorus Bond, or the Phosphorus-Centered Pnictogen Bond: The Covalently Bound Phosphorus Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor. Molecules 2022; 27:molecules27051487. [PMID: 35268588 PMCID: PMC8911988 DOI: 10.3390/molecules27051487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence:
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
17
|
Weinhold F. Anti-Electrostatic Pi-Hole Bonding: How Covalency Conquers Coulombics. Molecules 2022; 27:377. [PMID: 35056689 PMCID: PMC8780338 DOI: 10.3390/molecules27020377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Intermolecular bonding attraction at π-bonded centers is often described as "electrostatically driven" and given quasi-classical rationalization in terms of a "pi hole" depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO-, CN-) with simple atomic anions (H-, F-) or with one another. Such "anti-electrostatic" anion-anion attractions are shown to lead to robust metastable binding wells (ranging up to 20-30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi-Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that "deletion" of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi-Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency ("charge transfer") rather than envisioned Coulombic properties of unperturbed monomers.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Abstract
A halogen-bonded complex containing a pair of anions can be made more stable than the isolated anions if the Lewis acid is a long carbon chain, fully substituted by CN groups, with an I atom on one end and a COO− group on the other, with Cl− as base.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
19
|
Three types of noncovalent interactions studied between pyrazine and XF. J Mol Model 2021; 28:15. [PMID: 34961885 DOI: 10.1007/s00894-021-05012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Three types noncovalent interactions (type I, II and III) between pyrazine (C4H4N2) and XF (X = F, Cl, Br, and I) have been discovered at the MP2/aug-cc-pVTZ level. TypeI is σ-hole interaction between the positive site on the halogen X of XF and the negative site on one of the pyrazine nitrogens. Type II is counterintuitive σ-hole interaction driven by polarization between the positive site on the halogen X of XF and a portion of the pyrazine ring. Type III is an interaction between the lateral regions of the halogen X of XF and the position of the pyrazine ring. Through comparing the calculated interaction energy, we can know that the type II and type III interactions are weaker than the corresponding type I interactions, and type III interactions are weaker than the corresponding type II interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the type I (σ-hole) interactions while the type III interactions are mainly dispersion energy. For the type II (counterintuitive σ-hole) interactions in C4H4N2-XF (X = F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF (X = Br and I) complexes, the electrostatic term, induction and dispersion play equally important role in the total attractive interaction. NBO analysis, AIM theory, and conceptual DFT are also being utilized.
Collapse
|
20
|
Fan D, Chen L, Wang C, Yin S, Mo Y. Inter-anion chalcogen bonds: Are they anti-electrostatic in nature? J Chem Phys 2021; 155:234302. [PMID: 34937369 DOI: 10.1063/5.0076872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inter-anion hydrogen and halogen bonds have emerged as counterintuitive linkers and inspired us to expand the range of this unconventional bonding pattern. Here, the inter-anion chalcogen bond (IAChB) was proposed and theoretically analyzed in a series of complexes formed by negatively charged bidentate chalcogen bond donors with chloride anions. The kinetic stability of IAChB was evidenced by the minima on binding energy profiles and further supported by ab initio molecular dynamic simulations. The block-localized wave function (BLW) method and its subsequent energy decomposition (BLW-ED) approach were employed to elucidate the physical origin of IAChB. While all other energy components vary monotonically as anions get together, the electrostatic interaction behaves exceptionally as it experiences a Coulombic repulsion barrier. Before reaching the barrier, the electrostatic repulsion increases with the shortening Ch⋯Cl- distance as expected from classical electrostatics. However, after passing the barrier, the electrostatic repulsion decreases with the Ch⋯Cl- distance shortening and subsequently turns into the most favorable trend among all energy terms at short ranges, representing a dominating force for the kinetic stability of inter-anions. For comparison, all energy components exhibit the same trends and vary monotonically in the conventional counterparts where donors are neutral. By comparing inter-anions and their conventional counterparts, we found that only the electrostatic energy term is affected by the extra negative charge. Remarkably, the distinctive (nonmonotonic) electrostatic energy profiles were reproduced using quantum mechanical-based atomic multipoles, suggesting that the crucial electrostatic interaction in IAChB can be rationalized within the classical electrostatic theory just like conventional non-covalent interactions.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| |
Collapse
|
21
|
Chen L, Feng Q, Wang C, Yin S, Mo Y. Classical Electrostatics Remains the Driving Force for Interanion Hydrogen and Halogen Bonding. J Phys Chem A 2021; 125:10428-10438. [PMID: 34818021 DOI: 10.1021/acs.jpca.1c09250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interanion hydrogen bonding (IAHB) and halogen bonding (IAXB) have emerged as a counterintuitive linker in a range of fascinating applications. Despite the overall repulsive (positive) binding energy, anions are trapped in a local minimum with its corresponding transition state (TS) preventing dissociation. In other words, the adduct of anions is metastable. Seemingly, the electrostatic paradigm and force field description of hydrogen/halogen bonding (HB/XB) are challenged, because of the preconceived Coulombic repulsion. Aiming at an insightful understanding of these interanion phenomena, we employed the energy decomposition approach based on the block-localized wavefunction method (BLW-ED) to investigate a series of exemplary interanion complexes. As expected, the key distinction from the conventional HB/XB lies in the electrostatic interaction, which is not increasingly repulsive as anions gradually approach to each other. Rather, there is a Coulombic barrier at a certain point. After this point, the electrostatic repulsion diminishes with the decreasing distance between anions. Differently, other energy components vary monotonically just like in conventional cases. The nonmonotonic characteristic of the electrostatic interaction in interanion complexes was reproduced using the multipole expansion in AMOEBA polarizable force field in which the state-specified atomic multipoles were adopted. This suggests that the nonmonotonicity can be well interpreted by classical electrostatic theory and there is no conceptual difference between conventional HB/XB and IAHB/IAXB. The stability of IAHB/IAXB depends on the competition between the local attractive HB/XB and the global Coulombic repulsion of net charges, though there is cooperativity between these two contrasting forces. This concise model was supported by the attractive IAHB/IAXB in modified molecular capsules, which exhibit strong quadruple HB/XBs and a considerable distance between charged substituents.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiuyan Feng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
22
|
Holthoff JM, Weiss R, Rosokha SV, Huber SM. "Anti-electrostatic" Halogen Bonding between Ions of Like Charge. Chemistry 2021; 27:16530-16542. [PMID: 34409662 PMCID: PMC9293363 DOI: 10.1002/chem.202102549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Halogen bonding occurs between molecules featuring Lewis acidic halogen substituents and Lewis bases. It is often rationalized as a predominantly electrostatic interaction and thus interactions between ions of like charge (e. g., of anionic halogen bond donors with halides) seem counter-intuitive. Herein, we provide an overview on such complexes. First, theoretical studies are described and their findings are compared. Next, experimental evidences are presented in the form of crystal structure database analyses, recent examples of strong "anti-electrostatic" halogen bonding in crystals, and the observation of such interactions also in solution. We then compare these complexes to select examples of "counter-intuitive" adducts formed by other interactions, like hydrogen bonding. Finally, we comment on key differences between charge-transfer and electrostatic polarization.
Collapse
Affiliation(s)
- Jana M. Holthoff
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Robert Weiss
- Institut für Organische ChemieFriedrich-Alexander-Universität Erlangen-NürnbergHenkestraße 4291054ErlangenGermany
| | | | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
23
|
Daolio A, Pizzi A, Terraneo G, Frontera A, Resnati G. Anion⋅⋅⋅Anion Interactions Involving σ-Holes of Perrhenate, Pertechnetate and Permanganate Anions. Chemphyschem 2021; 22:2281-2285. [PMID: 34541753 PMCID: PMC9291842 DOI: 10.1002/cphc.202100681] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/14/2023]
Abstract
In this communication experimental and theoretical results are reported affording strong evidence that interactions between electron rich atoms and the metal of tetroxide anions of group 7 elements are a new case of attractive and σ-hole interactions. Single crystal X-ray analyses, molecular electrostatic potentials, quantum theory of atoms-in-molecules, and noncovalent interaction plot analyses show that in crystalline permanganate and perrhenate salts the metal in Mn/ReO4- anion can act as electron acceptors, the oxygen of another Mn/ReO4- anion can act as the donor and supramolecular anionic dimers or polymers are formed. The name matere bond (MaB) is proposed to categorize these noncovalent interactions and to differentiate them from the classical metal-ligand coordination bond.
Collapse
Affiliation(s)
- Andrea Daolio
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Giancarlo Terraneo
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes BalearsCrta. de Valldemossa07122Palma de MallorcaBalearesSpain
| | - Giuseppe Resnati
- Department of Chemistry, Materials andChemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 720131MilanoItaly
| |
Collapse
|
24
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Triel bonds within anion ···anion complexes. Phys Chem Chem Phys 2021; 23:25097-25106. [PMID: 34751289 DOI: 10.1039/d1cp04296c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two anions to interact with one another is tested in the context of pairs of TrX4- homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF4-, with interaction energies surpassing 30 kcal mol-1. Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
25
|
Chen L, Dang J, Du J, Wang C, Mo Y. Hydrogen and Halogen Bonding in Homogeneous External Electric Fields: Modulating the Bond Strengths. Chemistry 2021; 27:14042-14050. [PMID: 34319620 DOI: 10.1002/chem.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Recent years have witnessed various fascinating phenomena arising from the interactions of noncovalent bonds with homogeneous external electric fields (EEFs). Here we performed a computational study to interpret the sensitivity of intrinsic bond strengths to EEFs in terms of steric effect and orbital interactions. The block-localized wavefunction (BLW) method, which combines the advantages of both ab initio valence bond (VB) theory and molecular orbital (MO) theory, and the subsequent energy decomposition (BLW-ED) approach were adopted. The sensitivity was monitored and analyzed using the induced energy term, which is the variation in each energy component along the EEF strength. Systems with single or multiple hydrogen (H) or halogen (X) bond(s) were also examined. It was found that the X-bond strength change to EEFs mainly stems from the covalency change, while generally the steric effect rules the response of H-bonds to EEFs. Furthermore, X-bonds are more sensitive to EEFs, with the key difference between H- and X-bonds lying in the charge transfer interaction. Since phenylboronic acid has been experimentally used as a smart linker in EEFs, switchable sensitivity was scrutinized with the example of the phenylboronic acid dimer, which exhibits two conformations with either antiparallel or parallel H-bonds, thereby, opposite or consistent responses to EEFs. Among the studied systems, the quadruple X-bonds in molecular capsules exhibit remarkable sensitivity, with its interaction energy increased by -95.2 kJ mol-1 at the EEF strength 0.005 a.u.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
26
|
Tuning optical and electronic properties of graphene oxide by surface adsorption of molecular halogens (X2 = I2, Br2, Cl2, and F2) for light harvesting. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Tarannam N, Shukla R, Kozuch S. Yet another perspective on hole interactions. Phys Chem Chem Phys 2021; 23:19948-19963. [PMID: 34514473 DOI: 10.1039/d1cp03533a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hole interactions are known by different names depending on the key atom of the bond (halogen bond, chalcogen bond, hydrogen bond, etc.), and the geometry of the interaction (σ if in line, π if perpendicular to the Lewis acid plane). However, its origin starts with the creation of a Lewis acid by an underlying covalent bond, which forms an electrostatic depletion and a virtual antibonding orbital, which can create non-covalent interactions with Lewis bases. In this (maybe subjective) perspective, we will claim that hole interactions must be defined via the molecular orbital origin of the molecule. Under this premise we can better explore the richness of such bonding patterns. For that, we will study old, recent and new systems, trying to pinpoint some misinterpretations that are often associated with them. We will use as exemplars the triel bonds, a couple of metal complexes, a discussion on convergent σ-holes, and many cases of anti-electrostatic hole interactions.
Collapse
Affiliation(s)
- Naziha Tarannam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Rahul Shukla
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| |
Collapse
|
28
|
Erdélyi M, Esterhuysen C, Zhu W. Halogen Bonding: From Fundamentals to Applications. Chempluschem 2021; 86:1229-1230. [PMID: 34382358 DOI: 10.1002/cplu.202100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Guest Editors Maté Erdélyi, Catharine Esterhuysen, and Weilang Zhu introduce the joint Special Collection on Halogen Bonding published by ChemPlusChem and The Chemical Record. This collection is organized in association with the 4th International Symposium on Halogen Bonding (ISXB4) and features top multidisciplinary contributions where halogen bonding plays a pivotal role, including computational, synthetic and catalytic, supramolecular and crystal engineering, and biological investigations and applications.
Collapse
Affiliation(s)
- Máté Erdélyi
- Department of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
29
|
Murray JS, Politzer P. Can Counter-Intuitive Halogen Bonding Be Coulombic? Chemphyschem 2021; 22:1201-1207. [PMID: 33844430 DOI: 10.1002/cphc.202100202] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 01/14/2023]
Abstract
We use the term "counter-intuitive" to describe an intermolecular interaction in which the electrostatic potentials of the interacting regions of the ground-state molecules have the same sign, both positive or both negative. In the present work, we consider counter-intuitive halogen bonding with nitrogen bases, in which both the halogen σ-hole and the nitrogen lone pair have negative potentials on their molecular surfaces. We show that these interactions can be treated as Coulombic despite the apparent repulsion between the ground-state molecules, provided that both electrostatics and polarization are explicitly taken into account. We demonstrate first that the energies of 20 counter-intuitive interactions with four nitrogen bases can be expressed very well in terms of just two molecular properties: the electrostatic potential of the halogen σ-hole and the average polarizability of the nitrogen base. Then we show that the same two properties can also represent the energies of an expanded data base that includes the 20 counter-intuitive plus an additional 20 weak and moderately-strong intuitive halogen bonding interactions (in which the σ-hole potentials are now positive).
Collapse
Affiliation(s)
- Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
30
|
Loy C, Holthoff JM, Weiss R, Huber SM, Rosokha SV. "Anti-electrostatic" halogen bonding in solution. Chem Sci 2021; 12:8246-8251. [PMID: 34194716 PMCID: PMC8208320 DOI: 10.1039/d1sc01863a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Halogen-bonded (XB) complexes between halide anions and a cyclopropenylium-based anionic XB donor were characterized in solution for the first time. Spontaneous formation of such complexes confirms that halogen bonding is sufficiently strong to overcome electrostatic repulsion between two anions. The formation constants of such "anti-electrostatic" associations are comparable to those formed by halides with neutral halogenated electrophiles. However, while the latter usually show charge-transfer absorption bands, the UV-Vis spectra of the anion-anion complexes examined herein are determined by the electronic excitations within the XB donor. The identification of XB anion-anion complexes substantially extends the range of the feasible XB systems, and it provides vital information for the discussion of the nature of this interaction.
Collapse
Affiliation(s)
- Cody Loy
- Department of Chemistry, Ball State University Muncie Indiana 47306 USA
| | - Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestr. 42 91054 Erlangen Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Sergiy V Rosokha
- Department of Chemistry, Ball State University Muncie Indiana 47306 USA
| |
Collapse
|
31
|
Wysokiński R, Zierkiewicz W, Michalczyk M, Scheiner S. Crystallographic and Theoretical Evidences of Anion⋅⋅⋅Anion Interaction. Chemphyschem 2021; 22:818-821. [PMID: 33719162 DOI: 10.1002/cphc.202100132] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 11/10/2022]
Abstract
Planar (HgCl3 )- anions are stacked fairly closely together in a slipped parallel arrangement within several crystal structures. Quantum chemical analysis shows evidence of strong noncovalent spodium bonds between the Hg π-hole of one unit and the Cl atom of an adjacent unit. Anion⋅⋅⋅anion spodium bonds work in tandem with crystal packing forces.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, United States
| |
Collapse
|
32
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
33
|
Ebner F, Mainik P, Greb L. Calix[4]pyrrolato Aluminates: The Effect of Ligand Modification on the Reactivity of Square-Planar Aluminum Anions. Chemistry 2021; 27:5120-5124. [PMID: 33481319 PMCID: PMC8048585 DOI: 10.1002/chem.202005493] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/09/2023]
Abstract
Structural constraint represents an attractive tool to modify p-block element properties without the need for unusual oxidation or valence states. The recently reported methyl-calix[4]pyrrolato aluminate established the effect of forcing a tetrahedral aluminum anion into a square-planar coordination mode. However, the generality of this structural motif and any consequence of ligand modification remained open. Herein, a systematic ligand screening was launched, and the class of square-planar aluminum anions was extended by two derivatives that differ in the meso-substitution at the calix[4]pyrrolato ligand. Strikingly, this modification provoked opposing trends in the preference for a Lewis acidic binding mode with σ-donors versus the aluminum-ligand cooperative binding mode with carbonyls. Insights into the origin of these counterintuitive experimental observations were provided by computation and bond analysis. Importantly, this rationale might allow to exploit mode-selective binding for catalytic rate control.
Collapse
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Mainik
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
34
|
Li Y, Meng L, Zeng Y. Comparison of Anion‐Anion Halogen Bonds with Neutral‐Anion Halogen Bonds in the Gas Phase and Polar Solvents. Chempluschem 2021; 86:232-240. [DOI: 10.1002/cplu.202000734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Indexed: 01/23/2023]
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
- National Experimental Chemistry Teaching Center Hebei Normal University) Shijiazhuang 050024 P. R. China
| |
Collapse
|
35
|
Ghosh K, Frontera A, Chattopadhyay S. A theoretical insight on the anion⋯anion interactions observed in the solid state structure of a hetero-trinuclear complex. CrystEngComm 2021. [DOI: 10.1039/d0ce01513j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A hetero-nuclear cobalt(iii)/potassium complex has been synthesized and characterized by several analytical techniques. DFT computations indicate the existence of anion⋯anion interactions in its solid state.
Collapse
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata – 700032
- India
| | - Antonio Frontera
- Departamento de Química
- Universitat de les Illes Balears
- 07122 Palma
- Spain
| | | |
Collapse
|
36
|
Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Bromonium salts: diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem Commun (Camb) 2021; 57:2519-2522. [DOI: 10.1039/d0cc07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bromonium salts have been typically but infrequently used as good leaving groups owing to their high nucleofugality. Herein, we report the synthesis of stable bromonium salts and their first catalytic application, with excellent product yield.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Seitaro Ishikawa
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| |
Collapse
|
37
|
Wysokiński R, Zierkiewicz W, Michalczyk M, Scheiner S. Anionanion (MX 3-) 2 dimers (M = Zn, Cd, Hg; X = Cl, Br, I) in different environments. Phys Chem Chem Phys 2021; 23:13853-13861. [PMID: 34156052 DOI: 10.1039/d1cp01502h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility that MX3- anions can interact with one another is assessed via ab initio calculations in gas phase as well as in aqueous and ethanol solution. A pair of such anions can engage in two different dimer types. In the bridged configuration, two X atoms engage with two M atoms in a rhomboid structure with four equal M-X bond lengths. The two monomers retain their identity in the stacked geometry which contains a pair of noncovalent MX interactions. The relative stabilities of these two structures depend on the nature of the central M atom, the halogen substituent, and the presence of solvent. The interaction and binding energies are fairly small, generally no more than 10 kcal mol-1. The large electrostatic repulsion is balanced by a strong attractive polarization energy.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
38
|
Wysokiński R, Michalczyk M, Zierkiewicz W, Scheiner S. Anion-anion and anion-neutral triel bonds. Phys Chem Chem Phys 2021; 23:4818-4828. [PMID: 33605957 DOI: 10.1039/d0cp06547a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of a TrCl4- anion (Tr = Al, Ga, In, Tl) to engage in a triel bond with both a neutral NH3 and CN- anion is assessed by ab initio quantum calculations in both the gas phase and in aqueous medium. Despite the absence of a positive σ or π-hole on the Lewis acid, strong triel bonds can be formed with either base. The complexation involves an internal restructuring of the tetrahedral TrCl4- monomer into a trigonal bipyramid shape, where the base can occupy either an axial or equatorial position. Although this rearrangement requires a substantial investment of energy, it aids the complexation by imparting a much more positive MEP to the site that is to be occupied by the base. Complexation with the neutral base is exothermic in the gas phase and even more so in water where interaction energies can exceed 30 kcal mol-1. Despite the long-range coulombic repulsion between any pair of anions, CN- can also engage in a strong triel bond with TrCl4-. In the gas phase, complexation is endothermic, but dissociation of the metastable dimer is obstructed by an energy barrier. The situation is entirely different in solution, with large negative interaction energies of as much as -50 kcal mol-1. The complexation remains an exothermic process even after the large monomer deformation energy is factored in.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
39
|
|
40
|
Peloquin AJ, McMillen CD, Pennington WT. One dimensional halogen bond design: Br⋯N versus I⋯N with fluoroarenes. CrystEngComm 2021. [DOI: 10.1039/d1ce00864a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
29 structures of 1,4-dibromo- and 1,4-diiodotetrafluorobenzene, as well as 4,4′-dibromo- and 4,4′-diiodooctafluorobiphenyl with bifunctional amines were synthesized, exposing correlations of halogen bond length with both electrostatic potential and percent buried volume.
Collapse
Affiliation(s)
- Andrew J. Peloquin
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634-0973, USA
| | - Colin D. McMillen
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634-0973, USA
| | - William T. Pennington
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634-0973, USA
| |
Collapse
|
41
|
Abeysekera AM, Averkiev BB, Le Magueres P, Aakeröy CB. Intermolecular binding preferences of haloethynyl halogen-bond donors as a function of molecular electrostatic potentials in a family of N-(pyridin-2-yl)amides. Org Biomol Chem 2021; 19:6671-6681. [PMID: 34278407 DOI: 10.1039/d1ob01133b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to explore how σ-hole potentials, as evaluated by molecular electrostatic potential (MEP) calculations, affect the ability of halogen atoms to engage in structure-directing intermolecular interactions, we synthesized four series of ethynyl halogen-substituted amide containing pyridines (activated targets); (N-(pyridin-2-yl)benzamides (Bz-act-X), N-(pyridin-2-yl)picolinamides (2act-X), N-(pyridin-2-yl)nicotinamides (3act-X) and N-(pyridin-2-yl) isonicotinamides (4act-X), where X = Cl/Br/I. The molecules are deliberately equipped with three distinctly different halogen-bond acceptor sites, π, N(pyr), and O[double bond, length as m-dash]C, to determine binding site preferences of different halogen-bond donors. Crystallographic data for ten (out of a possible twelve) new compounds were thus analyzed and compared with data for the corresponding unactivated species. The calculated MEPs of all the halogen atoms were higher in the activated targets in comparison to the unactivated targets and were in the order of iodine ≈ chloroethynyl < bromoethynyl < iodoethynyl. This increased positive σ-hole potential led to a subsequent increase in propensity for halogen-bond formation. Two of the four chloroethynyl structures showed halogen bonding, and all three of the structurally characterized bromoethynyl species engaged in halogen bonding. The analogous unactived species showed no halogen bonds. Each chloroethynyl donor selected a π-cloud as acceptor and the bromoethynyl halogen-bond donors opted for either π or N(pyr) sites, whereas all halogen bonds involving an iodoethynyl halogen-bond donor (including both polymorphs of Bz-act-I) engaged exclusively with a N(pyr) acceptor site.
Collapse
Affiliation(s)
- Amila M Abeysekera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506 - 0401, USA.
| | - Boris B Averkiev
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506 - 0401, USA.
| | - Pierre Le Magueres
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA
| | - Christer B Aakeröy
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, KS 66506 - 0401, USA.
| |
Collapse
|
42
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
43
|
Study on the halogen bond and π-π stacking interaction between fluoro substituted iodobenzene and pyrazine. J Mol Model 2020; 26:333. [DOI: 10.1007/s00894-020-04586-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
|
44
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
45
|
Du J, Wang C, Yin S, Wang W, Mo Y. Resonance-assisted/impaired anion-π interaction: towards the design of novel anion receptors. RSC Adv 2020; 10:36181-36191. [PMID: 35517107 PMCID: PMC9056982 DOI: 10.1039/d0ra07877h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023] Open
Abstract
Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation. The change of the π electron density distribution subsequently impacts the interaction of substituted benzenes or other cyclic conjugated rings with anions. Currently the design and synthesis of conjugated cyclic receptors capable of binding anions is an active field due to their applications in the sensing and removal of environmental contaminants and molecular recognition. By using the block-localized wavefunction (BLW) method, which is a variant of ab initio valence bond (VB) theory and can derive the reference resonance-free state self-consistently, we quantified the resonance-assisted (RA) or resonance-impaired (RI) phenomena in anion–π interactions from both structural and energetic perspectives. The frozen interaction, in which the electrostatic attraction is involved, has been shown to be the governing factor for the RA or RI interactions with anions. Energy analyses based on the empirical point charge (EPC) model indicated that the anion–π interactions can be simplified as the attraction between a negative point charge (anion) and a group of local dipoles, affected by the enriched or diminished π-cloud due to the resonance between the substituents and the conjugated ring. Hence, two strategies for the design of novel anion receptors can be envisioned. One is the enhancement of the magnitudes and/or numbers of local dipoles (polarized σ bonds), and the other is the reduction of π electron density in conjugated rings. For cases with the RI characteristics, “curved” aromatic molecules are preferred to be anion receptors. Indeed, extremely strong binding was found in complexes formed with fluorinated corannulene (F-CDD) and fluorinated [5]cycloparaphenylene (F-[5]CPP). Inspired by the RA phenomenon, complexes of p-, o- and m-benzoquinones with halides were revisited. Substituents alter the electron density distribution in benzene in various ways, depending on their electron withdrawing and donating capabilities, as summarized by the empirical Hammett equation.![]()
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yirong Mo
- Department of Nanoscience Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
46
|
Maxson T, Jalilov AS, Zeller M, Rosokha SV. Halogen Bonding Between Anions: Association of Anion Radicals of Tetraiodo‐
p
‐benzoquinone with Iodide Anions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tristan Maxson
- Department of Chemistry Ball State University Muncie IN 47306 USA
| | - Almaz S. Jalilov
- Department of Chemistry King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Matthias Zeller
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | | |
Collapse
|
47
|
Maxson T, Jalilov AS, Zeller M, Rosokha SV. Halogen Bonding Between Anions: Association of Anion Radicals of Tetraiodo-p-benzoquinone with Iodide Anions. Angew Chem Int Ed Engl 2020; 59:17197-17201. [PMID: 32497382 DOI: 10.1002/anie.202004384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2020] [Indexed: 12/14/2022]
Abstract
Halogen bonding between two negatively charged species, tetraiodo-p-benzoquinone anion radicals (I4 Q-. ) and iodide anions, was observed and characterized for the first time. X-ray structural and EPR/UV-Vis spectral studies revealed that the anion-anion bonding led to the formation of crystals comprising 2D layers of I4 Q-. anion radicals linked by iodides and separated by Et4 N+ counter-ions. Computational analysis suggested that the seemingly antielectrostatic halogen bonds in these systems were formed via a combination of several factors. First, an attenuation of the interionic repulsion by the solvent facilitated close approach of the anions leading to their mutual polarization. This resulted in the appearance of positively charged areas (σ-holes) on the surface of the iodine substituents in I4 Q-. responsible for the attractive interaction. Finally, the solid-state associations were also stabilized by multicenter (4:4) halogen bonding between I4 Q-. and iodide.
Collapse
Affiliation(s)
- Tristan Maxson
- Department of Chemistry, Ball State University, Muncie, IN, 47306, USA
| | - Almaz S Jalilov
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Sergiy V Rosokha
- Department of Chemistry, Ball State University, Muncie, IN, 47306, USA
| |
Collapse
|
48
|
Affiliation(s)
- Martin Breugst
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Jonas J. Koenig
- Department für Chemie Universität zu Köln Greinstraße 4 50939 Köln Germany
| |
Collapse
|
49
|
Zhao W, Flood AH, White NG. Recognition and applications of anion-anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chem Soc Rev 2020; 49:7893-7906. [PMID: 32677649 DOI: 10.1039/d0cs00486c] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion-anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion-anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
50
|
Holthoff JM, Engelage E, Weiss R, Huber SM. "Anti-Electrostatic" Halogen Bonding. Angew Chem Int Ed Engl 2020; 59:11150-11157. [PMID: 32227661 PMCID: PMC7317790 DOI: 10.1002/anie.202003083] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Indexed: 01/03/2023]
Abstract
Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen-based Lewis acids) and anions seem counterintuitive. Such "anti-electrostatic" XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self-association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti-electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self-association of the anionic XB donors was observed in solid-state structures, resulting in dimers, trimers, and infinite chains. In addition, co-crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14-21 % shorter than the sum of the van der Waals radii.
Collapse
Affiliation(s)
- Jana M. Holthoff
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Robert Weiss
- Institut für Organische ChemieFriedrich-Alexander-Universität Erlangen-NürnbergHenkestraße 4291054ErlangenGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|