1
|
Wang T, Tang S, Dong X, Zhao Y, Sun Q, Kong S, Zhao Y, Wang X. Rational Design of Crystalline and Enantiomerically Pure Helicenes with Open-Shell Singlet Ground States. Angew Chem Int Ed Engl 2025; 64:e202415331. [PMID: 39301773 DOI: 10.1002/anie.202415331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Helicene diradical derivatives have attracted widespread attentions because of their unique magnetic and chiroptoelectronic properties, however, crystalline and enantiomerically pure forms of helicene diradicals are extremely rare. Herein, we describe the rational design and synthesis of o-quinone functionalized helicene diradicals with crystalline enantiomerical purity. Diradical dianion salt Rac-3K and its enantiomers P/M-3K were obtained by reduction of corresponding precursors Rac-3 and P/M-3 with two equivalent potassium graphite in THF in the presence of (di)benzo-18-crown-6. Neutral dioxoborocyclic helicene diradicals (Rac-3B and P/M-3B) were produced by reactions of Rac-3 or P/M-3 with chlorobis(perfluorophenyl)borane (B(C6F5)2Cl. Crystal structures of compounds Rac-3K, Rac-3B and P/M-3K were obtained by single crystal X-ray diffraction. Their open-shell singlet state ground states were confirmed by electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and theoretical calculations. Their chiroptical properties were investigated by the electronic circular dichroism (ECD) spectroscopy. This work provides the first examples of enantiopure helicene diradical dianions and boron-containing helicene diradicals.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuxuan Tang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xue Dong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Hiroto S, Chujo M. Donor-Acceptor-Donor Dyads with Electron-Rich π-Extended Azahelicenes to Panchromatic Absorbing Dyes. Chem Asian J 2025; 20:e202400830. [PMID: 39215744 DOI: 10.1002/asia.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Panchromatic dyes have been highly useful in the realm of optical devices. Here, we report that panchromatic dyes with heterohelicenes have been successfully synthesized using a donor-acceptor strategy. Our synthesis resulted in the creation of π-extended aza[5]helicene oligomers with butadiyne linkages, which displayed bathochromically shifted absorption and emission spectra. The solvent-dependent optical measurements revealed the intramolecular charge transfer characteristic of these molecules, and theoretical calculations described the biased molecular orbitals on the azahelicene units that generated the charge-transfer characteristic. Encouraged by these results, we also prepared donor-acceptor-donor dyads using azahelicenes and dimide derivatives, resulting in panchromatic absorbing characteristics covering the range from 250 nm to 800 nm. Theoretical calculations showed the presence of mixed charge-transfer transitions and localized transitions on the azahelicene units, which led to a broad light-absorbing property covering the near IR region. Additionally, we conducted measurements of circular dichroism and circularly polarized luminescence for the obtained products. The g-values were reduced by oligomerization, indicating that the lowest energy transitions were allowed in nature.
Collapse
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moeko Chujo
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Kundu D, Rio ND, Crassous J. Chiral Organometallic Complexes Derived from Helicenic N-Heterocyclic Carbenes (NHCs): Design, Structural Diversity, and Chiroptical and Photophysical Properties. Acc Chem Res 2024; 57:2941-2952. [PMID: 39361380 DOI: 10.1021/acs.accounts.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
ConspectusRecently, helicene derivatives have emerged as an important class of molecules with potential applications spanning over asymmetric catalysis, biological activity, magnetism, spin filtering, solar cells, and polymer science. To harness their full potential, especially as emissive components in circularly polarized organic light-emitting diodes (CP-OLEDs), generating structural chemical diversity and understanding the resulting photophysical and chiroptical properties are crucial. In this Account, we shed light on chemical engineering combining helicene and N-heterocyclic carbene (NHC) chemistries to create transition-metal complexes with unique architectures and describe their photophysical and chiroptical attributes. The σ-donating and π-accepting capabilities of the helically chiral π-conjugated NHCs endow the complexes with remarkable structural and electronic features. These characteristics manifest in phenomena such as chirality induction, very long-lived phosphorescence, and strong chiroptical signatures (electronic circular dichroism and circularly polarized luminescence).We describe the different classes of ligands primarily developed in our group by classifying them according to their connection between the helicenic moiety and the imidazole precursor. This connection is essential in determining the degree of π-conjugation and characterizing the emissive state. We comprehensively discuss 6-coordinate, 4-coordinate, and 2-coordinate complexes, delving into their structural nuances and examining how the interplay between metals and auxiliary ligands shapes their photophysical properties, with interpretations enriched by DFT calculations. Helicenes are known to promote intersystem crossing thanks to strong spin-orbit coupling, while metals offer robust frameworks leading to a variety of molecular architectures with specific topologies together with distinct excited-state properties. The electronic configurations and energy levels of the ligand and metal orbitals thus significantly modulate the photophysical and chiroptical behaviors of these complexes. In-depth analysis of chiroptical properties, notably electronic circular dichroism and circularly polarized luminescence, emphasizes the influence of different stereogenic elements on the chiroptical responses across various energy ranges with appealing "match-mismatch" effects. Finally, we describe future prospects of helicene NHCs, particularly in the context of emerging research on cost-effective and abundant transition metals for materials science and for photocatalysis. Indeed, the inherent long-lived MLCT, excited-state delocalization, structural rigidity, and intrinsic chirality of these complexes present intriguing avenues for future investigations.
Collapse
Affiliation(s)
- Debsouri Kundu
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | - Natalia Del Rio
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| | - Jeanne Crassous
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France
| |
Collapse
|
4
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
6
|
Silber V, Gourlaouen C, Ruppert R. Keto-enol equilibrium: stable tautomers of ortho-, meta-, and para-hydroquinones in large aromatics. RSC Adv 2024; 14:11969-11976. [PMID: 38623286 PMCID: PMC11017376 DOI: 10.1039/d4ra02202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
The synthesis of [6]helicene para-quinone starting from the 1,4-dimethoxy-[6]helicene derivative is presented. The demethylation reaction with boron tribromide led to unexpected results. Instead of the expected para-hydroquinone, the diketone tautomeric form was isolated. In contrast to the 1,4-hydroquinone and 1,4-dihydroxynaphthalene, the stable tautomers for the [4] and [6]helicenes were the aromatic diketones. These experimental results were corroborated by calculations. Additional calculations showed that these tautomeric species were indeed the stable forms of 1,4 and 1,3-hydroquinones when present in larger aromatics, in drastic contrast with 1,2-dihydroxy-aromatics (known as catechol).
Collapse
Affiliation(s)
- Vincent Silber
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Romain Ruppert
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg 4 Rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
7
|
Yan Q, Tao S, Liu R, Zhi Y, Jiang D. Crystalline, Porous Helicene Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202316092. [PMID: 38029378 DOI: 10.1002/anie.202316092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Helicenes are a class of fascinating chiral helical molecules with rich chemistry developed continuously over the past 100 years. Their helical, conjugated, and twisted structures make them attractive for constructing molecular systems. However, studies over the past century are mainly focused on synthesizing helicenes with increased numbers of aromatic rings and complex heterostructures, while research on inorganic, organic, and polymeric helicene materials is still embryonic. Herein, we report the first examples of helicene covalent organic frameworks, i.e., [7]Helicene sp2 c-COF-1, by condensing [7]Helicene dialdehyde with trimethyl triazine via the C=C bond formation reaction under solvothermal conditions. The resultant [7]Helicene sp2 c-COF-1 exhibits prominent X-ray diffraction peaks and assumes a highly ordered 2D lattice structure originated from the twisted configuration of [7]Helicene unit. The C=C linked [7]Helicene sp2 c-COF-1 materials exhibited extended π conjugation and broadly tuned their absorption, emission, redox activity, photoconductivity, and light-emitting activity, demonstrating rich multifunctionalities and great potentials in developing various applications. This work opens a way to a new family of COFs as well as helicene materials, enabling the exploration of unprecedented π architectures and properties.
Collapse
Affiliation(s)
- Qianqian Yan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Artigas A, Ferdi N, Rémond M, Rigoulet F, Vanthuyne N, Hagebaum-Reignier D, Carissan Y, Naubron JV, Giorgi M, Favereau L, Coquerel Y. Conformational, Structural, and Chiroptical Properties of an Overcrowded Triply Fused Carbo[7]helicene. J Org Chem 2024; 89:498-504. [PMID: 38133568 DOI: 10.1021/acs.joc.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Recently, the synthesis of the racemate of an overcrowded triply fused carbo[7]helicene of formula C66H36 with three carbo[7]helicenes fused within a central six-membered ring was described. This molecule was found to embed an extremely contorted central six-membered ring and two negative curvatures. We report herein the resolution of the corresponding enantiomers and their conformational, structural, photophysical, and chiroptical properties. The racemization of the triply fused carbo[7]helicene was determined to proceed at a rate of krac = 8.06 × 10-4 s-1 at 175 °C in ortho-dichlorobenzene, corresponding to a barrier to enantiomerization ΔGenant‡ = 140.4 kJ·mol-1, a value significantly lower than for pristine carbo[7]helicene. Interestingly, the crystalline structures of the racemic and enantiopure materials show some differences regarding the molecular geometry, with an increased negative curvature in the latter cases. This unusual curved delocalized π-conjugated system afforded notably green fluorescence at room temperature and far-red phosphorescence at low temperature. Finally, electronic circular dichroism and circularly polarized luminescence responses of the enantiopure compounds have been measured and showed very close absorption and emission dissymmetry factors, gabs and glum, respectively, of ca. 2.6 × 10-3, indicating a similar chiral rigid geometry for both ground and excited states.
Collapse
Affiliation(s)
- Albert Artigas
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Nawal Ferdi
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Maxime Rémond
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Marseille, France
| | - Florian Rigoulet
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | | | - Yannick Carissan
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | | | - Yoann Coquerel
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| |
Collapse
|
9
|
Silber V, Jean M, Vanthuyne N, Del Rio N, Matozzo P, Crassous J, Ruppert R. Porphyrin- and Bodipy-helicene conjugates: syntheses, separation of enantiomers and chiroptical properties. Org Biomol Chem 2023; 21:8924-8935. [PMID: 37909260 DOI: 10.1039/d3ob01459b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The synthesis of several new compounds containing a chromophore and a helicenic moiety is reported. The preparation, characterisation and some physico-chemical studies are detailed. In particular, the two enantiomers of several chiral molecules of this type were separated by chiral HPLC (both analytically and in a preparative way) and their racemisation rates were determined for short-lived species. Electronic circular dichroism (ECD) and circular polarised luminescence (CPL) measurements were performed for the compounds with a very long racemisation half-life. Chiral porphyrins and Bodipys both gave ECD and CPL responses over a large area of the visible spectrum.
Collapse
Affiliation(s)
- Vincent Silber
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Marion Jean
- Aix-Marseille Université, UMR CNRS 7313, Centrale Marseille, iSm2, 13397 Marseille cedex 20, France
| | - Nicolas Vanthuyne
- Aix-Marseille Université, UMR CNRS 7313, Centrale Marseille, iSm2, 13397 Marseille cedex 20, France
| | - Natalia Del Rio
- ISCR, UMR CNRS 6226, campus de Beaulieu, Université de Rennes, 35042 Rennes cedex, France.
| | - Paola Matozzo
- ISCR, UMR CNRS 6226, campus de Beaulieu, Université de Rennes, 35042 Rennes cedex, France.
| | - Jeanne Crassous
- ISCR, UMR CNRS 6226, campus de Beaulieu, Université de Rennes, 35042 Rennes cedex, France.
| | - Romain Ruppert
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Rodríguez R, Naranjo C, Kumar A, Dhbaibi K, Matozzo P, Camerel F, Vanthuyne N, Gómez R, Naaman R, Sánchez L, Crassous J. Weakly Self-Assembled [6]Helicenes: Circularly Polarized Light and Spin Filtering Properties. Chemistry 2023; 29:e202302254. [PMID: 37635073 DOI: 10.1002/chem.202302254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 08/29/2023]
Abstract
Self-assembling features, chiroptical activity, and spin filtering properties are reported for 2,15- and 4,13-disubstituted [6]helicenes decorated in their periphery with 3,4,5-tris(dodecyloxy)-N-(4-ethynylphenyl)benzamide moieties. The weak non-covalent interaction between these units conditions the corresponding circularly polarized luminescence and spin polarization. The self-assembly is overall weak for these [6]helicene derivatives that, despite the formation of H-bonding interactions between the amide groups present in the peripheral moieties, shows very similar chiroptical properties both in the monomeric or aggregated states. This effect could be explained by considering the steric effect that these groups could generate in the growing of the corresponding aggregate formed. Importantly, the self-assembling features also condition chiral induced spin selectivity (CISS effect), with experimental spin polarization (SP) values found between 35-40 % for both systems, as measured by magnetic-conducting atomic force microscopy (AFM) technique.
Collapse
Affiliation(s)
- Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Kais Dhbaibi
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Paola Matozzo
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Franck Camerel
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, Marseille, 13397, France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, University of Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
11
|
Kundu D, Del Rio N, Cordier M, Vanthuyne N, Puttock EV, Meskers SCJ, Williams JAG, Srebro-Hooper M, Crassous J. Enantiopure cycloplatinated pentahelicenic N-heterocyclic carbenic complexes that display long-lived circularly polarized phosphorescence. Dalton Trans 2023; 52:6484-6493. [PMID: 37096384 DOI: 10.1039/d3dt00577a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The preparation of the first enantiopure cycloplatinated complexes bearing a bidentate, helicenic N-heterocyclic carbene and a diketonate ancillary ligand is presented, along with their structural and spectroscopic characterization based on both experimental and computational studies. The systems exhibit long-lived circularly polarized phosphorescence in solution and in doped films at room temperature, and also in a frozen glass at 77 K, with dissymmetry factor glum values ≥10-3 in the former and around 10-2 in the latter.
Collapse
Affiliation(s)
- Debsouri Kundu
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Natalia Del Rio
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Marie Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Emma V Puttock
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, NL 5600, The Netherlands
| | | | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Jeanne Crassous
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| |
Collapse
|
12
|
Dhbaibi K, Grasser M, Douib H, Dorcet V, Cador O, Vanthuyne N, Riobé F, Maury O, Guy S, Bensalah‐Ledoux A, Baguenard B, Rikken GLJA, Train C, Le Guennic B, Atzori M, Pointillart F, Crassous J. Multifunctional Helicene-Based Ytterbium Coordination Polymer Displaying Circularly Polarized Luminescence, Slow Magnetic Relaxation and Room Temperature Magneto-Chiral Dichroism. Angew Chem Int Ed Engl 2023; 62:e202215558. [PMID: 36449410 PMCID: PMC10107653 DOI: 10.1002/anie.202215558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac- =1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.
Collapse
Affiliation(s)
- Kais Dhbaibi
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Maxime Grasser
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Haiet Douib
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
- Laboratoire des Matériaux Organiques et Hétérochimie (LMOH)Département des sciences de la matièreUniversité Larbi Tébessi de TébessaRoute de Constantine12002TébessaAlgérie
| | - Vincent Dorcet
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Olivier Cador
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | | | - François Riobé
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Olivier Maury
- ENSLCNRSLaboratoire de Chimie UMR 518246 allée d'Italie69364LyonFrance
| | - Stéphan Guy
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Amina Bensalah‐Ledoux
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Bruno Baguenard
- Univ LyonUniversité Claude Bernard Lyon 1CNRSUMR 5306Institut Lumière Matière69622LyonFrance
| | - Geert L. J. A. Rikken
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Boris Le Guennic
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Matteo Atzori
- Laboratoire National des Champs Magnétiques IntensesCNRSUniv. Grenoble AlpesINSA ToulouseUniv. Toulouse Paul SabatierEMFL38042GrenobleFrance
| | - Fabrice Pointillart
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) – UMR 622635000RennesFrance
| |
Collapse
|
13
|
Yang L, Ju YY, Medel MA, Fu Y, Komber H, Dmitrieva E, Zhang JJ, Obermann S, Campaña AG, Ma J, Feng X. Helical Bilayer Nonbenzenoid Nanographene Bearing a [10]Helicene with Two Embedded Heptagons. Angew Chem Int Ed Engl 2023; 62:e202216193. [PMID: 36413379 PMCID: PMC10107200 DOI: 10.1002/anie.202216193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The precision synthesis of helical bilayer nanographenes (NGs) with new topology is of substantial interest because of their exotic physicochemical properties. However, helical bilayer NGs bearing non-hexagonal rings remain synthetically challenging. Here we present the efficient synthesis of the first helical bilayer nonbenzenoid nanographene (HBNG1) from a tailor-made azulene-embedded precursor, which contains a novel [10]helicene backbone with two embedded heptagons. Single-crystal X-ray analysis reveals its highly twisted bilayer geometry with a record small interlayer distance of 3.2 Å among the reported helical bilayer NGs. Notably, the close interlayer distance between the two layers offers intramolecular through-space conjugation as revealed by in situ spectroelectrochemistry studies together with DFT simulations. Furthermore, the chiroptical properties of the P/M enantiomers of HBNG1 are also evaluated by circular dichroism and circularly polarized luminescence.
Collapse
Affiliation(s)
- Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yang-Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Miguel A Medel
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ)., Facultad de Ciencias., Universidad de Granada, 18071, Granada, Spain
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Jin-Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química (UEQ)., Facultad de Ciencias., Universidad de Granada, 18071, Granada, Spain
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| |
Collapse
|
14
|
Gauthier ES, Kaczmarczyk D, Del Fré S, Favereau L, Caytan E, Cordier M, Vanthuyne N, Williams JAG, Srebro-Hooper M, Crassous J. Helicenic N-heterocyclic carbene copper(I) complex displaying circularly polarized blue fluorescence. Dalton Trans 2022; 51:15571-15578. [PMID: 36169005 DOI: 10.1039/d2dt01925f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiopure copper(I) chloride complexes bearing a monodentate N-(carbo[6]helicenyl)-NHC ligand have been prepared and characterized experimentally and computationally. Their high stability enables the stereochemistry to be probed by X-ray crystallography and NMR spectroscopy. The resolved enantiomeric complexes emit circularly polarized blue fluorescence with glum ∼1.3 × 10-3 in solution. The photophysical and chiroptical properties of these systems, with their helicene-centred origin, are similar to those of the organic helicene-benzimidazole precursor proligand, although the reverse axial chirality configuration is preferentially observed for the complex compared to the ligand.
Collapse
Affiliation(s)
| | | | - Samuel Del Fré
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Elsa Caytan
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | | | | |
Collapse
|
15
|
Hiroto S, Wakita M, Chujo M. A Strategy for Polar Crystals with Dipolar Heterohelicenes. Chem Asian J 2022; 17:e202200808. [PMID: 36065075 DOI: 10.1002/asia.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Indexed: 11/03/2022]
Abstract
Polar crystals have attracted interest for the applications to polar materials with piezo- and pyroelectricity, and second harmonic generation. Despite their potential utility for flexible polar materials, a strategy for ordering polar helicenes have remained elusive. Here, we demonstrate creation of polar crystal with unsymmetrically substituted aza[5]helicenes tuned by substituents. The usymmetric aza[5]helicenes have been prepared through regioselective monoprotiodesilylations. We disclosed triisopropylsilyl-substituted derivatives show 1D chain columnar packings. In particular, enantiopure crystals showed spontaneous polarization. Optical and single-crystal X-ray diffraction experiments with other derivatives, as well as theoretical calculations, revealed that the presence of triisopropylsilyl or electron-withdrawing aryl substituents is essential for forming the 1D chain columnar structure. Hirshfeld surface analyses further showed that CH-π interactions between 1D chain columns regulate the polar assembly. Finally, we determined the polarizability of the nitro derivative by ab initio calculation to be 4.53 µC/cm 2 . This value corroborates the first example of a spontaneously polar crystal of helicenes. We believe that this study will contribute to the development of polar materials from organic molecules.
Collapse
Affiliation(s)
- Satoru Hiroto
- Kyoto University, Graduate School of Human and Environmental Studies, Yoshidanihonmatsu-cho, Sakyo-ku, 6068501, Kyoto, JAPAN
| | - Mana Wakita
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| | - Moeko Chujo
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| |
Collapse
|
16
|
Liu H, Lv LL, Wen H, Zhao DM, Wu J, Ke MR, Zheng BY, Li J, Li X, Huang JD. Molecular and Supramolecular Approach to Highly Photocytotoxic Phthalocyanines with Dual Cell Uptake Pathways and Albumin-Enhanced Tumor Targeting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28581-28590. [PMID: 35709499 DOI: 10.1021/acsami.2c05814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phototherapy for non-invasive cancer treatment has been extensively studied. An urgent challenge in phototherapy application is to fabricate appropriate targeted agents to achieve efficient therapeutic effect. Herein, a molecular and supramolecular approach for targeting phototherapy was reasonably designed and realized through the axial sulfonate modification of silicon(IV) phthalocyanines (Pcs), followed by supramolecular interaction with albumin. This approach can not only improve the photoactivities (e.g., fluorescence emission and reactive oxygen species production) of the Pcs but also enhance their tumor targeting. Most importantly, one of the deigned Pcs (4) can target HepG2 cells through dual cell pathways, leading to an extremely high phototoxicity with an EC50 (i.e., concentration of Pcs to kill 50% of cells under light irradiation) value of 2.0 nM. This finding presents a feasible strategy to realize efficient targeting phototherapy.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Li-Li Lv
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Huang Wen
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Dong-Mei Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juhong Wu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Jinyu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
17
|
Gulevskaya AV, Tonkoglazova DI. Alkyne‐based syntheses of carbo‐ and heterohelicenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Yang SY, Qu YK, Liao LS, Jiang ZQ, Lee ST. Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104125. [PMID: 34595783 DOI: 10.1002/adma.202104125] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
19
|
Silber V, Gruber N, Jean M, Vanthuyne N, Ruppert R. Synthesis of a helicene-fused porphyrin leading to a π-extended chiral chromophore. Chem Commun (Camb) 2022; 58:6012-6015. [PMID: 35485612 DOI: 10.1039/d2cc01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of several covalently linked [6]-helicene-porphyrins is reported. A fused [6]-helicene-porphyrin π-extended aromatic system was isolated, the enantiomers separated and the chiroptical properties determined. The oxidative cyclodehydrogenation proved to be very effective for six-membered fused helical systems, but not suited for the formation of five-membered fused systems.
Collapse
Affiliation(s)
- Vincent Silber
- Institut de Chimie, UMR CNRS 7177, Institut Le Bel, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nathalie Gruber
- Fédération de Chimie Le Bel, FR 2010, BP 296R8, 1 rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Marion Jean
- Aix Marseille Univ, UMR CNRS 7313, Centrale Marseille, iSm2, 13397, Marseille cedex 20, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, UMR CNRS 7313, Centrale Marseille, iSm2, 13397, Marseille cedex 20, France
| | - Romain Ruppert
- Institut de Chimie, UMR CNRS 7177, Institut Le Bel, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
20
|
Váňa L, Jakubec M, Sýkora J, Císařová I, Žádný J, Storch J, Církva V. Synthesis of Aza[ n]helicenes ( n = 4-7) via Photocyclodehydrochlorination of 1-Chloro- N-aryl-2-naphthamides. J Org Chem 2022; 87:7150-7166. [PMID: 35549349 DOI: 10.1021/acs.joc.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of aza[n]helicenes (n = 4-7) was synthesized using a photocyclodehydrochlorination of 1-chloro-N-aryl-2-naphthamides as a general synthetic procedure introducing the nitrogen atom to the third ring of the helicene framework. The effect of the nitrogen presence in the helicene skeleton on the physicochemical properties of the prepared aza[n]helicenes was studied and compared to those of the parent carbo-analogues. The insertion of a nitrogen atom into the outer edge of the helicene molecule has a severe impact on certain physicochemical properties such as optical rotation, electrostatic potentials, and intermolecular interactions. On the other hand, some other properties such as UV/vis, fluorescence, and phosphorescence spectra remained almost unaffected when compared to the parent carbohelicenes. A nitrogen atom can be also used for further derivatization, which can lead to further modification of helicene properties, as manifested here in the fluorescence changes induced by protonation.
Collapse
Affiliation(s)
| | | | | | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
21
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
22
|
Tonkoglazova DI, Oryabinskaya LM, Shcherbatykh AA, Gulevskaya AV. The synthesis and crystal structure of pH-sensitive fluorescent pyrene-based double aza- and diaza[4]helicenes. Org Biomol Chem 2022; 20:2704-2714. [PMID: 35293927 DOI: 10.1039/d2ob00204c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel pyrene-based double aza- and diaza[4]helicenes have been prepared through a five-step synthetic sequence in overall good yields. Commercially available 2,3-dihaloazines (2,3-dibromopyridine, 2,3-dichloropyrazine and 2,3-dichloroquinoxaline) were used as starting materials. The synthesis employs electrophile-induced cyclizations of ortho-alkynyl bihetaryls as the key steps, leading to the formation of a helical skeleton. To discern the effect of merging azine and pyrene moieties within a helical skeleton, the X-ray structures, UV-vis absorption and fluorescence spectra of the helicenes were investigated and compared with those of the parent [4]helicene, aza- and diaza[4]helicenes. It was found that the emission properties of the synthesized helicenes can be modulated as a function of pH. The basicity of pyrene-based double aza[4]helicenes was estimated by the direct fluorimetric titration method; the pKa value was found to be equal to 1.4.
Collapse
Affiliation(s)
- Daria I Tonkoglazova
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Lyubov M Oryabinskaya
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Aleksandr A Shcherbatykh
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Anna V Gulevskaya
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| |
Collapse
|
23
|
Pallova L, Abella L, Jean M, Vanthuyne N, Barthes C, Vendier L, Autschbach J, Crassous J, Bastin S, César V. Helical Chiral N-Heterocyclic Carbene Ligands in Enantioselective Gold Catalysis. Chemistry 2022; 28:e202200166. [PMID: 35143078 DOI: 10.1002/chem.202200166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/29/2022]
Abstract
The first chiral helicene-NHC gold(I) complexes efficient in enantioselective catalysis were prepared. The L-shaped chiral ligand is composed of an imidazo[1,5-a]pyridin-3-ylidene (IPy) scaffold laterally substituted by a configurationally stable [5]-helicenoid unit. The chiral information was introduced in a key post-functionalization step of a NHC-gold(I) complex bearing a symmetrical anionic fluoreno[5]helicene substituent, leading to a racemic mixture of complexes featuring three correlated elements of chirality, namely central, axial and helical chirality. After HPLC enantiomeric resolution, X-ray crystallography and theoretical calculations enabled structural and stereochemical characterization of these configurationally stable NHC-gold(I) complexes. The high potential in asymmetric catalysis is demonstrated in the benchmark cycloisomerization of N-tethered 1,6-enynes with up to 95 : 5 er.
Collapse
Affiliation(s)
- Lenka Pallova
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Laura Abella
- Department of chemistry, University at Buffalo-State University of New York, Buffalo, NY 14260, USA
| | - Marion Jean
- Aix Marseille university, CNRS, Centrale Marseille, Ism2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille university, CNRS, Centrale Marseille, Ism2, Marseille, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jochen Autschbach
- Department of chemistry, University at Buffalo-State University of New York, Buffalo, NY 14260, USA
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, UMR 6226, Institut de Physique de Rennes, UMR 6251, Campus de Beaulieu CNRS-Université de Rennes 1, 35042, Rennes Cedex, France
| | | | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
24
|
Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E, Freire F. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022; 61:e202115070. [DOI: 10.1002/anie.202115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Juan José Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Berta Fernández
- Departamento de Química Física Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
25
|
Freire F, Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Freire
- Universidade de Santiago de Compostela Centre for Research in Biological Chemistry and Molecular Materials Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| | - Juan José Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Rafael Rodríguez
- Kanazawa University - Kakuma Campus: Kanazawa Daigaku Organic Chemsitry JAPAN
| | - Berta Fernández
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela Physical Chemistry RWANDA
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| |
Collapse
|
26
|
Karak P, Choudhury J. Conformationally flexible heterohelicenes as stimuli-controlled soft molecular springs. Chem Sci 2022; 13:11163-11173. [PMID: 36320460 PMCID: PMC9517708 DOI: 10.1039/d2sc04006a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Structurally engineered molecules which can behave as stimuli-controlled mechanical nanomachines such as molecular shuttles, rotors, ratchets, and springs are important in several research areas, including molecular robotics, actuation, sensing, cargo transportation, etc. Helicenes, by virtue of their unique screw-type structures, were proposed as functional models for molecular springs; however, experimental realization has remained an elusive and unmet task until now, because of the lack of appropriate helicene molecules consisting of backbone-decorated dynamic architectures. Aiming to explore this unearthed direction, we present herein a novel class of modular flexible heterohelicenes with a stimuli (acid/base and light)-responsive core and peripheral modules. By applying pH (at core-embedded free imidazole sites) and light (at backbone-tethered dithienylethene units) stimuli, we demonstrate that these flexible heterohelicenes exhibit spring-like movement, with the reversible contraction/extension of the helical pitch. The uniquely functionalized structure of these molecules played a critical role in bestowing such capability, as revealed by crystallographic, spectroscopic and computational data. Careful assessment disclosed that the protonation/deprotonation-induced reversible generation and delocalization of positive charge throughout the π-conjugated helical rim switch the operative interactions between the π clouds of the terminal overlapping arene rings of the helicenes between repulsive and attractive, leading to extension/contraction of the helical pitch. On the other hand, in the case of the light stimulus, it was analyzed that the light-induced ring-closure of the photoactive dithienylethene units created a geometric distortion causing the helicenic wings to bend outward from the helicene rim, which resulted in extension of the helical pitch. The photo-assisted (or thermal) reverse ring-opening reaction converted the system to its original conformation, thus enabling the helicene molecule to display spring-like reversible extension/contraction motion. The new insights on the reversible dynamic features of this class of heterohelicenes under the influence of external stress would guide crucial design principles of helicene-based molecular springs for potential applications. Sub-expanded flexible heterohelicenes were configured through a modular synthetic approach to experimentally demonstrate their capability of stimuli-controlled soft molecular spring-like behavior.![]()
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India
| |
Collapse
|
27
|
Shukla PM, Bhattacharya A, Pratap A, Pradhan A, Sinha P, Soni T, Maji B. HFIP-promoted halo-carbocyclizations of N- and O-tethered arene–alkene substrates to access all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman cores. Org Biomol Chem 2022; 20:8136-8144. [DOI: 10.1039/d2ob01597h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herein, a HFIP-promoted mild and efficient method for the synthesis of all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman building blocks is disclosed.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aditya Bhattacharya
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Akash Pradhan
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Tanishk Soni
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| |
Collapse
|
28
|
Ding Y, Shen C, Gan F, Wang J, Zhang G, Li L, Shu M, Zhu B, Crassous J, Qiu H. Tunable construction of transition metal-coordinated helicene cages. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Tsurusaki A, Kamikawa K. Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
30
|
Jia X, Nitsch J, Wu Z, Friedrich A, Krebs J, Krummenacher I, Fantuzzi F, Braunschweig H, Moos M, Lambert C, Engels B, Marder TB. One- and two-electron reduction of triarylborane-based helical donor-acceptor compounds. Chem Sci 2021; 12:11864-11872. [PMID: 34659727 PMCID: PMC8442707 DOI: 10.1039/d1sc02409d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
One-electron chemical reduction of 10-(dimesitylboryl)-N,N-di-p-tolylbenzo[c]phenanthrene-4-amine (3-B(Mes)2-[4]helix-9-N(p-Tol)2) 1 and 13-(dimesitylboryl)-N,N-di-p-tolyldibenzo[c,g]phenanthrene-8-amine (3-B(Mes)2-[5]helix-12-N(p-Tol)2) 2 gives rise to monoanions with extensive delocalization over the annulated helicene rings and the boron p z orbital. Two-electron chemical reduction of 1 and 2 produces open-shell biradicaloid dianions with temperature-dependent population of the triplet states due to small singlet-triplet gaps. These results have been confirmed by single-crystal X-ray diffraction, EPR and UV/vis-NIR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Xiangqing Jia
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
31
|
Gauthier ES, Cordier M, Dorcet V, Vanthuyne N, Favereau L, Williams JAG, Crassous J. Helically Chiral NHC‐Gold(I) Complexes: Synthesis, Chiroptical Properties and Electronic Features of the [5]Helicene‐Imidazolylidene Ligand. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Marie Cordier
- Univ Rennes CNRS, ISCR – UMR 6226 35000 Rennes France
| | | | - Nicolas Vanthuyne
- Aix Marseille University CNRS Centrale Marseille, iSm2 13284 Marseille France
| | | | | | | |
Collapse
|
32
|
Reiné P, Ortuño AM, Resa S, Álvarez de Cienfuegos L, Ribagorda M, Mota AJ, Abbate S, Longhi G, Miguel D, Cuerva JM. Enantiopure Double
ortho
‐Oligophenylethynylene‐Based Helical Structures with Circularly Polarized Luminescence Activity. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pablo Reiné
- Department of Organic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| | - Ana M. Ortuño
- Department of Organic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| | - Sandra Resa
- Department of Organic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| | - Luis Álvarez de Cienfuegos
- Department of Organic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| | - María Ribagorda
- Organic Chemistry Department Department of Organic Chemistry Universidad Autonoma de Madrid C/Francisco Tomás y Valiente n° 7 Cantoblanco 28049 Madrid Spain
| | - Antonio J. Mota
- Department of Inorganic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| | - Sergio Abbate
- Department of Molecular and Translational Medicine Instituto Nazionale di Ottica – CNR Brescia Research Unit Università di Brescia Via Branze 45 25123 Brescia Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine Instituto Nazionale di Ottica – CNR Brescia Research Unit Università di Brescia Via Branze 45 25123 Brescia Italy
| | - Delia Miguel
- Physical Chemistry Department Unidad de Excelencia de Química University of Granada Faculty of Pharmacy, C. U. Cartuja 18071 Granada Spain
| | - Juan M. Cuerva
- Department of Organic Chemistry Unidad de Excelencia de Química University of Granada Faculty of Science, C. U. Fuentenueva 18071 Granada Spain
| |
Collapse
|
33
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
34
|
Kos M, Rodríguez R, Storch J, Sýkora J, Caytan E, Cordier M, Císařová I, Vanthuyne N, Williams JAG, Žádný J, Církva V, Crassous J. Enantioenriched Ruthenium-Tris-Bipyridine Complexes Bearing One Helical Bipyridine Ligand: Access to Fused Multihelicenic Systems and Chiroptical Redox Switches. Inorg Chem 2021; 60:11838-11851. [PMID: 34297562 DOI: 10.1021/acs.inorgchem.1c01379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and photophysical and chiroptical properties of novel aza[n]helicenes (6a-d, 10a,b, n = 4-7) substituted with one or two 2-pyridyl groups are described. The preparation was performed via an adapted Mallory reaction using aromatic imines as precursors. The obtained novel class of helical 2,2'-bipyridine ligands was then coordinated to Ru(bipy)22+ units, thus affording the first diastereomerically and enantiomerically pure [RuL(bipy)2]2+ (11a,c, L = 6a,c) or [Ru2L'(bipy)4]4+ (12, L' = 10b) complexes. The topology and stereochemistry of these novel metal-based helical architectures were studied in detail, notably using X-ray crystallography. Interestingly, the coordination to ruthenium(II) enabled the preparation of fused multihelical systems incorporating aza- and ruthena-helicenes within the same scaffold. The photophysical, chiroptical, and redox properties of these complexes were examined in detail, and efficient redox-triggered chiroptical switching activity was evidenced.
Collapse
Affiliation(s)
- Martin Kos
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Rafael Rodríguez
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Jan Storch
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Elsa Caytan
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Marie Cordier
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313 Marseille, France
| | | | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Vladimír Církva
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Jeanne Crassous
- Univ Rennes CNRS, , ISCR-UMR 6226 ScanMat-UMS 2001, 35000 Rennes, France
| |
Collapse
|
35
|
Yen-Pon E, Buttard F, Frédéric L, Thuéry P, Taran F, Pieters G, Champagne PA, Audisio D. Heterohelicenes through 1,3-Dipolar Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity, and Application to pH-Triggered Chiroptical Switch with CPL Sign Reversal. JACS AU 2021; 1:807-818. [PMID: 34467334 PMCID: PMC8395615 DOI: 10.1021/jacsau.1c00084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 05/25/2023]
Abstract
Regioselective access to heterohelicenes through the 1,3-dipolar cycloaddition of sydnones with arynes is described. Novel access to sydnones and poly(hetero)aromatic aryne precursors allowed the introduction of chemical diversity over multiple positions of the helical scaffolds. The origins of the unconventional regioselectivity during the cycloaddition steps was systematically investigated using density functional theory (DFT) calculations, unveiling the key features that control this reactivity, namely, face-to-face (π···π) or edge-to-face (C-H···π) interactions, primary orbital interactions and distortion from coplanarity in the transition structures (TSs) of the transformation. From the library of 24 derivatives synthesized, a pyridyl containing derivative displayed reversible, red-shifted, pH-triggered chiroptical switching properties, with CPL-sign reversal. It is found that protonation of the helicene causes a change of the angle between the electric and magnetic dipole moments related to the S1 → S0 transition, resulting in this rare case of reversible CPL sign inversion upon application of an external stimulus.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Floris Buttard
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Lucas Frédéric
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Pierre Thuéry
- Université
Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Grégory Pieters
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| | - Pier Alexandre Champagne
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Davide Audisio
- Université
Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage,
DMTS, Gif-sur-Yvette 91191, France
| |
Collapse
|
36
|
Bosson J, Labrador GM, Besnard C, Jacquemin D, Lacour J. Chiral Near‐Infrared Fluorophores by Self‐Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johann Bosson
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Geraldine M. Labrador
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratoire de Cristallographie University of Geneva Quai Ernest Ansermet 24 1211 Geneva 4 Switzerland
| | - Denis Jacquemin
- CEISAM UMR 6230 CNRS University of Nantes 44000 Nantes France
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
37
|
Bosson J, Labrador GM, Besnard C, Jacquemin D, Lacour J. Chiral Near-Infrared Fluorophores by Self-Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angew Chem Int Ed Engl 2021; 60:8733-8738. [PMID: 33481294 DOI: 10.1002/anie.202016643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Indexed: 11/09/2022]
Abstract
In one pot, tertiary alkyl amines are oxidized to enamines by cationic dioxa[6]helicene, which further reacts as electrophile and oxidant to form mono or bis donor-π-acceptor coupling products. This original and convergent synthetic approach provides a strong extension of conjugation yielding chromophores that absorb intensively in far-red or NIR domains (λmax up to 791 nm) and fluoresce in the NIR as well (λmax up to 887 nm). Intense ECD properties around 790 nm with a |Δϵ| value up to 60 M-1 cm-1 are observed.
Collapse
Affiliation(s)
- Johann Bosson
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Geraldine M Labrador
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Céline Besnard
- Laboratoire de Cristallographie, University of Geneva, Quai Ernest Ansermet 24, 1211, Geneva 4, Switzerland
| | - Denis Jacquemin
- CEISAM UMR 6230, CNRS, University of Nantes, 44000, Nantes, France
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
38
|
Ikai T, Yamakawa S, Suzuki N, Yashima E. One-Step Simultaneous Synthesis of Circularly Polarized Luminescent Multiple Helicenes Using a Chrysene Framework. Chem Asian J 2021; 16:769-774. [PMID: 33449407 DOI: 10.1002/asia.202100035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 11/12/2022]
Abstract
A series of multiple helicenes was simultaneously synthesized in one step by intramolecular cyclization of a single chrysene derivative containing two 2-[(4-alkoxyphenyl)ethynyl]phenyl units accompanied by rearrangements of the aryl pendants. The electrophile-induced double cyclization with or without aryl migrations proceeded efficiently under acidic conditions to afford annulative π-extension of the chrysene units and produced quadruple (QH-2), triple (TH-2), and double (DH-2) helicenes containing [4]- and/or [5]helicene frameworks with dynamic and/or static helicene chirality in one step. Three multiple helicenes' structures were determined by X-ray crystallography and/or density functional theory calculations. The multiple TH-2 and DH-2 helicenes were separated into enantiomers because of the stable one and two [5]helicene moieties, respectively, and showed intense circular dichroism and circularly polarized luminescence. Although QH-2, which comprises four [4]helicene subunits, was not resolved into enantiomers, the TH-2 enantiomers were further separated into a pair of diastereomers at low temperature resulting from their substituted [4]helicene chirality.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shoya Yamakawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
39
|
Kubo H, Hirose T, Nakashima T, Kawai T, Hasegawa JY, Matsuda K. Tuning Transition Electric and Magnetic Dipole Moments: [7]Helicenes Showing Intense Circularly Polarized Luminescence. J Phys Chem Lett 2021; 12:686-695. [PMID: 33399471 DOI: 10.1021/acs.jpclett.0c03174] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicenes are promising candidates for chiral optoelectronic materials because of their helically twisted π-conjugated system. However, the emission intensity of unsubstituted helicenes is very weak (Φf < 0.05) due to a small oscillator strength for the S1 → S0 transition. In this work, we investigated the substitution position of the [7]helicene framework so that the S1 → S0 transition has a large transition magnetic dipole moment (TMDM) and is partially symmetry-allowed. A [7]helicene derivative thus designed showed a large fluorescence emission rate (kf = 0.02 ns-1) and a large TMDM for the S1 → S0 transition (|m| = 2.37 × 10-20 erg·Gauss-1), which are more than 10 times greater than those of unsubstituted [7]helicene (kf = 0.001 ns-1, |m| = 0.045 × 10-20 erg·Gauss-1). As a result, we achieved the [7]helicene derivative whose dissymmetry factor of CPL and fluorescence quantum yield were both high (|gCPL| = 1.3 × 10-2, Φf = 0.17) in the solution phase.
Collapse
Affiliation(s)
- Hiromu Kubo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Nakashima
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
40
|
Affiliation(s)
- Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University,2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Gauthier ES, Hellou N, Caytan E, Del Fré S, Dorcet V, Vanthuyne N, Favereau L, Srebro-Hooper M, Williams JAG, Crassous J. Triskelion-shaped iridium-helicene NHC complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00527h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Triskelion-shaped cycloiridiated complexes with three N-[6]helicenyl-NHC ligands were prepared with uncommon diastereoselectivities and their configurations were assigned using NMR analyses. They show strong ECD and OR, and yellow CP phosphorescence.
Collapse
Affiliation(s)
| | | | | | - Samuel Del Fré
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | | | - Nicolas Vanthuyne
- Aix Marseille University
- CNRS Centrale Marseille
- 13284 Marseille
- France
| | | | | | | | | |
Collapse
|
42
|
Raffaini G, Mele A, Caronna T. Adsorption of Chiral [5]-Aza[5]helicenes on DNA Can Modify Its Hydrophilicity and Affect Its Chiral Architecture: A Molecular Dynamics Study. MATERIALS 2020; 13:ma13215031. [PMID: 33171884 PMCID: PMC7664699 DOI: 10.3390/ma13215031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Helicenes are interesting chiral molecules without asymmetric carbon atoms but with intrinsic chirality. Functionalized 5-Aza[5]helicenes can form non-covalent complexes with anticancer drugs and therefore be potential carriers. The paper highlights the different structural selectivity for DNA binding for two enantiopure compounds and the influence of concentration on their adsorption and self-aggregation process. In this theoretical study based on atomistic molecular dynamics simulations the interaction between (M)- and (P)-5-Aza[5]helicenes with double helix B-DNA is investigated. At first the interaction of single pure enantiomer with DNA is studied, in order to find the preferred site of interaction at the major or minor groove. Afterwards, the interaction of the enantiomers at different concentrations was investigated considering both competitive adsorption on DNA and possible helicenes self-aggregation. Therefore, racemic mixtures were studied. The helicenes studied are able to bind DNA modulating or locally modifying its hydrophilic surface into hydrophobic after adsorption of the first helicene layer partially covering the negative charge of DNA at high concentration. The (P)-enantiomer shows a preferential binding affinity of DNA helical structure even during competitive adsorption in the racemic mixtures. These DNA/helicenes non-covalent complexes exhibit a more hydrophobic exposed surface and after self-aggregation a partially hidden DNA chiral architecture to the biological environment.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
- Correspondence:
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
| | - Tullio Caronna
- Dipartimento di Ingegneria e Scienze Applicate, Università degli Studi di Bergamo, 24044 Bergamo, Italy;
| |
Collapse
|