1
|
Shimoyama D, Sekiya R, Inoue S, Hisano N, Tate SI, Haino T. Conformation Regulation of Trisresorcinarene Directed by Cavity Solvation. Chemistry 2024:e202402922. [PMID: 39215609 DOI: 10.1002/chem.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
This compound is a synthetic macrocycle comprising three pivaloyl-protected resorcinarene units connected by six pentylene chains. We conducted a conformational study using 1H-NMR, X-ray diffraction (XRD), and computational analyses. The macrocycle adopts two conformers, one open, the other closed. The ratio of the open to closed forms depended on the solvent used. Only the open form existed in [D8]toluene, both forms coexisted in [D6]benzene, and the closed form was the major conformer in [D1]chloroform. The benzene-solvated open form observed in the solid state suggests that cavity solvation by solvent molecules directs the open form. The open form was the major or only conformer in [D10]o- and [D10]m-xylene and [D12]mesitylene, whereas the closed form was the major conformer in [D6]acetone. The open and closed forms were equally populated in [D10]p-xylene, suggesting that the size, shape, and dimensions of the solvent molecules most likely influenced the conformation of the protected trisresocinarene.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Shoichiro Inoue
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Tang C, Han H, Zhang R, de Moraes LS, Qi Y, Wu G, Jones CG, Rodriguez IH, Jiao Y, Liu W, Li X, Chen H, Bancroft L, Zhao X, Stern CL, Guo QH, Krzyaniak MD, Wasielewski MR, Nelson HM, Li P, Stoddart JF. A Geometrically Flexible Three-Dimensional Nanocarbon. J Am Chem Soc 2024; 146:20158-20167. [PMID: 38978232 DOI: 10.1021/jacs.4c05189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, GFN-1, with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of GFN-1 has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of GFN-1, along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. GFN-1 exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.
Collapse
Affiliation(s)
- Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lygia S de Moraes
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher G Jones
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Hernandez Rodriguez
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Laura Bancroft
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Penghao Li
- Department of Chemistry & Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Nian H, Wang SM, Wang YF, Zheng YT, Zheng LS, Wang X, Yang LP, Jiang W, Cao L. Selective recognition and enrichment of C 70 over C 60 using an anthracene-based nanotube. Chem Sci 2024; 15:10214-10220. [PMID: 38966364 PMCID: PMC11220584 DOI: 10.1039/d4sc02814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Selective recognition and enrichment of fullerenes (e.g., C60 and C70) remains challenging due to the same diameter and geometrical similarity. Herein, we report a hexagonal anthracene-based nanotube (1) through a one-pot Suzuki-Miyaura cross-coupling reaction. With anthracene-based side walls and pyridine linkers, 1 features a nano-scale tubular cavity measuring 1.2 nm in diameter and 0.9 nm in depth, along with pH-responsive properties. Interestingly, the electron-rich 1 shows high binding affinity (K a ≈ 106 M-1) and selectivity (K s ≈ 140) to C70 over C60 in toluene, resulting from their different contribution of π-π interactions with the host. The protonation of 1 simultaneously alters the electronic properties within the nanotube, resulting in the release of the fullerene guests. Lastly, the selective recognition and pH stimuli-responsive properties of the nanotube have been utilized to enrich C70 from its low-content mixtures of fullerenes in chloroform.
Collapse
Affiliation(s)
- Hao Nian
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 P. R. China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Yan-Fang Wang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Yu-Tao Zheng
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Li-Shuo Zheng
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xiaoping Wang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, University of South China Hengyang Hunan 421001 China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
4
|
Kumari A, Kumar Mondal P, Verma P, Mahato P, S S, Mandal K, Polentarutti M, Lakshmanna Yapamanu A, Sankar J. A Bis-Porphyrin Cavitand Breathing-In to Constrict Bucky Balls. Chemistry 2024; 30:e202401284. [PMID: 38642344 DOI: 10.1002/chem.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/22/2024]
Abstract
Bis-porphyrin cages have long been exploited to bind fullerenes selectively for various applications. The major consideration for an effective binding here had been the cavity size. Herein, we structurally demonstrate that a bis-Ni-porphyrin cavitand having even a smaller cavity can host a larger fullerene by a breathing and ruffling mechanism. It has also been shown that both the electronic and steric influence at the meso- positions of the porphyrin in fact dictate the binding character. The smaller cavity of 2NiD exhibits preferential binding for C70 over C60; however, surprisingly, the larger cavities in 2HD and 2NiTD display stronger affinities for C60 over the larger fullerene. We show here that the structural elasticity infused both by the metalloporphyrins and the connecting bridges play a major role in directing the binding. These conclusions have adequately been supported by structural and spectroscopic investigations. Additionally, the suitability of one of the conjugates for photoinduced charge-separation has been investigated using ultrafast transient absorption measurements. 2NiD⊃C60 has a charge separation timescale of ~0.8 ps, while charge recombination occurs at a longer timescale of ~920 ps.
Collapse
Affiliation(s)
- Anupam Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India -, 462066
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Preetika Verma
- School of Chemical Sciences, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India -, 695551
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India -, 462066
| | - Sujesh S
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India -, 462066
| | - Koushik Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India -, 462066
| | - Maurizio Polentarutti
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Adithya Lakshmanna Yapamanu
- School of Chemical Sciences, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India -, 695551
| | - Jeyaraman Sankar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India -, 462066
| |
Collapse
|
5
|
Liu J, Hong J, Liao Z, Tan J, Liu H, Dmitrieva E, Zhou L, Ren J, Cao XY, Popov AA, Zou Y, Narita A, Hu Y. Negatively Curved Octagon-Incorporated Aza-nanographene and its Assembly with Fullerenes. Angew Chem Int Ed Engl 2024; 63:e202400172. [PMID: 38345140 DOI: 10.1002/anie.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 03/01/2024]
Abstract
A negatively curved aza-nanographene (NG) containing two octagons was synthesized by a regioselective and stepwise cyclodehydrogenation procedure, in which a double aza[7]helicene was simultaneously formed as an intermediate. Their saddle-shaped structures with negative curvature were unambiguously confirmed by X-ray crystallography, thereby enabling the exploration of the structure-property relationship by photophysical, electrochemical and conformational studies. Moreover, the assembly of the octagon-embedded aza-NG with fullerenes was probed by fluorescence spectral titration, with record-high binding constants (Ka=9.5×103 M-1 with C60, Ka=3.7×104 M-1 with C70) found among reported negatively curved polycyclic aromatic compounds. The tight association of aza-NG with C60 was further elucidated by X-ray diffraction analysis of their co-crystal, which showed the formation of a 1 : 1 complex with substantial concave-convex interactions.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Juan Hong
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zhenxing Liao
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jingyun Tan
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Haoliang Liu
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Evgenia Dmitrieva
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiao-Yu Cao
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Alexey A Popov
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| |
Collapse
|
6
|
He H, Lee YJ, Zong Z, Liu N, Lynch VM, Kim J, Oh J, Kim D, Sessler JL, Ke XS. Nanographene-Fused Expanded Carbaporphyrin Tweezers. J Am Chem Soc 2024; 146:543-551. [PMID: 38147538 DOI: 10.1021/jacs.3c10122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A nanographene-fused expanded carbaporphyrin (5) and its BF2 complex (6) were synthesized. Single-crystal X-ray structures revealed that 5 and 6 are connected by two hexa-peri-hexabenzocoronene (HBC) units and two dipyrromethene or BODIPY units, respectively. As prepared, 5 and 6 both show nonaromatic character with figure-of-eight carbaoctaphyrin (1.1.1.0.1.1.1.0) cores and adopt tweezers-like conformations characterized by a partially confined space between the two constituent HBC units. The distance between the HBC centers is >10 Å, while the dihedral angles between the two HBC planes are 30.5 and 35.2° for 5 and 6, respectively. The interactions between 5 and 6 and fullerene C60 were studied both in organic media and in the solid state. Proton NMR spectral titrations of 5 and 6 with C60 revealed a 1:1 binding mode for both macrocycles. In toluene-d8, the corresponding binding constants were determined to be 1141 ± 17 and 994 ± 10 M-1 for 5 and 6, respectively. Single-crystal X-ray diffraction structural analyses confirmed the formation of 1:1 fullerene inclusion complexes in the solid state. The C60 guests in both complexes are found within triangular pockets composed of two HBC units from the tweezers-like receptor most closely associated with the bound fullerene, as well as an HBC unit from an adjacent host. Femtosecond transient absorption measurements revealed subpicosecond ultrafast charge separation between 5 (and 6) and C60 in the complexes. To the best of our knowledge, the present report provides the first example wherein a nanographene building block is incorporated into the core of a porphyrinic framework.
Collapse
Affiliation(s)
- Haodan He
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yu Jin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Zhaohui Zong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ningchao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xian-Sheng Ke
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
David AG, Mañas-Torres MC, Codesal MD, López-Sicilia I, Martín-Romero MT, Camacho L, Cuerva JM, Blanco V, Giner-Casares JJ, Álvarez de Cienfuegos L, Campaña AG. Supramolecular Large Nanosheets Assembled at Air/Water Interfaces and in Solution from Amphiphilic Heptagon-Containing Nanographenes. J Org Chem 2024; 89:163-173. [PMID: 38087461 PMCID: PMC10777395 DOI: 10.1021/acs.joc.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
We report the synthesis of a new set of amphiphilic saddle-shaped heptagon-containing polycyclic aromatic hydrocarbons (PAHs) functionalized with tetraethylene glycol chains and their self-assembly into large two-dimensional (2D) polymers. An in-depth analysis of the self-assembly mechanism at the air/water interface has been carried out, and the proposed arrangement models are in good agreement with the molecular dynamics simulations. Quite remarkably, the number and disposition of the tetraethylene glycol chains significantly influence the disposition of the PAHs at the interface and conditionate their packing under pressure. For the three compounds studied, we observed three different behaviors in which the aromatic core is parallel, perpendicular, and tilted with respect to the water surface. We also show that these curved PAHs are able to self-assemble in solution into remarkably large sheets of up to 150 μm2. These results show the relationship, within a family of curved nanographenes, between the monomer configuration and their self-assembly capacity in air/water interfaces and organic-water mixtures.
Collapse
Affiliation(s)
- Arthur
H. G. David
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Mari C. Mañas-Torres
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Marcos D. Codesal
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Irene López-Sicilia
- Departamento
de Química Física y T. Aplicada, Instituto Químico
para la Energía y Medioambiente IQUEMA, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - María T. Martín-Romero
- Departamento
de Química Física y T. Aplicada, Instituto Químico
para la Energía y Medioambiente IQUEMA, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Camacho
- Departamento
de Química Física y T. Aplicada, Instituto Químico
para la Energía y Medioambiente IQUEMA, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Victor Blanco
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Juan J. Giner-Casares
- Departamento
de Química Física y T. Aplicada, Instituto Químico
para la Energía y Medioambiente IQUEMA, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| | - Araceli G. Campaña
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada, Avda. Fuente Nueva, s/n, 18071 Granada, Spain
| |
Collapse
|
8
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
9
|
Qin L, Huang YY, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang XS, Wu K, Zhang D. Diazulenorubicene as a Non-benzenoid Isomer of peri-Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties. Angew Chem Int Ed Engl 2023; 62:e202304632. [PMID: 37338996 DOI: 10.1002/anie.202304632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2 V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jinliang Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zheng Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Shu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiong Zhou
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Huseynzada A, Aghayev M, Hajiyeva S, Israyilova A, Sayin K, Gasimov E, Rzayev F, Hasanova U, Eyvazova G, Abbasov V, Gakhramanova Z, Huseynova S, Huseynova P, Huseynova L, Salimova N. Synthesis, nanostructuring and in silico studies of a new imine bond containing a macroheterocycle as a promising PBP-2a non-β-lactam inhibitor. J Mater Chem B 2023; 11:8271-8280. [PMID: 37581615 DOI: 10.1039/d3tb00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
This study is devoted to the synthesis of a 40-membered macroheterocycle with its further nanostructuring by magnetite nanoparticles. The mentioned macroheterocycle was synthesized by the [2+2] cyclocondensation of the oxygen-containing diamine with an aromatic dialdehyde in a non-catalytic medium and with no work-up procedure. The structure of the obtained macroheterocycle was studied by 1H and 13C nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Furthermore, the nanosupramolecular complex of macroheterocycles with magnetite nanoparticles was obtained and investigated by Fourier-transform infrared and ultraviolet-visible spectroscopy methods. Shifts in the infrared spectra of the nanosupramolecular complex indicate the interaction through metal-aromatic ring non-covalent bonding. The shift is also observed for the C-O-C stretching band of ether bonds. The loading rate of macroheterocycles on magnetite nanoparticles was 18.6%. The morphology of the ensemble was studied by transmission electron microscopy, which confirmed the synthesis of nanospherical particles with a diameter range of 10-20 nm. Powder X-ray diffraction analysis showed patterns of cubic Fe3O4 nanoparticles with a crystallite size equal to 9.1 nm. The macroheterocycle and its nanosupramolecular complex were tested against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. The results have shown that the created complex has shown 64 times better activity against Staphylococcus aureus in comparison with the individual macroheterocycle and 32 times better activity in comparison with the pristine antibiotic Ampicillin as a control. In addition, computational analysis of the macroheterocycle was performed at the B3LYP/6-31G level in water. Molecular docking analyses for the macroheterocycle revealed Penicillin-binding protein PBP2a (5M18) from the transpeptidase family as a target protein in Staphylococcus aureus.
Collapse
Affiliation(s)
- Alakbar Huseynzada
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Chemistry Department, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku, AZ 1009, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St, OH-44, Rootstown, OH 44272, USA
| | - Sarvinaz Hajiyeva
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- Physics Department, Kent State University, 800 E. Summit St., Kent, OH 44242, USA
| | - Aygun Israyilova
- Laboratory of Microbiology and Virology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Research Institute of Crop Husbandry, Ministry of Agriculture, Baku, AZ 1098, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Koray Sayin
- Chemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Eldar Gasimov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Fuad Rzayev
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Ulviyya Hasanova
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Goncha Eyvazova
- Nanoresearch Center, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Vagif Abbasov
- Institute of Petrochemical Processes, K. Avenue 30, Baku, AZ 1005, Azerbaijan
| | - Zarema Gakhramanova
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
| | - Sanam Huseynova
- Department of Molecular Biology and Biotechnology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Parvana Huseynova
- Chemistry Department, Ganja State University, H. Aliyev 429, Ganja, AZ 2001, Azerbaijan
| | - Lala Huseynova
- Industrial Safety and Labor Protection Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| | - Nigar Salimova
- Petrochemical Technology and Industrial Ecology Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| |
Collapse
|
11
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
12
|
Hisada M, Shimizu D, Matsuda K. Heptagon-Embedded π-Expanded Thieno- and N-Methylpyrrolo-Pyridazines with Substantial Out-of-Plane Dipole Moment. J Org Chem 2022; 87:9034-9043. [PMID: 35749313 DOI: 10.1021/acs.joc.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the synthesis and characterization of fully fused tetraphenylthieno[3,4-d]pyridazine 1 and N-methylpyrrolo[3,4-d]pyridazine 2 with two embedded seven-membered rings. Owing to the incorporated heptagon, 1 and 2 exhibited Cs-symmetric saddle conformations in the solid state with mean plane deviation around 0.38 Å. π-Expanded thienopyridazine 1 showed a one-dimensional (1-D) columnar packing along the b axis with net dipole moment aligning perpendicular to the b axis in the polar crystal system Pc. On the other hand, 2 formed a partially π-stacked brick-work structure. In addition to the Cs-symmetric saddle conformations found in the crystals, density functional theory (DFT) calculation found C2-symmetric twisted conformations of both 1 and 2 close in energy to the saddle conformations. The barrier of conformational interconversion was calculated to be 32 (1) and 31 kJ·mol-1 (2), and the interconversion occurs fast even at -60 °C as evidenced by variable-temperature (VT)-NMR studies. While 1 and 2 have moderately curved structures, optical and electrochemical studies revealed effective π-conjugation over the fused diphenylene units, which is also supported by DFT calculation. As the result of the intrinsic large dipole moment of thieno- and pyrrolo-pyridazines and the notably curved structure, 1 (2) has a substantial out-of-plane dipole moment of 2.0 (3.3) D in the saddle conformations.
Collapse
Affiliation(s)
- Masato Hisada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
13
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
14
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual‐Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| |
Collapse
|
15
|
Vasylevskyi SI, Raffy G, Salentinig S, Del Guerzo A, Fromm KM, Bassani DM. Multifunctional Anthracene-Based Ni-MOF with Encapsulated Fullerenes: Polarized Fluorescence Emission and Selective Separation of C 70 from C 60. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1397-1403. [PMID: 34967204 DOI: 10.1021/acsami.1c19141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an anthracene-based Ni-MOF [Ni(II) metal-organic framework, {[Ni(μ2-L)2Cl2]·x(C6H6)·y(MeOH)}n (1), L = anthracene-9,10-diylbis(methylene)diisonicotinate] whose crystal structure reveals the presence of hexagonal channels with a pore size of 1.4 nm that can accommodate guests such as C60 and C70. Both confocal fluorescence and Raman microscopy results are in agreement with a homogeneous distribution of fullerenes throughout the single crystals of 1. Efficient energy transfer from 1 to the fullerenes was observed, which emitted partially polarized fluorescence emission. Stronger binding between 1 and C70 versus C60 was confirmed from HPLC analysis of the dissolved material and provides a basis for the selective retention of C70 in liquid chromatography columns packed with 1.
Collapse
Affiliation(s)
- Serhii I Vasylevskyi
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Guillaume Raffy
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Stefan Salentinig
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - André Del Guerzo
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Katharina M Fromm
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - Dario M Bassani
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| |
Collapse
|
16
|
Chen H, Xia Z, Miao Q. Synthesis, Aromatization and Cavitates of an Oxanorbornene-Fused Dibenzo[de, qr]tetracene Nanobox. Chem Sci 2022; 13:2280-2285. [PMID: 35310504 PMCID: PMC8864699 DOI: 10.1039/d1sc06553j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Oxanorbornene-fused double-stranded macrocycles, represented by kohnkene, are not only synthetic precursors toward short segments of zigzag carbon nanotubes but also typical cavitands processing an intrinsic cavity. However, their capability to bind guest molecules in solution remained unexplored. Herein we report a new member of oxanorbornene-fused double-stranded macrocycles, which is named a nanobox herein because of its shape. Reductive aromatization of this oxanorbornene-fused nanobox leads to observation of a new zigzag carbon nanobelt by high resolution mass spectroscopy. The fluorescence titration and NMR experiments indicate that this nanobox encapsulates C70 in solution with a binding constant of (3.2 ± 0.1) × 106 M−1 in toluene and a high selectivity against C60 and its derivatives. As found from the X-ray crystallographic analysis, this nanobox changes the shape of its cross-section from a rhombus to nearly a square upon accommodating C60. A new oxanorbornene-fused nanobox encapsulated C70 selectively in solution with a binding constant of (3.2 ± 0.1) × 106 M−1. Reductive aromatization of this nanobox led to observation of a new zigzag carbon nanobelt by mass spectroscopy.![]()
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong China
| | - Zeming Xia
- Department of Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong China
| |
Collapse
|
17
|
Zhu J, Li W, Zhang N, An D, Zhao Y, Lu X, Liu Y. Size-dependent properties and unusual reactivity of novel nonplanar heterocycloarenes. Chem Sci 2022; 13:11174-11182. [PMID: 36320458 PMCID: PMC9516946 DOI: 10.1039/d2sc03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
The solution-phase synthesis of (hetero)cycloarenes with a well-defined size and geometric structure remains a challenging topic in organic chemistry and materials science. Herein, two novel nonplanar N,S-heterocycloarenes (PTZ1 and PTZ2) containing two/three alternate phenothiazine-co-phenanthrene units were conveniently synthesized. The smaller size heterocycloarene PTZ1 adopts a unique butterfly-shaped geometry and shows moderate supramolecular host–guest interactions with both fullerenes C60 and C70; whereas the higher homologue PTZ2 has a saddle-shaped conformation and demonstrates no obvious encapsulation with C60 or C70. Meanwhile, benefiting from the relatively ordered molecular packing, the thin film of PTZ1 behaved as a p-type semiconductor, while the more distorted PTZ2 does not display any field-effect characteristics. Particularly, upon the oxidation of heterocycloarene PTZ1 by Oxone, an unusual bis(sulfone-co-orthoquinone) product PTZ1-Oxi with an arc-shaped geometry is obtained and identified by single-crystal X-ray analysis. Our findings markedly expand the known chemistry of (hetero)cycloarenes and open a new path for their further functionalization. Two novel fully fused heterocycloarenes consisting of nonplanar phenothiazine building units have been designed and successfully synthesized, which show size-dependent properties and unusual reactivity.![]()
Collapse
Affiliation(s)
- Jiangyu Zhu
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Wenhao Li
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Ning Zhang
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Dongyue An
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Yan Zhao
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Xuefeng Lu
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Yunqi Liu
- Department of Materials Science, Fudan University Shanghai 200433 China
| |
Collapse
|
18
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual-Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2021; 61:e202113914. [PMID: 34796586 DOI: 10.1002/anie.202113914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/08/2022]
Abstract
New C3 -symmetric imidazole ligands were designed with phosphine and phosphine oxide linkers (LP and LPO , respectively) to demonstrate a dual-triggered dynamic closed coordination cage. Both LP and LPO form discrete Zn4 L4 -closed cages (1P and 1PO , respectively) with excellent selectively for BPh4 - , whereas 1P and 1PO encapsulate neither a slightly larger size anion [B(C6 H4 CH3 )4 - ] nor smaller size anions (BF4 - , PF6 - , SbF6 - , and OSO2 CF3 - ). 1PO exhibits more negative enthalpy and entropy changes upon anion encapsulation, thus releasing almost all of the encapsulated anions at high temperature (343 K) (trigger 1: BPh4 - ⊂1PO ← → 1PO +BPh4 - ). In contrast 1P has less negative enthalpy and entropy changes, thus preserving the captured anion over a wide range of temperatures (298 K to 343 K). The 1P cage can be quantitatively oxidized to the 1PO cage by a mild oxidant (Ox.=H2 O2 ), and therefore the captured anion can be released by a redox triggering event (trigger 2: BPh4 - ⊂1P +Ox.→1PO +BPh4 - ).
Collapse
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
19
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|
20
|
Zhou L, Sun M, Zhou F, Deng G, Yang Y, Liang Y. Atmosphere-Controlled Palladium-Catalyzed Divergent Decarboxylative Cyclization of 2-Iodobiphenyls and α-Oxocarboxylic Acids. Org Lett 2021; 23:7150-7155. [PMID: 34463519 DOI: 10.1021/acs.orglett.1c02559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel palladium-catalyzed divergent decarboxylative cyclization of 2-iodobiphenyls and α-oxocarboxylic acids utilizing the atmosphere as a controlled switch is reported. Under the protection of a nitrogen atmosphere, tribenzotropones are synthesized by a [4 + 3] decarboxylative cyclization. Employing a palladium/O2 system enables a [4 + 2] decarboxylative cyclization to assemble triphenylenes. Notably, preliminary mechanistic studies indicate that the formation of triphenylenes involves a double decarboxylation.
Collapse
Affiliation(s)
- Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Mingjie Sun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Fengru Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
21
|
Wu H, Wang Y, Song B, Wang HJ, Zhou J, Sun Y, Jones LO, Liu W, Zhang L, Zhang X, Cai K, Chen XY, Stern CL, Wei J, Farha OK, Anna JM, Schatz GC, Liu Y, Fraser Stoddart J. A contorted nanographene shelter. Nat Commun 2021; 12:5191. [PMID: 34465772 PMCID: PMC8408160 DOI: 10.1038/s41467-021-25255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nanographenes have kindled considerable interest in the fields of materials science and supramolecular chemistry as a result of their unique self-assembling and optoelectronic properties. Encapsulating the contorted nanographenes inside artificial receptors, however, remains challenging. Herein, we report the design and synthesis of a trigonal prismatic hexacationic cage, which has a large cavity and adopts a relatively flexible conformation. It serves as a receptor, not only for planar coronene, but also for contorted nanographene derivatives with diameters of approximately 15 Å and thicknesses of 7 Å. A comprehensive investigation of the host-guest interactions in the solid, solution and gaseous states by experimentation and theoretical calculations reveals collectively an induced-fit binding mechanism with high binding affinities between the cage and the nanographenes. Notably, the photostability of the nanographenes is improved significantly by the ultrafast deactivation of their excited states within the cage. Encapsulating the contorted nanographenes inside the cage provides a noncovalent strategy for regulating their photoreactivity.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hui-Juan Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China
| | - Jiawang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yixun Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai District, Tianjin, China.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|
22
|
|
23
|
Saura‐Sanmartin A, Martinez‐Cuezva A, Marin‐Luna M, Bautista D, Berna J. Effective Encapsulation of C
60
by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Alberto Martinez‐Cuezva
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Marta Marin‐Luna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC) Area Cientifica y Tecnica de Investigacion (ACTI) Universidad de Murcia 30100 Murcia Spain
| | - Jose Berna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
24
|
Saura-Sanmartin A, Martinez-Cuezva A, Marin-Luna M, Bautista D, Berna J. Effective Encapsulation of C 60 by Metal-Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021; 60:10814-10819. [PMID: 33617658 DOI: 10.1002/anie.202100996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 12/14/2022]
Abstract
A flexible benzylic amide macrocycle, functionalized with two carboxylic acid groups, was employed as the organic ligand for the preparation of robust copper(II)- and zinc(II)-based metal-organic frameworks. These polymers crystallized in the C2/m space group of the monoclinic crystal system, creating non-interpenetrated channels in one direction with an extraordinary solvent-accessible volume of 46 %. Unlike metal-organic rotaxane frameworks having benzylic amide macrocycles as linkers, the absence of the thread in these novel reticular materials causes a decrease of dimensionality and an improvement of pore size and dynamic guest adaptability. We studied the incorporation of fullerene C60 inside the adjustable pocket generated between two macrocycles connected to the same dinuclear clusters, occupying a remarkable 98 % of the cavities inside the network. The use of these materials as hosts for the selective recognition of different fullerenes was evaluated, mainly encapsulating the smaller size fullerene derivative in several mixtures of C60 and C70 .
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC), Area Cientifica y Tecnica de Investigacion (ACTI), Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
25
|
Yang X, Chen X, Xu Y, Zhang M, Deng G, Yang Y, Liang Y. Palladium-Catalyzed [4 + 3] or [2 + 2 + 3] Annulation via C–H Activation and Subsequent Decarboxylation: Access to Heptagon-Embedded Polycyclic Aromatic Hydrocarbons. Org Lett 2021; 23:2610-2615. [DOI: 10.1021/acs.orglett.1c00520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiahong Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
26
|
Yang L, Zhang N, Han Y, Zou Y, Qiao Y, Chang D, Zhao Y, Lu X, Wu J, Liu Y. A sulfur-containing hetero-octulene: synthesis, host–guest properties, and transistor applications. Chem Commun (Camb) 2020; 56:9990-9993. [DOI: 10.1039/d0cc04289g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A heterocycloarene derivative (S-Octulene) possessing two sulfur atoms was conveniently synthesized through Bi(OTf)3-catalyzed cyclization from a macrocyclic tetramethoxyethenylated precursor.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Ning Zhang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Yi Han
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Ya Zou
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yanjun Qiao
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Dongdong Chang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Yan Zhao
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Xuefeng Lu
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Jishan Wu
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yunqi Liu
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|