1
|
Chung HT, Schramm TK, Head-Gordon M, Shee J, Toste FD. Regioisomeric Engineering for Multicharge and Spin Stabilization in Two-Electron Organic Catholytes. J Am Chem Soc 2025; 147:2115-2128. [PMID: 39746122 PMCID: PMC11745167 DOI: 10.1021/jacs.4c16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements. Through a systematic study of regioisomers of near-planar aromatic cyclic triindoles and nonplanar nonaromatic cyclic tetraindoles, we demonstrate that this regioisomeric engineering strategy significantly enhances the H-cell cycling stability in the above two new classes of 2e- catholytes, even when current strategies failed to stabilize the multicharged species. Density functional theory calculations reveal that the strategy operates by redistributing the charge and spin densities while highlighting the role of aromaticity in charge stabilization. The most stable 2e- catholyte candidate was paired with a viologen derivative anolyte to achieve a proof-of-concept all-organic flow battery with 1.26-1.49 V, 98% capacity retention, and only 0.0117% fade/h and 0.00563% fade/cycle over 400 cycles (192 h), which is the highest capacity retention ever reported over 400 cycles in a multielectron all-organic flow battery setup. We anticipate regioisomeric engineering to be a promising strategy complementary to conventional electronic and steric approaches for multicharge and spin stabilization in other functional organic materials.
Collapse
Affiliation(s)
- H. T.
Katie Chung
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint
Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tim K. Schramm
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - James Shee
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - F. Dean Toste
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint
Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
2
|
Sanderson HJ, Helbig A, Kociok-Köhn G, Helten H, Hintermair U. Reversible formation of tetraphenylpentalene, a room temperature stable antiaromatic hydrocarbon. Chem Sci 2025; 16:952-961. [PMID: 39660293 PMCID: PMC11627289 DOI: 10.1039/d4sc06439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
1,3,4,6-Tetraphenylpentalene (Ph4Pn) has been synthesised by chemical oxidation of the corresponding pentalenide complex Mg[Ph4Pn] with iodine. Ph4Pn is a rare example of a room-temperature stable hydrocarbon that is antiaromatic by Hückel's rule and has been fully characterised by NMR and UV-vis spectroscopy, mass spectrometry as well as single-crystal X-ray diffraction. Quantum chemical studies including nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID) calculations showed the existence of an 8π antiaromatic core decorated with four independent 6π aromatic substituents. The formation of Ph4Pn is reversible and it can be reduced back to the 10π aromatic Ph4Pn2- with potassium.
Collapse
Affiliation(s)
- Hugh J Sanderson
- Department of Chemistry and Institute for Sustainability, University of Bath Claverton Down Bath BA2 7AY UK
| | - Andreas Helbig
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Gabriele Kociok-Köhn
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Am Hubland 97074 Würzburg Germany
| | - Ulrich Hintermair
- Department of Chemistry and Institute for Sustainability, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
3
|
Sarkar S, Dutta TK, Jana K, Mandal BP, Patra A. Microporous Organic Ladder Polymer with Vertically Aligned Quinones for Sodium-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407756. [PMID: 39601073 DOI: 10.1002/smll.202407756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Sodium-ion battery is emerging as a promising technology in the post-lithium-ion battery era to meet the high demand for portable energy storage devices. Custom-designed organic materials have been pursued as sustainable alternative electrodes for sodium-ion batteries, offering a solution that bypasses the need for traditional high-temperature synthesis. However, the challenge lies in achieving the desired electrochemical properties through precise structural modulation and the incorporation of redox-active functional groups. In this study, a triptycene-based microporous organic ladder polymer is developed featuring redox-active quinone moieties, designed as an anode material for high-performance sodium-ion batteries. The vertically aligned quinone moieties in the porous ladder polymer prevent the eclipsed stacking of layers, thereby enhancing the exposure of electroactive sites to electrolyte ions. Additionally, the ladder polymer exhibits almost unimodal pores due to its structural rigidity, facilitating fast Na+ ion diffusion. The redox-active quinone moieties host Na+ ions, and the microporosity supports capacitive ion storage. Consequently, a high reversible specific capacity of 316 mAh g-1 has been achieved. This study introduces a novel design strategy to develop redox-active microporous ladder polymers by carefully selecting organic building units for efficient Na+ ion storage.
Collapse
Affiliation(s)
- Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Tapas Kumar Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Krishnendu Jana
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Balaji Prasad Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Jindal S, Tian Z, Mallick A, Kandambeth S, Liu C, Bhatt PM, Zhang X, Shekhah O, Alshareef HN, Eddaoudi M. p/n-Type Polyimide Covalent Organic Frameworks for High-Performance Cathodes in Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407525. [PMID: 39268778 DOI: 10.1002/smll.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Covalent organic frameworks (COFs) are viewed as promising organic electrode materials for metal-ion batteries due to their structural diversity and tailoring capabilities. In this work, firstly using the monomers N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TPDA) and terephthaldehyde (TA), p-type phenylenediamine-based imine-linked TPDA-TA-COF is synthesized. To construct a bipolar redox-active, porous and highly crystalline polyimide-linked COF, i.e., TPDA-NDI-COF, n-type 1,4,5,8-naphthalene tetracarboxylic dianhydride (NDA) molecules are incorporated into p-type TPDA-TA-COF structure via postsynthetic linker exchange method. This tailored COF demonstrated a wide potential window (1.03.6 V vs Na+/Na) with dual redox-active centers, positioning it as a favorable cathode material for sodium-ion batteries (SIBs). Owing to the inheritance of multiple redox functionalities, TPDA-NDI-COF can deliver a specific capacity of 67 mAh g-1 at 0.05 A g-1, which is double the capacity of TPDA-TA-COF (28 mAh g-1). The incorporation of carbon nanotube (CNT) into the TPDA-NDI-COF matrix resulted in an enhancement of specific capacity to 120 mAh g-1 at 0.02 A g-1. TPDA-NDI-50%CNT demonstrated robust cyclic stability and retained a capacity of 92 mAh g-1 even after 10 000 cycles at 1.0 A g-1. Furthermore, the COF cathode exhibited an average discharge voltage of 2.1 V, surpassing the performance of most reported COF as a host material.
Collapse
Affiliation(s)
- Swati Jindal
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhengnan Tian
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arijit Mallick
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sharath Kandambeth
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chen Liu
- Applied Physics, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Stawski W, Zhu Y, Rončević I, Wei Z, Petrukhina MA, Anderson HL. The anti-aromatic dianion and aromatic tetraanion of [18]annulene. Nat Chem 2024; 16:998-1002. [PMID: 38448656 PMCID: PMC11164681 DOI: 10.1038/s41557-024-01469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
π-Conjugated macrocycles behave differently from analogous linear chains because their electronic wavefunctions resemble a quantum particle on a ring, leading to aromaticity or anti-aromaticity. [18]Annulene, (CH)18, is the archetypal non-benzenoid aromatic hydrocarbon. Molecules with circuits of 4n + 2 π electrons, such as [18]annulene (n = 4), are aromatic, with enhanced stability and diatropic ring currents (magnetic shielding inside the ring), whereas those with 4n π electrons, such as the dianion of [18]annulene, are expected to be anti-aromatic and exhibit the opposite behaviour. Here we use 1H NMR spectroscopy to re-evaluate the structure of the [18]annulene dianion. We also show that it can be reduced further to an aromatic tetraanion, which has the same shape as the dianion. The crystal structure of the tetraanion lithium salt confirms its geometry and reveals a metallocene-like sandwich, with five Li+ cations intercalated between two [18]annulene tetraanions. We also report a heteroleptic sandwich, with [18]annulene and corannulene tetraanion decks.
Collapse
Affiliation(s)
- Wojciech Stawski
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Igor Rončević
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, USA.
| | - Harry L Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
| |
Collapse
|
6
|
Zhu Q, Fu D, Ji Q, Yang Z. A Review of Macrocycles Applied in Electrochemical Energy Storge and Conversion. Molecules 2024; 29:2522. [PMID: 38893398 PMCID: PMC11173979 DOI: 10.3390/molecules29112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Macrocycles composed of diverse aromatic or nonaromatic structures, such as cyclodextrins (CDs), calixarenes (CAs), cucurbiturils (CBs), and pillararenes (PAs), have garnered significant attention due to their inherent advantages of possessing cavity structures, unique functional groups, and facile modification. Due to these distinctive features enabling them to facilitate ion insertion and extraction, form crosslinked porous structures, offer multiple redox-active sites, and engage in host-guest interactions, macrocycles have made huge contributions to electrochemical energy storage and conversion (EES/EEC). Here, we have summarized the recent advancements and challenges in the utilization of CDs, CAs, CBs, and PAs as well as other novel macrocycles applied in EES/EEC devices. The molecular structure, properties, and modification strategies are discussed along with the corresponding energy density, specific capacity, and cycling life properties in detail. Finally, crucial limitations and future research directions pertaining to these macrocycles in electrochemical energy storage and conversion are addressed. It is hoped that this review is able to inspire interest and enthusiasm in researchers to investigate macrocycles and promote their applications in EES/EEC.
Collapse
Affiliation(s)
- Qijian Zhu
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Danfei Fu
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| | - Qing Ji
- Department of Resources and Environment, Moutai Institute, Renhuai 564500, China;
| | - Zhongjie Yang
- School of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China;
| |
Collapse
|
7
|
Go CY, Shin J, Choi MK, Jung IH, Kim KC. Switchable Design of Redox-Enhanced Nonaromatic Quinones Enabled by Conjugation Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311155. [PMID: 38117071 DOI: 10.1002/adma.202311155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Indexed: 12/21/2023]
Abstract
An innovative switchable design strategy for modulating the electronic structures of quinones is proposed herein, leading to remarkably enhanced intrinsic redox potentials by restoring conjugated but nonaromatic backbone architectures. Computational validation of two fundamental hypotheses confirms the recovery of backbone conjugation and optimal utilization of the inductive effect in switched quinones, which affords significantly improved redox chemistry and overall performance compared to reference quinones. Geometric and electronic analyses provide strong evidence for the restored backbone conjugation and nonaromaticity in the switched quinones, while highlighting the reinforcement of the inductive effect and suppression of the resonance effect. This strategic approach facilitates the development of an exceptional quinone, viz. 2,6-naphthoquinone, with outstanding performance parameters (338.9 mAh g-1 and 912.9 mWh g-1). Furthermore, 2,6-anthraquinone with superior cyclic stability, demonstrates comparable performance (257.4 mAh g-1 and 702.8 mWh g-1). These findings offer valuable insights into the design of organic cathode materials with favorable redox chemistry in secondary batteries.
Collapse
Affiliation(s)
- Chae Young Go
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| | - Juyeon Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, The Republic of Korea
| | - Min Kyu Choi
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, The Republic of Korea
| | - Ki Chul Kim
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, The Republic of Korea
| |
Collapse
|
8
|
Ding B, Bhosale M, Bennett TLR, Heeney M, Plasser F, Esser B, Glöcklhofer F. Reducing undesired solubility of squarephaneic tetraimide for use as an organic battery electrode material. Faraday Discuss 2024; 250:129-144. [PMID: 37965707 PMCID: PMC10926975 DOI: 10.1039/d3fd00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 11/16/2023]
Abstract
Locally aromatic alkyl-N-substituted squarephaneic tetraimide (SqTI) conjugated macrocycles are four-electron reducible, owing to global aromaticity and presumed global Baird aromaticity of the dianion and tetraanion states, respectively. However, their good solubility inhibits their application as a battery electrode material. By applying sidechain removal as a strategy to reduce SqTI solubility, we report the development of its unsubstituted derivative SqTI-H, which was obtained directly from squarephaneic tetraanhydride by facile treatment with hexamethyldisilazane and MeOH. Compared to alkyl-N-substituted SqTI-Rs, SqTI-H exhibited further improved thermal stability and low neutral state solubility in most common organic solvents, owing to computationally demonstrated hydrogen-bonding capabilities emanating from each imide position on SqTI-H. Reversible solid state electrochemical reduction of SqTI-H to the globally aromatic dianion state was also observed at -1.25 V vs. Fc/Fc+, which could be further reduced in two stages. Preliminary testing of SqTI-H in composite electrodes for lithium-organic half cells uncovered imperfect cycling performance, which may be explained by persistent solubility of reduced states, necessitating further optimisation of electrode fabrication procedures to attain maximum performance.
Collapse
Affiliation(s)
- Bowen Ding
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Troy L R Bennett
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, UK.
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| |
Collapse
|
9
|
Stawski W, Zhu Y, Wei Z, Petrukhina MA, Anderson HL. Crystallographic evidence for global aromaticity in the di-anion and tetra-anion of a cyclophane hydrocarbon. Chem Sci 2023; 14:14109-14114. [PMID: 38098717 PMCID: PMC10718070 DOI: 10.1039/d3sc04251k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023] Open
Abstract
[24]Paracyclophanetetraene is a classic example of a macrocyclic hydrocarbon that becomes globally aromatic on reduction to the di-anion, and switches to globally anti-aromatic in the tetra-anion. This redox activity makes it promising as an electrode material for batteries. Here, we report the solid-state structures of the di- and tetra-anions of this cyclophane, in several coordination environments. The changes in bond length on reduction yield insights into the global aromaticity of the di-anion (26π electrons), and anti-aromaticity of the tetra-anion (28π electrons), that were previously deduced from NMR spectra of species generated in situ. The experimental geometries of the aromatic di-anion and anti-aromatic tetra-anion from X-ray crystallographic data match well with gas-phase calculated structures, and reproduce the low symmetry expected in the anti-aromatic ring. Comparison of coordinated and naked anions confirms that metal coordination has little effect on the bond lengths. The UV-vis-NIR absorption spectra show a sharp intense peak at 878 nm for the di-anion, whereas the tetra-anion gives a broad spectrum typical of an anti-aromatic system.
Collapse
Affiliation(s)
- Wojciech Stawski
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
10
|
Khanam S, Akram SJ, Khera RA, Zohra ST, Shawky AM, Alatawi NS, Ibrahim MAA, Rashid EU. Exploration of charge transfer analysis and photovoltaics properties of A-D-A type non-fullerene phenazine based molecules to enhance the organic solar cell properties. J Mol Graph Model 2023; 125:108580. [PMID: 37544020 DOI: 10.1016/j.jmgm.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.
Collapse
Affiliation(s)
- Sabiha Khanam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Theoretical Physics IV, University of Bayreuth, Universität straße 30, 95447, Bayreuth, Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sadia Tul Zohra
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
11
|
Deng Q, Zhu J. Adaptive σ aromaticity in the rhenacyclopropene rings. J Comput Chem 2023; 44:2294-2301. [PMID: 37466308 DOI: 10.1002/jcc.27192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Species generally exhibit one-state aromaticity either in the lowest singlet state (S0 ) or the lowest triplet state (T1 ) according to the Hückel's and Baird's rules. Hence, it is rare for species exhibit two-state aromaticity in both the S0 and T1 states (termed as adaptive aromaticity), let alone adaptive σ aromaticity. Here, we report adaptive σ aromaticity in unsaturated rhenacyclopropene rings via density functional theory (DFT) calculations. Various aromaticity indices including NICS, ACID, EDDB together with isodesmic reactions support the adaptive σ aromaticity in these rhenacyclopropene rings. As the T1 state of these species is formed by the ππ* excitation, the σ-aromaticity of these three-membered rings in the S0 state could hold in the T1 state. In addition, the aromaticity effect of the fused rings is also examined. Our findings expand the family of adaptive σ aromaticity, enriching the metallaaromatic chemistry.
Collapse
Affiliation(s)
- Qianqian Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Schneider JS, Krummenacher I, Braunschweig H, Helten H. Linear and macrocyclic oligo( p-phenylene iminoboranes) with ferrocenyl side groups - observation of selective, non-templated macrocyclization. Chem Commun (Camb) 2023. [PMID: 37326423 DOI: 10.1039/d3cc01825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of linear oligo(p-phenylene iminoboranes), which are BN-modified congeners of oligo(p-phenylene vinylenes), featuring pendent ferrocene groups have been prepared. Stoichiometric reaction of a bis-silylamine with a bisborane led to selective formation of an unprecedented macrocycle, without the use of a template.
Collapse
Affiliation(s)
- Johannes S Schneider
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
13
|
Qiao S, Zhou Q, Ma M, Liu HK, Dou SX, Chong S. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries. ACS NANO 2023. [PMID: 37289640 DOI: 10.1021/acsnano.3c02892] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable sodium-ion batteries (SIBs) have been considered as promising energy storage devices owing to the similar "rocking chair" working mechanism as lithium-ion batteries and abundant and low-cost sodium resource. However, the large ionic radius of the Na-ion (1.07 Å) brings a key scientific challenge, restricting the development of electrode materials for SIBs, and the infeasibility of graphite and silicon in reversible Na-ion storage further promotes the investigation of advanced anode materials. Currently, the key issues facing anode materials include sluggish electrochemical kinetics and a large volume expansion. Despite these challenges, substantial conceptual and experimental progress has been made in the past. Herein, we present a brief review of the recent development of intercalation, conversion, alloying, conversion-alloying, and organic anode materials for SIBs. Starting from the historical research progress of anode electrodes, the detailed Na-ion storage mechanism is analyzed. Various optimization strategies to improve the electrochemical properties of anodes are summarized, including phase state adjustment, defect introduction, molecular engineering, nanostructure design, composite construction, heterostructure synthesis, and heteroatom doping. Furthermore, the associated merits and drawbacks of each class of material are outlined, and the challenges and possible future directions for high-performance anode materials are discussed.
Collapse
Affiliation(s)
- Shuangyan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qianwen Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meng Ma
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Hua Kun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, PR China
- Institute for Superconducting and Electronic Materials, Australian Insinuate of Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, PR China
- Institute for Superconducting and Electronic Materials, Australian Insinuate of Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
14
|
Bennett TLR, Marsh AV, Turner JM, Plasser F, Heeney M, Glöcklhofer F. Functionalisation of conjugated macrocycles with type I and II concealed antiaromaticity via cross-coupling reactions. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2023; 8:713-720. [PMID: 37288099 PMCID: PMC10243434 DOI: 10.1039/d3me00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Conjugated macrocycles can exhibit concealed antiaromaticity; that is, despite not being antiaromatic, under specific circumstances, they can display properties typically observed in antiaromatic molecules due to their formal macrocyclic 4n π-electron system. Paracyclophanetetraene (PCT) and its derivatives are prime examples of macrocycles exhibiting this behaviour. In redox reactions and upon photoexcitation, they have been shown to behave like antiaromatic molecules (requiring type I and II concealed antiaromaticity, respectively), with such phenomena showing potential for use in battery electrode materials and other electronic applications. However, further exploration of PCTs has been hindered by the lack of halogenated molecular building blocks that would permit their integration into larger conjugated molecules by cross-coupling reactions. Here, we present two dibrominated PCTs, obtained as a mixture of regioisomers from a three-step synthesis, and demonstrate their functionalisation via Suzuki cross-coupling reactions. Optical, electrochemical, and theoretical studies reveal that aryl substituents can subtly tune the properties and behaviour of PCT, showing that this is a viable strategy in further exploring this promising class of materials.
Collapse
Affiliation(s)
- Troy L R Bennett
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
| | - Adam V Marsh
- KAUST Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - James M Turner
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
- KAUST Solar Center (KSC), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub London UK
| |
Collapse
|
15
|
Rahav Y, Rajagopal SK, Dishi O, Bogoslavsky B, Gidron O. Alternating behavior in furan-acetylene macrocycles reveals the size-dependency of Hückel's rule in neutral molecules. Commun Chem 2023; 6:100. [PMID: 37244950 DOI: 10.1038/s42004-023-00902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
Aromaticity can be assigned by Hückel's rule, which predicts that planar rings with delocalized (4n + 2) π-electrons are aromatic, whereas those with 4n π-electrons are antiaromatic. However, for neutral rings, the maximal value of "n" to which Hückel's rule applies remains unknown. Large macrocycles exhibiting global ring current can serve as models for addressing this question, but the global ring current are often overshadowed in these molecules by the local ring current of the constituent units. Here, we present a series of furan-acetylene macrocycles, ranging from the pentamer to octamer, whose neutral states display alternating contributions from global aromatic and antiaromatic ring currents. We find that the odd-membered macrocycles display global aromatic characteristics, whereas the even-membered macrocycles display contributions from globally antiaromatic ring current. These factors are expressed electronically (oxidation potentials), optically (emission spectra), and magnetically (chemical shifts), and DFT calculations predict global ring current alternations up to 54 π-electrons.
Collapse
Affiliation(s)
- Yuval Rahav
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Shinaj K Rajagopal
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Or Dishi
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Ori Gidron
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
16
|
Sprachmann J, Wachsmuth T, Bhosale M, Burmeister D, Smales GJ, Schmidt M, Kochovski Z, Grabicki N, Wessling R, List-Kratochvil EJW, Esser B, Dumele O. Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. J Am Chem Soc 2023; 145:2840-2851. [PMID: 36701177 DOI: 10.1021/jacs.2c10501] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Tommy Wachsmuth
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Robin Wessling
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany.,Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
17
|
Rajagopal SK, Dishi O, Bogoslavsky B, Gidron O. Transformation of π-conjugated macrocycles: from furanophanes to napthalenophanes. Chem Commun (Camb) 2022; 58:13652-13655. [PMID: 36412186 PMCID: PMC9756652 DOI: 10.1039/d2cc05434e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Applying sequential Diels-Alder cycloaddition and deoxygenation to small π-conjugated furan macrocycles fully converts them to 1,4-naphthalophanes with either ethylene or acetylene spacers, depending on the reaction conditions. 1,4-Napthalenophane tetraene exhibits a 1,3-alternating conformation in the solid state, inclusion of solvent molecules within the macrocycle, and low reduction potentials.
Collapse
Affiliation(s)
- Shinaj K Rajagopal
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Or Dishi
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Benny Bogoslavsky
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Ori Gidron
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
18
|
Zhong S, Zhu L, Wu S, Li Y, Lin M. Photoactive donor-acceptor conjugated macrocycles: New opportunities for supramolecular chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212623. [PMID: 38504923 PMCID: PMC10947162 DOI: 10.1002/ange.202212623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/10/2022]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|
20
|
Eder S, Ding B, Thornton DB, Sammut D, White AJP, Plasser F, Stephens IEL, Heeney M, Mezzavilla S, Glöcklhofer F. Squarephaneic Tetraanhydride: A Conjugated Square-Shaped Cyclophane for the Synthesis of Porous Organic Materials. Angew Chem Int Ed Engl 2022; 61:e202212623. [PMID: 36178733 PMCID: PMC9827958 DOI: 10.1002/anie.202212623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.
Collapse
Affiliation(s)
- Simon Eder
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Bowen Ding
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Daisy B. Thornton
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Darlene Sammut
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Andrew J. P. White
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| | - Ifan E. L. Stephens
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
- The Faraday InstitutionHarwell Science and Innovation CampusDidcotOX11 0RAUK
| | - Martin Heeney
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| | - Stefano Mezzavilla
- Department of MaterialsImperial College LondonRoyal School of MinesLondonSW7 2AZUK
| | - Florian Glöcklhofer
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Centre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
| |
Collapse
|
21
|
Dishi O, Rahav Y, Carmieli R, Gidron O. A Macrocyclic Furan with Accessible Oxidation States: Switching Between Aromatic and Antiaromatic Global Ring Currents. Chemistry 2022; 28:e202202082. [PMID: 35932151 PMCID: PMC9826138 DOI: 10.1002/chem.202202082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Macrocyclic furans are predicted to switch between global aromaticity and antiaromaticity, depending on their oxidation states. However, the macrocyclic furans reported to date are stabilized by electron withdrawing groups, which result in inaccessible oxidation states. To circumvent this problem, a post-macrocyclization approach was applied to introduce methylene-substituted macrocyclic furans, which display an extremely low oxidation potential of -0.23 vs. Fc/Fc+ , and are partially oxidized in ambient conditions. Additional oxidation to the dication results in aromaticity switching to a global 30πe- aromatic state, as indicated by the formation of a strong diatropic current observed in the 1 H NMR spectrum. NICS and ACID calculations support this trend and provide evidence for a different pathway for the global current in the neutral and dicationic states. According to these findings, macrocyclic furans can be rendered as promising p-type materials with stable oxidation states.
Collapse
Affiliation(s)
- Or Dishi
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| | - Yuval Rahav
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| | - Raanan Carmieli
- Chemical Research Support UnitWeizmann Institute of ScienceRehovot7610001Israel
| | - Ori Gidron
- Institute of ChemistryThe Hebrew University of JerusalemEdmond J. Safra CampusJerusalem9190401Israel
| |
Collapse
|
22
|
Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractOrganic electrode materials (OEMs) can deliver remarkable battery performance for metal-ion batteries (MIBs) due to their unique molecular versatility, high flexibility, versatile structures, sustainable organic resources, and low environmental costs. Therefore, OEMs are promising, green alternatives to the traditional inorganic electrode materials used in state-of-the-art lithium-ion batteries. Before OEMs can be widely applied, some inherent issues, such as their low intrinsic electronic conductivity, significant solubility in electrolytes, and large volume change, must be addressed. In this review, the potential roles, energy storage mechanisms, existing challenges, and possible solutions to address these challenges by using molecular and morphological engineering are thoroughly summarized and discussed. Molecular engineering, such as grafting electron-withdrawing or electron-donating functional groups, increasing various redox-active sites, extending conductive networks, and increasing the degree of polymerization, can enhance the electrochemical performance, including its specific capacity (such as the voltage output and the charge transfer number), rate capability, and cycling stability. Morphological engineering facilitates the preparation of different dimensional OEMs (including 0D, 1D, 2D, and 3D OEMs) via bottom-up and top-down methods to enhance their electron/ion diffusion kinetics and stabilize their electrode structure. In summary, molecular and morphological engineering can offer practical paths for developing advanced OEMs that can be applied in next-generation rechargeable MIBs.
Graphical abstract
Collapse
|
23
|
Wypych K, Dimitrova M, Sundholm D, Pawlicki M. Diagnosing Ring Current(s) in Figure-Eight Skeletons: A 3D Through-Space Conjugation in the Two-Loops Crossing. Org Lett 2022; 24:4876-4880. [PMID: 35796415 PMCID: PMC9348834 DOI: 10.1021/acs.orglett.2c01625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The macrocyclic structures
with local conjugation readily undergo
a redox-triggered change in the diatropic character, leading to a
global current–density pathway of the doubly charged systems.
The figure-eight geometry of the neutral dimer does not significantly
change upon oxidation according to the spectroscopic and computational
data. The oxidation leads to 3D cross-conjugation at the intersection
of the two ethylene bridges resulting in a global ring current.
Collapse
Affiliation(s)
- Katarzyna Wypych
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.,Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 503833 Wrocław, Poland
| | - Maria Dimitrova
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Huang T, Zheng R, Chang H, Ma D, Niu H. Green fruit organic primary battery: positive citric acid, negative sodium tert-pentoxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
He D, Liu Y, Fan Y, Dun C, Qiao Y, Chou S. Two-dimensional calcium terephthalate as a low-cost, high-performance anode for sodium-ion batteries. Chem Commun (Camb) 2022; 58:4048-4051. [PMID: 35262104 DOI: 10.1039/d1cc06898a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two-dimensional calcium terephthalate flakes with a thickness of 100-300 nm have been synthesized via adjusting the water : ethanol volume ratio in the solvothermal method. As anodes for sodium-ion batteries, 2D sheet electrodes possess fast kinetics and thus display superior cycling capacity and high-rate capability (195 mA h g-1 at 1000 mA g-1).
Collapse
Affiliation(s)
- Dandan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China. .,School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yangyang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Changwei Dun
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yun Qiao
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, 325035, China.
| |
Collapse
|
26
|
Li Z, Zhang Y, Zhang J, Cao Y, Chen J, Liu H, Wang Y. Sodium-Ion Battery with a Wide Operation-Temperature Range from -70 to 100 °C. Angew Chem Int Ed Engl 2022; 61:e202116930. [PMID: 35044037 DOI: 10.1002/anie.202116930] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Sodium-ion batteries (SIBs), as one of the potential candidates for grid-scale energy storage systems, are required to tackle extreme weather conditions. However, the all-weather SIBs with a wide operation-temperature range are rarely reported. Herein, we propose a wide-temperature range SIB, which involves a carbon-coated Na4 Fe3 (PO4 )2 P2 O7 (NFPP@C) cathode, a bismuth (Bi) anode, and a diglyme-based electrolyte. We demonstrate that solvated Na+ can be directly stored by the Bi anode via an alloying reaction without the de-solvent process. Furthermore, the NFPP@C cathode exhibits a high Na+ diffusion coefficient at low temperature. As a result, the Bi//NFPP@C battery exhibits perfect low-temperature behavior. Even at -70 °C, this battery still delivers 70.19 % of the room-temperature capacity. Furthermore, benefitting from the high boiling point of the electrolyte, this battery also works well at a high temperature of up to 100 °C. These results are encouraging for the further exploration of wide-temperature range SIBs.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yu Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
27
|
Pletzer M, Plasser F, Rimmele M, Heeney M, Glöcklhofer F. [2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly( p‑phenylene vinylene)s (PPVs). OPEN RESEARCH EUROPE 2022; 1:111. [PMID: 37645175 PMCID: PMC10445936 DOI: 10.12688/openreseurope.13723.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 08/31/2023]
Abstract
Background: Poly( p-phenylene vinylene)s ( PPVs) and [2.2.2.2]paracyclophanetetraene ( PCT) are both composed of alternating π-conjugated para-phenylene and vinylene units. However, while the former constitute a class of π-conjugated polymers that has been used in organic electronics for decades, the latter is a macrocycle that only recently revealed its potential for applications such as organic battery electrodes. The cyclic structure endows PCT with unusual properties, and further tuning of these may be required for specific applications. Methods: In this article, we adopt an approach often used for tuning the properties of PPVs, the introduction of alkoxy (or alkylthio) substituents at the phenylene units, for tuning the optoelectronic properties of PCT. The resulting methoxy- and methylthio-substituted PCTs, obtained by Wittig cyclisation reactions, are studied by UV-vis absorption, photoluminescence, and cyclic voltammetry measurements, and investigated computationally using the visualisation of chemical shielding tensors (VIST) method. Results: The measurements show that substitution leads to slight changes in terms of absorption/emission energies and redox potentials while having a pronounced effect on the photoluminescence intensity. The computations show the effect of the substituents on the ring currents and chemical shielding and on the associated local and global (anti)aromaticity of the macrocycles, highlighting the interplay of local and global aromaticity in various electronic states. Conclusions: The study offers interesting insights into the tuneability of the properties of this versatile class of π-conjugated macrocycles.
Collapse
Affiliation(s)
- Matthias Pletzer
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Martina Rimmele
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Florian Glöcklhofer
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
28
|
Sheppard SA, Bennett TLR, Long NJ. Development and Characterisation of Highly‐Conjugated Functionalised Ferrocenylene Macrocycles. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Nicholas James Long
- Imperial College of Science Dept. of Chemistry South Kensington SW7 2AZ London UNITED KINGDOM
| |
Collapse
|
29
|
Li Z, Zhang Y, Zhang J, Cao Y, Chen J, Liu H, Wang Y. Sodium‐Ion Battery with a Wide Operation‐Temperature Range from −70 to 100 °C. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yu Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
30
|
Wang LY, Ma C, Hou CC, Wei X, Wang KX, Chen JS. Construction of Large Non-Localized π-Electron System for Enhanced Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105825. [PMID: 34889023 DOI: 10.1002/smll.202105825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Organic electrode materials with the advantages of renewability, environment-friendliness, low cost, and high capacity have received widespread attention in recent years for sodium-ion batteries. However, small molecular organic materials suffer from issues such as low conductivity and the high dissolution rate in electrolytes. Herein, a phthalocyanine derivative (TPcDS) with a large non-localized π-electron system, obtained through thermodynamic polymerization of 4-aminophthalonitrile (AP) monomers, is designed to address these issues. According to the density function theory calculation, six sodium ions can be attracted by one polymer molecule, indicating a high theoretical capacity of 375 mA h g-1 . The TPcDS molecule realizes sodium storage through a non-localized π-electron system of phthalocyanine macrocycles. When employed as an anode material for sodium-ion batteries, the functional groups of phthalocyanine macrocycles, such as CN groups in TPcDS, experience obviously reversible structural variation upon discharge/charge. A high reversible capacity of 364 mAh g-1 is achieved at a current density of 0.05 A g-1 , and a charge capacity of as high as 246 mAh g-1 is still maintained after 500 cycles at 0.1 A g-1 . This work provides an effective strategy for the design and synthesis of new oligomeric organic electrode materials.
Collapse
Affiliation(s)
- Liang-Yu Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Ma
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng-Cheng Hou
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Wei
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Dutta A, Stawski W, Kijewska M, Pawlicki M. Edge Decoration of Anthracene Switches Global Diatropic Current That Controls the Acene Reactivity. Org Lett 2021; 23:9436-9440. [PMID: 34870434 PMCID: PMC8689655 DOI: 10.1021/acs.orglett.1c03605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The 14π-electron
system of anthracene has been merged with
the unsaturated Z-1,2-difurylethene to form a macrocycle(s)
with the retained local conjugation of all incorporated subunits that
were substantially modulated with a redox activation, opening a global
delocalization involving all integrated aromatics. In addition, the
edge modulation of acene via the attachment of a specific isomer of
the conjugated system gives steric confinements that are characteristic
of small macrocycles, forcing substantially short C(H)···O
electrostatic interactions that are documented spectroscopically with
the support of X-ray analysis.
Collapse
Affiliation(s)
- Arnab Dutta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Stawski
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383 Wrocław, Poland
| | - Monika Kijewska
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383 Wrocław, Poland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
32
|
Rimmele M, Nogala W, Seif-Eddine M, Roessler MM, Heeney M, Plasser F, Glöcklhofer F. Functional group introduction and aromatic unit variation in a set of π-conjugated macrocycles: revealing the central role of local and global aromaticity. Org Chem Front 2021; 8:4730-4745. [PMID: 34484800 PMCID: PMC8382046 DOI: 10.1039/d1qo00901j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
π-Conjugated macrocycles are molecules with unique properties that are increasingly exploited for applications and the question of whether they can sustain global aromatic or antiaromatic ring currents is particularly intriguing. However, there are only a small number of experimental studies that investigate how the properties of π-conjugated macrocycles evolve with systematic structural changes. Here, we present such a systematic experimental study of a set of [2.2.2.2]cyclophanetetraenes, all with formally Hückel antiaromatic ground states, and combine it with an in-depth computational analysis. The study reveals the central role of local and global aromaticity for rationalizing the observed optoelectronic properties, ranging from extremely large Stokes shifts of up to 1.6 eV to reversible fourfold reduction, a highly useful feature for charge storage/accumulation applications. A recently developed method for the visualization of chemical shielding tensors (VIST) is applied to provide unique insight into local and global ring currents occurring in different planes along the macrocycle. Conformational changes as a result of the structural variations can further explain some of the observations. The study contributes to the development of structure-property relationships and molecular design guidelines and will help to understand, rationalize, and predict the properties of other π-conjugated macrocycles. It will also assist in the design of macrocycle-based supramolecular elements with defined properties.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry, Imperial College London London W12 0BZ UK .,Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Maxie M Roessler
- Department of Chemistry, Imperial College London London W12 0BZ UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London London W12 0BZ UK .,Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| | - Florian Glöcklhofer
- Department of Chemistry, Imperial College London London W12 0BZ UK .,Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| |
Collapse
|
33
|
Ueda H, Yoshimoto S. Multi-Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. CHEM REC 2021; 21:2411-2429. [PMID: 34128316 DOI: 10.1002/tcr.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Precise control over redox properties is essential for high-performance organic electronic devices such as organic batteries, electrochromic devices, and information storage devices. In this context, multi-redox active carbons and hydrocarbons, represented as Cx Hy molecules (x≥1, y≥0), are highly sought after, because they can switch between multiple redox states. Herein, we outline the redox properties of Cx Hy molecules as solutes and adsorbed species. Furthermore, the limitations of evaluating their redox properties and the possible solutions are summarized. Additionally, the theoretical capacity (mAh/g) and gravimetric energy density (Wh/kg) of secondary batteries were estimated based on the redox properties of 185 Cx Hy molecules, which have primarily been reported in the last decade. Among them, seven Cx Hy molecules were found to have the potential to surpass the energy density of LiNi0.6 Mn0.2 Co0.2 O2 /graphite batteries. The use of Cx Hy molecules in multielectrochromic devices and multi-bit memory is also explained. We believe that this review will encourage further utilization of Cx Hy molecules thereby promoting its applications in organic electronic devices.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
34
|
Fan C, Sun B, Li Z, Shi J, Lin T, Fan J, Shi Z. On-Surface Synthesis of Giant Conjugated Macrocycles. Angew Chem Int Ed Engl 2021; 60:13896-13899. [PMID: 33851507 DOI: 10.1002/anie.202104090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/11/2022]
Abstract
We have achieved an on-surface synthesis of giant conjugated macrocycles having a diameter of ≈7 nm and consisting of up to 30 subunits. The synthesis started with a debrominative coupling of the molecular precursors on a hot Ag(111) surface, leading to the formation of arched oligomeric chains and macrocycles. These products were revealed by scanning tunneling microscopy in combination with density functional theory to be covalent oligomers. These intermediates also display C-Ag organometallic bonds between parallel molecular subunits due to site-selective debromination and the asymmetric molecular conformation. Subsequent cyclodehydrogenation at higher temperatures steered the final conjugation of the macrocycles. Our findings provide a novel design strategy toward π-conjugated macrocycles and open up new opportunities for the precise synthesis of organic nanostructures.
Collapse
Affiliation(s)
- Cunrui Fan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhanbo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiwei Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
35
|
Fan C, Sun B, Li Z, Shi J, Lin T, Fan J, Shi Z. On‐Surface Synthesis of Giant Conjugated Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cunrui Fan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Zhanbo Li
- College of New Materials and New Energies Shenzhen Technology University Shenzhen 518118 China
| | - Jiwei Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| | - Tao Lin
- College of New Materials and New Energies Shenzhen Technology University Shenzhen 518118 China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| |
Collapse
|
36
|
Plasser F, Glöcklhofer F. Visualisation of Chemical Shielding Tensors (VIST) to Elucidate Aromaticity and Antiaromaticity. European J Org Chem 2021; 2021:2529-2539. [PMID: 34248413 PMCID: PMC8251739 DOI: 10.1002/ejoc.202100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/01/2021] [Indexed: 01/25/2023]
Abstract
Aromaticity is a central concept in chemistry, pervading areas from biochemistry to materials science. Recently, chemists also started to exploit intricate phenomena such as the interplay of local and global (anti)aromaticity or aromaticity in non-planar systems and three dimensions. These phenomena pose new challenges in terms of our fundamental understanding and the practical visualisation of aromaticity. To overcome these challenges, a method for the visualisation of chemical shielding tensors (VIST) is developed here that allows for a 3D visualisation with quantitative information about the local variations and anisotropy of the chemical shielding. After exemplifying the method in different planar hydrocarbons, we study two non-planar macrocycles to show the unique benefits of the VIST method for molecules with competing π-conjugated systems and conclude with a norcorrole dimer showing clear evidence of through-space aromaticity. We believe that the VIST method will be a highly valuable addition to the computational toolbox.
Collapse
Affiliation(s)
- Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUnited Kingdom
| | - Florian Glöcklhofer
- Department of Chemistry andCentre for Processable ElectronicsImperial College LondonMolecular Sciences Research HubLondonW12 0BZUnited Kingdom
| |
Collapse
|
37
|
Xin W, Chen N, Wei Z, Wang C, Chen G, Du F. Self-Assembled FeSe 2 Microspheres with High-Rate Capability and Long-Term Stability as Anode Material for Sodium- and Potassium-Ion Batteries. Chemistry 2021; 27:3745-3752. [PMID: 33135204 DOI: 10.1002/chem.202004069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 11/05/2022]
Abstract
Sodium- and potassium-ion batteries have attracted intensive attention recently as low-cost alternatives to lithium-ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g-1 at a current rate of 0.1 A g-1 and a remarkable rate performance with a capacity of 525 mA h g-1 at 20 A g-1 . As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g-1 at 0.4 A g-1 . Even at a high current rate of 5 A g-1 , a discharge capacity of 322 mA h g-1 can be achieved, which is among the best high-rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether-based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.
Collapse
Affiliation(s)
- Wen Xin
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| | - Nan Chen
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| | - Zhixuan Wei
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| | - Chunzhong Wang
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| | - Gang Chen
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| | - Fei Du
- Key Laboratory of Physics and Technology for, Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P.R. China
| |
Collapse
|
38
|
Varni AJ, Kawakami M, Tristram-Nagle SA, Yaron D, Kowalewski T, Noonan KJT. Design, synthesis, and properties of a six-membered oligofuran macrocycle. Org Chem Front 2021. [DOI: 10.1039/d1qo00084e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, the synthesis and properties of an ester-functionalized macrocyclic sexifuran (C6FE) are presented.
Collapse
Affiliation(s)
| | - Manami Kawakami
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | | | - David Yaron
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | | | | |
Collapse
|
39
|
Eder S, Yoo DJ, Nogala W, Pletzer M, Santana Bonilla A, White AJP, Jelfs KE, Heeney M, Choi JW, Glöcklhofer F. Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. Angew Chem Int Ed Engl 2020; 59:12958-12964. [PMID: 32368821 PMCID: PMC7496320 DOI: 10.1002/anie.202003386] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 11/06/2022]
Abstract
Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.
Collapse
Affiliation(s)
- Simon Eder
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Dong-Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Matthias Pletzer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Alejandro Santana Bonilla
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|