1
|
Yin P, Huang C, Zhang L, Li Z, Zhong C, Kuang S, Lei C, Huang Y, Nie Z. Developing Orthogonal Fluorescent RNAs for Photoactive Dual-Color Imaging of RNAs in Live Cells. Angew Chem Int Ed Engl 2025:e202424060. [PMID: 39801450 DOI: 10.1002/anie.202424060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores. This limitation impairs their multiplexing capabilities, which are essential for the simultaneous visualization of multiple RNA species in live cells. Herein, we rationally designed a series of red-shifted chromophores and employed SELEX-independent engineering to develop a novel fluorogenic RNA aptamer, mSquash. mSquash displays specific and intense fluorescence upon binding with our red-shifted chromophore DFHBFPD (Ex/Em=501/624 nm). The mSquash/DFHBFPD allows orthogonal imaging of selected RNA targets alongside the established Broccoli/DFHBI-1T (Ex/Em=472/501 nm), facilitating multiplexed live cell imaging of various targets. Moreover, we expanded the application of fluorescent RNA to photoactive imaging by constructing two genetically encoded photoactivatable fluorescent RNAs for the first time. This innovative approach allows photoactivatable control of fluorescent RNAs via specific light wavelengths (365 nm and 450 nm), enabling spatiotemporal dual-color imaging of RNAs in live cells. Our findings represent a significant advancement in fluorescent RNA-based orthogonal imaging and spatiotemporal analysis of RNAs.
Collapse
Affiliation(s)
- Peng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Chunzheng Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Li Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhenzhen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Caijun Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Wu F, Xia Z, Sun D, Huang X, Hu X, Wu Y, Wang Y, Pei M, Han X, Liu S. Expanding the Color Range of Photoresponsive Multicolor Luminescent System Through Host-Guest Interaction. J Org Chem 2024; 89:14898-14907. [PMID: 39356286 DOI: 10.1021/acs.joc.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoresponsive multicolor luminescent systems offer interesting functions, which have led to applications in anticounterfeiting and biological imaging. However, expanding the color range of these materials remains a challenging task. Herein, a carbazole-modified dithienylethene derivative (DTE-CZ) that exhibits modulated fluorescence color changes through the photocyclization reaction and photolysis reaction is synthesized. DTE-CZ emits orange fluorescence, and it can release a fluorophore which emits blue fluorescence by the photolysis reaction, resulting in the color change. Upon complexation of DTE-CZ with cucurbit[10]uril (CB[10]), the fluorescence wavelength will have a blue shift and the photolysis reaction will be inhibited. Benefiting from the influence of CB[10] and the photolysis reaction of free guests, the color range of the photoresponsive system which is composed of free guests and host-guest complexes is further extended. White light emission along with a color shift from yellow-green to blue was achieved by adjusting the ratio of free guests to host-guest complexes. Finally, the photoresponsive multicolor systems are utilized to construct a photostimulated PVA film and an information encryption system. This work provides an alternative strategy for the preparing of photoresponsive multicolor luminescent system and modulation of its color range.
Collapse
Affiliation(s)
- Fangwei Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zengyan Xia
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianchen Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yanmei Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mengqi Pei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Bálint D, Póti ÁL, Alexa A, Sok P, Albert K, Torda L, Földesi-Nagy D, Csókás D, Turczel G, Imre T, Szarka E, Fekete F, Bento I, Bojtár M, Palkó R, Szabó P, Monostory K, Pápai I, Soós T, Reményi A. Reversible covalent c-Jun N-terminal kinase inhibitors targeting a specific cysteine by precision-guided Michael-acceptor warheads. Nat Commun 2024; 15:8606. [PMID: 39366946 PMCID: PMC11452492 DOI: 10.1038/s41467-024-52573-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
There has been a surge of interest in covalent inhibitors for protein kinases in recent years. Despite success in oncology, the off-target reactivity of these molecules is still hampering the use of covalent warhead-based strategies. Herein, we disclose the development of precision-guided warheads to mitigate the off-target challenge. These reversible warheads have a complex and cyclic structure with optional chirality center and tailored steric and electronic properties. To validate our proof-of-concept, we modified acrylamide-based covalent inhibitors of c-Jun N-terminal kinases (JNKs). We show that the cyclic warheads have high resilience against off-target thiols. Additionally, the binding affinity, residence time, and even JNK isoform specificity can be fine-tuned by adjusting the substitution pattern or using divergent and orthogonal synthetic elaboration of the warhead. Taken together, the cyclic warheads presented in this study will be a useful tool for medicinal chemists for the deliberate design of safer and functionally fine-tuned covalent inhibitors.
Collapse
Affiliation(s)
- Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Lili Torda
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dóra Földesi-Nagy
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dániel Csókás
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Eszter Szarka
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Ferenc Fekete
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL, Hamburg, Germany
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Roberta Palkó
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Pál Szabó
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Katalin Monostory
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Imre Pápai
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Banala S, Jin XT, Dilan TL, Sheu SH, Clapham DE, Drenan RM, Lavis LD. Elucidating and Optimizing the Photochemical Mechanism of Coumarin-Caged Tertiary Amines. J Am Chem Soc 2024; 146:20627-20635. [PMID: 39023430 PMCID: PMC11295134 DOI: 10.1021/jacs.4c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Photoactivatable or "caged" pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines the byproducts produced by the light-driven chemical reaction. In previous work, we demonstrated that coumarin-based photolabile groups could be used to cage tertiary amine drugs as quaternary ammonium salts. Although stable, water-soluble, and useful for experiments in brain tissue, these first-generation compounds exhibit relatively low uncaging quantum yield (Φu < 1%) and release the toxic byproduct formaldehyde upon photolysis. Here, we elucidate the photochemical mechanisms of coumarin-caged tertiary amines and then optimize the major pathway using chemical modification. We discovered that the combination of 3,3-dicarboxyazetidine and bromine substituents shift the mechanism of release to heterolysis, eliminating the formaldehyde byproduct and giving photolabile tertiary amine drugs with Φu > 20%─a 35-fold increase in uncaging efficiency. This new "ABC" cage allows synthesis of improved photoactivatable derivatives of escitalopram and nicotine along with a novel caged agonist of the oxytocin receptor.
Collapse
Affiliation(s)
- Sambashiva Banala
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Xiao-Tao Jin
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Tanya L. Dilan
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Shu-Hsien Sheu
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - David E. Clapham
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Ryan M. Drenan
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Luke D. Lavis
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| |
Collapse
|
5
|
Chao X, Johnson TG, Temian MC, Docker A, Wallabregue ALD, Scott A, Conway SJ, Langton MJ. Coupling Photoresponsive Transmembrane Ion Transport with Transition Metal Catalysis. J Am Chem Soc 2024; 146:4351-4356. [PMID: 38334376 PMCID: PMC10885138 DOI: 10.1021/jacs.3c13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.
Collapse
Affiliation(s)
- Xiangyu Chao
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Toby G. Johnson
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Maria-Carmen Temian
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Docker
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Aaron Scott
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Stuart J. Conway
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| | - Matthew J. Langton
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
6
|
Gagarin AA, Minin AS, Shevyrin VA, Kostova IP, Benassi E, Belskaya NP. Photocaging of Carboxylic Function Bearing Biomolecules by New Thiazole Derived Fluorophore. Chemistry 2023; 29:e202302079. [PMID: 37530503 DOI: 10.1002/chem.202302079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH2 Br and CH2 OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics (1 H, 13 C NMR, and high-resolution mass spectra) corresponded to the proposed structures. The photocourier molecules demonstrated absorption with high values of coefficient of molar extinction, exhibited contrasting green emission, and showed good dark stability. The mechanism of the photorelease was investigated through spectral analysis, HPLC-HRMS, and supported by TD-DFT calculations. The photoheterolysis and elimination of carboxylic acids were proved to occur in the excited state, yielding a carbocation as an intermediate moiety. The fluorophore structure provided stability to the carbocation through the delocalization of the positive charge via resonance structures. Viability assessment of Vero cells using the MTT-test confirmed the weak cytotoxicity of prodrugs without irradiation and it increase upon UV-light.
Collapse
Affiliation(s)
- Aleksey A Gagarin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Artem S Minin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
- M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18S. Kovalevskaya Str., Yekaterinburg, 620108, Russia
| | - Vadim A Shevyrin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Irena P Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria
| | - Enrico Benassi
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Nataliya P Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| |
Collapse
|
7
|
Chung KY, Uddin A, Page ZA. Record release of tetramethylguanidine using a green light activated photocage for rapid synthesis of soft materials. Chem Sci 2023; 14:10736-10743. [PMID: 37829029 PMCID: PMC10566505 DOI: 10.1039/d3sc04130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Photocages have enabled spatiotemporally governed organic materials synthesis with applications ranging from tissue engineering to soft robotics. However, the reliance on high energy UV light to drive an often inefficient uncaging process limits their utility. These hurdles are particularly evident for more reactive cargo, such as strong organobases, despite their attractive potential to catalyze a range of chemical transformations. Herein, two metal-free boron dipyrromethene (BODIPY) photocages bearing tetramethylguanidine (TMG) cargo are shown to induce rapid and efficient polymerizations upon exposure to a low intensity green LED. A suite of spectroscopic characterization tools were employed to identify the underlying uncaging and polymerization mechanisms, while also determining reaction quantum efficiencies. The results are directly compared to state-of-the-art TMG-bearing ortho-nitrobenzyl and coumainylmethyl photocages, finding that the present BODIPY derivatives enable step-growth polymerizations that are >10× faster than the next best performing photocage. As a final demonstration, the inherent multifunctionality of the present BODIPY platform in releasing radicals from one half of the molecule and TMG from the other is leveraged to prepare polymers with starkly disparate physical properties. The present findings are anticipated to enable new applications of photocages in both small-molecule photochemistry for medicine and advanced manufacturing of next generation soft materials.
Collapse
Affiliation(s)
- Kun-You Chung
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Ain Uddin
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
8
|
Mei S, Ou Q, Tang X, Xu JF, Zhang X. Stabilization of Carbocation Intermediate by Cucurbit[7]uril Enables High Photolysis Efficiency. Org Lett 2023; 25:5291-5296. [PMID: 37428144 DOI: 10.1021/acs.orglett.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A cucurbit[7]uril-based host-guest strategy is employed to enhance the efficiency of photolysis reactions that release caged molecules from photoremovable protecting groups. The photolysis of benzyl acetate follows a heterolytic bond cleavage mechanism, thereby leading to the formation of a contact ion pair as the key reactive intermediate. The Gibbs free energy of the contact ion pair is lowered by 3.06 kcal/mol through the stabilization of cucurbit[7]uril, as revealed by DFT calculations, which results in a 40-fold increase in the quantum yield of the photolysis reaction. This methodology is also applicable to the chloride leaving group and the diphenyl photoremovable protecting group. We anticipate that this research presents a novel strategy to improve reactions involving active cationics, thereby enriching the field of supramolecular catalysis.
Collapse
Affiliation(s)
- Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
- DP Technology, Beijing 100080, China
| | - Xingchen Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zheng HW, Yang DD, Shi YS, Xiao T, Tan HW, Zheng XJ. Conformation- and Coordination Mode-Dependent Stimuli-Responsive Salicylaldehyde Hydrazone Zn(II) Complexes. Inorg Chem 2023; 62:6323-6331. [PMID: 37043704 DOI: 10.1021/acs.inorgchem.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Luminescent Zn(II) complexes that respond to external stimuli are of wide interest due to their potential applications. Schiff base with O,N,O-hydrazone shows excellent luminescence properties with multi-coordination sites for different coordination modes. In this work, three salicylaldehyde hydrazone Zn(II) complexes (1, 2a, 2b) were synthesized and their stimuli-responsive behaviors in different states were explored. Only complex 1 exhibits reversible and self-recoverable photochromic and photoluminescence properties in solution. This may be due to the configuration eversion and the excited-state intramolecular proton transfer (ESIPT) process. In the solid state, 2a has obvious mechanochromic luminescence property, which is caused by the destruction of intermolecular interactions and the transformation from crystalline state to amorphous state. 2a and 2b have delayed fluorescence properties due to effective halogen bond interactions in structures. 2a could undergo crystal-phase transformation into its polymorphous 2b by force/vapor stimulation. Interestingly, 2b shows photochromic property, which can be attributed to the electron transfer and generation of radicals induced by UV irradiation. Due to different conformations and coordination modes, the three Zn(II) complexes show different stimuli-responsive properties. This work presents the multi-stimuli-responsive behaviors of salicylaldehyde hydrazone Zn(II) complexes in different states and discusses the response mechanism in detail, which may provide new insights into the design of multi-stimuli-responsive materials.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong-Wei Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Xu G, Li M, Wang Q, Feng F, Lou Q, Hou Y, Hui J, Zhang P, Wang L, Yao L, Qin S, Ouyang X, Wu D, Ling D, Wang X. A Dual-Kinetic Control Strategy for Designing Nano-Metamaterials: Novel Class of Metamaterials with Both Characteristic and Whole Sizes of Nanoscale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205595. [PMID: 36377475 PMCID: PMC9896071 DOI: 10.1002/advs.202205595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Increasingly intricate in their multilevel multiscale microarchitecture, metamaterials with unique physical properties are challenging the inherent constraints of natural materials. Their applicability in the nanomedicine field still suffers because nanomedicine requires a maximum size of tens to hundreds of nanometers; however, this size scale has not been achieved in metamaterials. Therefore, "nano-metamaterials," a novel class of metamaterials, are introduced, which are rationally designed materials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, investing in themselves remarkably unique and significantly enhanced material properties as compared with conventional nanomaterials. Microarchitectural regulation through conventional thermodynamic strategy is limited since the thermodynamic process relies on the frequency-dependent effective temperature, Teff (ω), which limits the architectural regulation freedom degree. Here, a novel dual-kinetic control strategy is designed to fabricate nano-metamaterials by freezing a high-free energy state in a Teff (ω)-constant system, where two independent dynamic processes, non-solvent induced block copolymer (BCP) self-assembly and osmotically driven self-emulsification, are regulated simultaneously. Fe3+ -"onion-like core@porous corona" (Fe3+ -OCPCs) nanoparticles (the products) have not only architectural complexity, porous corona and an onion-like core but also compositional complexity, Fe3+ chelating BCP assemblies. Furthermore, by using Fe3+ -OCPCs as a model material, a microstructure-biological performance relationship is manifested in nano-metamaterials.
Collapse
Affiliation(s)
- Guanhua Xu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Mengmeng Li
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Feng Feng
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qi Lou
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Yi Hou
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'anShaanxi710069P. R. China
| | - Peisen Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Li Wang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry Chinese Academy of ScienceBeijing100190P. R. China
| | - Li Yao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry Chinese Academy of ScienceBeijing100190P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of ScienceBeijing100049P. R. China
| | - Shijie Qin
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Xiaoping Ouyang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Dazhuan Wu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Xiuyu Wang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
11
|
Wang P, Lim C. Photolabile Protecting Groups Based on the Excited State Meta Effect: Development and Application. Photochem Photobiol 2022; 99:221-234. [PMID: 35971244 DOI: 10.1111/php.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
This review focuses on utilization of the excited state meta effect (ESME) in the development of photolabile protecting groups (PPGs). Structurally simple ESME-based PPGs for release of various functional groups (such as carbonyl, hydroxyl, carboxyl, amino, and thiol groups) are discussed. Examples that demonstrate the appealing advantages of these new PPGs are provided, including their efficient release of "poor" leaving groups such as hydroxyl or amino group directly instead of in their respective carbonate or carbamate form. Applications of these PPGs in synthesis, release of biologically important molecules, materials science, and biomedical engineering are also described.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chaeeun Lim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
12
|
Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nat Commun 2022; 13:3614. [PMID: 35750661 PMCID: PMC9232598 DOI: 10.1038/s41467-022-31288-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Photoremovable protecting groups (PPGs) represent one of the main contemporary implementations of photochemistry in diverse fields of research and practical applications. For the past half century, organic and metal-complex PPGs were considered mutually exclusive classes, each of which provided unique sets of physical and chemical properties thanks to their distinctive structures. Here, we introduce the meso-methylporphyrin group as a prototype hybrid-class PPG that unites traditionally exclusive elements of organic and metal-complex PPGs within a single structure. We show that the porphyrin scaffold allows extensive modularity by functional separation of the metal-binding chromophore and up to four sites of leaving group release. The insertion of metal ions can be used to tune their spectroscopic, photochemical, and biological properties. We provide a detailed description of the photoreaction mechanism studied by steady-state and transient absorption spectroscopies and quantum-chemical calculations. Our approach applied herein could facilitate access to a hitherto untapped chemical space of potential PPG scaffolds.
Collapse
|
13
|
Sun H, Yee SS, Gobeze HB, He R, Martinez D, Risinger AL, Schanze KS. One- and Two-Photon Activated Release of Oxaliplatin from a Pt(IV)-Functionalized Poly(phenylene ethynylene). ACS APPLIED MATERIALS & INTERFACES 2022; 14:15996-16005. [PMID: 35360898 DOI: 10.1021/acsami.2c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a water-soluble poly(phenylene ethynylene) (PPE-Pt(IV)) that is functionalized with oxidized oxaliplatin Pt(IV) units and its use for photoactivated chemotherapy. The photoactivation strategy is based on photoinduced electron transfer from the PPE backbone to oxaliplatin Pt(IV) as an electron acceptor; this process triggers the release of oxaliplatin, which is a clinically used anticancer drug. Mechanistic studies carried out using steady-state and time-resolved fluorescence spectroscopy coupled with picosecond-nanosecond transient absorption support the hypothesis that electron transfer triggers the drug release. Photoactivation is effective, producing oxaliplatin with a good chemical yield in less than 1 h of photolysis (400 nm, 5 mW cm-2). Photorelease of oxaliplatin from PPE-Pt(IV) can also be effected with two-photon excitation by using 100 fs pulsed light at 725 nm. Cytotoxicity studies using SK-OV-3 human ovarian cancer cells demonstrate that without photoactivation PPE-Pt(IV) is not cytotoxic at concentrations up to 10 μM in polymer repeating unit (PRU) concentration. However, following a short period of 460 nm irradiation, oxaliplatin is released from PPE-Pt(IV), resulting in cytotoxicity at concentrations as low as 2.5 μM PRU.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samantha S Yee
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Habtom B Gobeze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ru He
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel Martinez
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Takano MA, Abe M. Photoreaction of 4-(Bromomethyl)-7-(diethylamino)coumarin: Generation of a Radical and Cation Triplet Diradical during the C-Br Bond Cleavage. Org Lett 2022; 24:2804-2808. [PMID: 35394291 DOI: 10.1021/acs.orglett.2c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
7-Diethylamino-4-methyl coumarin (DEACM) derivatives are widely used as photolabile protecting groups. In this study, the photolysis of DEACM-Br with Br as the leaving group was investigated. The main reaction path was found to be the generation of radical D via homolytic C-Br bond cleavage. Interestingly, products derived from C-T, the triplet state of the carbocation intermediate (i.e., 7-(diethylamino)-4-methyl cation (C)), were identified, thereby confirming the existence of C-T for the first time.
Collapse
Affiliation(s)
- Ma-Aya Takano
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima University Research Center for Photo-Drug-Delivery-System (HiU-P-DDS), 1-3-1 Kagamiyama, Higashi Hiroshima City, 739-8526 Hiroshima, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima University Research Center for Photo-Drug-Delivery-System (HiU-P-DDS), 1-3-1 Kagamiyama, Higashi Hiroshima City, 739-8526 Hiroshima, Japan
| |
Collapse
|
15
|
Ye X, Zhang Y, Song X, Liu Q. Research Progress in the Pharmacological Effects and Synthesis of Nicotine. ChemistrySelect 2022. [DOI: 10.1002/slct.202104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Ye
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Glycobiology and Glycotechnology Research center College of Food Science and Technology Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- College of Life Sciences Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi Key Laboratory of Degradable Biomedical Materials College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| |
Collapse
|
16
|
Kalayci K, Frisch H, Barner-Kowollik C, Truong VX. Green Light Enabled Staudinger-Bertozzi Ligation. Chem Commun (Camb) 2022; 58:6397-6400. [DOI: 10.1039/d2cc00911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a visible light-induced Staudinger-Bertozzi ligation via photo-uncaging of a triphenylphosphine moiety with a photolabile coumarin derivative. Our action plot study examines the conversion as the function of wavelength,...
Collapse
|
17
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|
20
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β‐Borylacrylates as Ambiphilic C
3
‐Synthons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Max Wienhold
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - John J. Molloy
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches Intitut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
21
|
Wienhold M, Molloy JJ, Daniliuc CG, Gilmour R. Coumarins by Direct Annulation: β-Borylacrylates as Ambiphilic C 3 -Synthons. Angew Chem Int Ed Engl 2021; 60:685-689. [PMID: 32975367 PMCID: PMC7839779 DOI: 10.1002/anie.202012099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Modular β-borylacrylates have been validated as programmable, ambiphilic C3 -synthons in the cascade annulation of 2-halo-phenol derivatives to generate structurally and electronically diverse coumarins. Key to this [3+3] disconnection is the BPin unit which serves a dual purpose as both a traceless linker for C(sp2 )-C(sp2 ) coupling, and as a chromophore extension to enable inversion of the alkene geometry via selective energy transfer catalysis. Mild isomerisation is a pre-condition to access 3-substituted coumarins and provides a handle for divergence. The method is showcased in the synthesis of representative natural products that contain this venerable chemotype. Facile entry into π-expanded estrone derivatives modified at the A-ring is disclosed to demonstrate the potential of the method in bioassay development or in drug repurposing.
Collapse
Affiliation(s)
- Max Wienhold
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - John J. Molloy
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches IntitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
22
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|