1
|
Yang J, Peng Q. Intermolecular charge transfer and solid-state solvent effect synergistically induce near-infrared thermally activated delay fluorescence in the guest-host system. Phys Chem Chem Phys 2024; 26:18418-18425. [PMID: 38913431 DOI: 10.1039/d4cp00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The host matrix is an important means to tune emission color and improve luminescence efficiency of near-infrared (NIR) thermally activated delay fluorescence (TADF) light-emitting diodes. However, the mechanism of NIR TADF of the guest-host systems is still unclear. Namely, there is a controversy on whether the formation of J-aggregation, solid-state solvent effect, molecular polarization or intermolecular charge transfer (CT) is responsible for the NIR TADF. Here, the morphologies, geometrical and electronic structures, and photophysical properties are explored by combining molecular dynamics simulation, density functional theory and thermal vibration correlation function theory for the guest-host (TPAAP: TPBi) films with different concentrations. It is found that the red TADF is generated largely by the solid-state solvent effect in the low 1 wt% doped film while the NIR TADF is attributed to the synergistic effect of solid-state solvent and guest-guest intermolecular CT in the high 20 wt% film. These findings provide a deeper understanding of the mechanism of NIR-TADF of the guest-host systems.
Collapse
Affiliation(s)
- Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
2
|
Hao XY, Wang H, Zhang X, Yu J, Wang K, Zhang XH. Introducing Internal Host Component to Thermally Activated Delayed Fluorescence Emitter for Efficient NIR Nondoped Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28949-28957. [PMID: 38768497 DOI: 10.1021/acsami.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developing thermally activated delayed fluorescence (TADF) near-infrared (NIR) organic light-emitting diodes (OLEDs) based on nondoped emitting layers is intriguing yet challenging, limited by low exciton utilization and notorious concentration quenching. Herein, a facile strategy is proposed to address this issue by incorporating an internal host component onto a traditional donor (D)-acceptor (A)-type red TADF molecule. A proof-of-concept emitter with an internal host is accordingly developed as well as a control one without an internal host. In the case of their monomer states, both emitters exhibit similar emission spectra due to their identical D-A pairs. However, under nondoped conditions, significant improvement in exciton utilization and quenching-resistant features are observed for the molecule with the internal host. The corresponding nondoped OLED yielded a maximum external quantum efficiency of 2.4%, with NIR emission peaking at 765 nm, which was a nearly 10-fold improvement relative to the efficiency based on the control molecule without an internal host. To the best of our knowledge, this result is on par with those of state-of-the art nondoped NIR TADF OLEDs in a similar emission region. These results offer a feasible pathway for the design and development of high-efficiency NIR nondoped OLEDs.
Collapse
Affiliation(s)
- Xiao-Yao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
3
|
Wang SF, Zhou DY, Kuo KH, Wang CH, Hung CM, Yan J, Liao LS, Hung WY, Chi Y, Chou PT. Effects of Deuterium Isotopes on Pt(II) Complexes and Their Impact on Organic NIR Emitters. Angew Chem Int Ed Engl 2024; 63:e202317571. [PMID: 38230818 DOI: 10.1002/anie.202317571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Collapse
Affiliation(s)
- Sheng-Fu Wang
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Kai-Hua Kuo
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Kowloon, Hong Kong
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, 20224, Keelung, Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Kowloon, Hong Kong
| | - Pi-Tai Chou
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taiwan
| |
Collapse
|
4
|
Ding J, Zhang M, Gao Y, Lu C, Zhang M, Li F. A Simple Molecular Design Strategy for Luminescent Radicals to Achieve Near-Infrared Emission. J Phys Chem Lett 2023; 14:8244-8250. [PMID: 37676025 DOI: 10.1021/acs.jpclett.3c01820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The spin-allowed doublet emission of luminescent radicals has recently attracted significant attention. However, the spectral range of most reported luminescent radical emitters and their corresponding organic light-emitting diodes (OLEDs) is confined to the red and deep red regions, with only a few extending to the near-infrared region, specifically in the context of an emission peak exceeding 800 nm. Herein, a luminescent radical, 2-(4-(bis(2,4,6-trichlorophenyl)methyl radical)-3,5-dichlorophenyl)-4-phenyl-4H-thieno[3,2-b]indole (TTM-2PTI), with NIR emission peaking at 830 nm in toluene, was obtained through attaching a 4-phenyl-4H-thieno[3,2-b]indole group to the TTM radical core. An organic light-emitting diode (OLED) utilizing TTM-2PTI as the emitter exhibits electroluminescence (EL) emission peaking at 870 nm, which is the longest EL wavelength among the doublet-emissive near-infrared (NIR) OLEDs. This work provides a simple molecular design strategy to achieve NIR emission of radicals by leveraging the lower steric hindrance and electron-donating ability of thiophene.
Collapse
Affiliation(s)
- Junshuai Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Minzhe Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Yuhang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Ma B, Ding Z, Liu D, Zhou Z, Zhang K, Dang D, Zhang S, Su SJ, Zhu W, Liu Y. A Feasible Strategy for a Highly Efficient Thermally Activated Delayed Fluorescence Emitter Over 900 nm Based on Phenalenone Derivatives. Chemistry 2023; 29:e202301197. [PMID: 37154226 DOI: 10.1002/chem.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Near-infrared (NIR) organic light-emitting diodes (OLEDs) suffer from the low external electroluminescence (EL) quantum efficiency (EQE), which is a critical obstacle for potential applications. Herein, 1-oxo-1-phenalene-2,3-dicarbonitrile (OPDC) is employed as an electron-withdrawing aromatic ring, and by incorporating with triphenylamine (TPA) and biphenylphenylamine (BBPA) donors, two novel NIR emitters with thermally activated delayed fluorescence (TADF) characteristics, namely OPDC-DTPA and OPDC-DBBPA, are first developed and compared in parallel. Intense NIR emission peaks at 962 and 1003 nm are observed in their pure films, respectively. Contributed by the local excited (LE) characteristics in the triplet (T1 ) state in synergy with the charge transfer (CT) characteristics for the singlet (S1 ) state to activate TADF emission, the solution processable doped NIR OLEDs based on OPDC-DTPA and OPDC-DBBPA yield EL peaks at 834 and 906 nm, accompanied with maximum EQEs of 0.457 and 0.103 %, respectively, representing the state-of-the-art EL performances in the TADF emitter-based NIR-OLEDs in the similar EL emission regions so far. This work manifests a simple and effective strategy for the development of NIR TADF emitters with long wavelength and efficiency synchronously.
Collapse
Affiliation(s)
- Bin Ma
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhenming Ding
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongfeng Dang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
6
|
Derkowski W, Kumar D, Gryber T, Wagner J, Morawiak M, Kochman MA, Kubas A, Data P, Lindner M. V-shaped donor-acceptor organic emitters. A new approach towards efficient TADF OLED devices. Chem Commun (Camb) 2023; 59:2815-2818. [PMID: 36790367 DOI: 10.1039/d2cc06978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report the synthesis and characterization of a series of donor-acceptor TADF emitters with a new architecture, where the donor moiety and the dibenzazepine-based acceptor moiety are separated by a phenylene linker in a V-shaped spatial arrangement. Such spatial separation and electronic decoupling between the donor and the acceptor moieties leads to low singlet-triplet energy gaps and favors efficient exciton up-conversion.
Collapse
Affiliation(s)
- Wojciech Derkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dharmandra Kumar
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Tomasz Gryber
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Jakub Wagner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Maja Morawiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Przemysław Data
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
7
|
Liu Y, Yang J, Mao Z, Wang Y, Zhao J, Su SJ, Chi Z. Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Chem Sci 2023; 14:1551-1556. [PMID: 36794188 PMCID: PMC9906651 DOI: 10.1039/d2sc06335b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 01/13/2023] Open
Abstract
The isomeric strategy is an important design concept in molecular design that has a non-negligible influence on molecular properties. Herein, two isomeric thermally activated delayed fluorescence (TADF) emitters (NTPZ and TNPZ) are constructed with the same skeleton consisting of an electron donor and electron acceptor but different connection sites. Systematic investigations show that NTPZ exhibits a small energy gap, large up-conversion efficiency, low non-radiative decay, and high photoluminescence quantum yield. Further theoretical simulations reveal that the excited molecular vibrations play a key role in regulating the non-radiative decays of the isomers. Therefore, an NTPZ based OLED achieves better electroluminescence performances, such as a higher external quantum efficiency of 27.5% compared to a TNPZ based OLED (18.3%). This isomeric strategy not only provides an opportunity to deeply understand the relationship between substituent locations and molecular properties, but also affords a simple and effective strategy to enrich TADF materials.
Collapse
Affiliation(s)
- Yanyan Liu
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Jiaji Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yuyuan Wang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
8
|
Liang T, Jiang X, Wang J, Pan Y, Yang B. A theoretical study on the effects of intramolecular and intermolecular interactions on excited state properties of two NIR-TADF combined with AIE molecules. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Xiao Y, Wang H, Xie Z, Shen M, Huang R, Miao Y, Liu G, Yu T, Huang W. NIR TADF emitters and OLEDs: challenges, progress, and perspectives. Chem Sci 2022; 13:8906-8923. [PMID: 36091200 PMCID: PMC9365097 DOI: 10.1039/d2sc02201j] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022] Open
Abstract
Near-infrared (NIR) light-emitting materials show excellent potential applications in the fields of military technology, bioimaging, optical communication, organic light-emitting diodes (OLEDs), etc. Recently, thermally activated delayed fluorescence (TADF) emitters have made historic developments in the field of OLEDs. These metal-free materials are more attractive because of efficient reverse intersystem crossing processes which result in promising high efficiencies in OLEDs. However, the development of NIR TADF emitters has progressed at a relatively slower pace which could be ascribed to the difficult promotion of external quantum efficiencies. Thus, increasing attention has been paid to NIR TADF emitters. In this review, the recent progress of NIR TADF emitters has been summarized along with their molecular design strategies and photophysical properties, as well as electroluminescence performance data of their OLEDs, respectively.
Collapse
Affiliation(s)
- Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Zongliang Xie
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yuchen Miao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Guanyu Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts and Telecommunications Nanjing 210023 China
| |
Collapse
|
10
|
Zhuo MP, Wang XD, Liao LS. Recent Progress of Novel Organic Near‐Infrared‐Emitting Materials. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ming-Peng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
- College of Textile and Clothing Engineering Soochow University Suzhou 215123 China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| |
Collapse
|
11
|
Liu Y, Yang J, Mao Z, Chen X, Yang Z, Ge X, Peng X, Zhao J, Su SJ, Chi Z. Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33606-33613. [PMID: 35819262 DOI: 10.1021/acsami.2c07617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing highly efficient red/near-infrared thermally activated delayed fluorescence (TADF) materials is of great importance for organic light-emitting diodes (OLEDs). Here, we reported an asymmetric TADF emitter (TCPQ), which exhibits a high reverse intersystem crossing rate as well as a low non-radiative rate due to molecular symmetry breaking through multiple donor substitution. The coexistence of multiple donors endows TCPQ with not only near-infrared emission but also excellent device performances. As for the TCPQ-based OLEDs, the 10 and 20 wt % doped devices exhibit outstanding external quantum efficiencies (EQEs) of 21.9 and 19.2% with red emission peaks at 612 and 642 nm, respectively. Meanwhile, the non-doped device achieves an EQE of 5.4% with an emission peak at 718 nm, showing near-infrared emission. These device efficiencies are among the best performances of red/near-infrared TADF-OLEDs, demonstrating that the asymmetry design is a potential strategy for constructing long wavelength TADF materials with high efficiency.
Collapse
Affiliation(s)
- Yanyan Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaji Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Yang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Ge
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaomei Peng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Juan Zhao
- State Key Laboratory of OEMT, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of OEMT, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Cui Y, Pu Y, Li Z, Liang B, Li C, Wang Y. Structures and Photoluminescence Properties of Bis(aromatic amino)‐Based Isomers with Biphenyl as Bridge. ChemistrySelect 2022. [DOI: 10.1002/slct.202201389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiqiang Li
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Baoyan Liang
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| |
Collapse
|
13
|
Yu Y, Xing H, Liu D, Zhao M, Sung HH, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angew Chem Int Ed Engl 2022; 61:e202204279. [DOI: 10.1002/anie.202204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Yu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Hao Xing
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Dan Liu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Mengying Zhao
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Herman H.‐Y. Sung
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ian D. Williams
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Jacky W. Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| |
Collapse
|
14
|
Yu Y, Xing H, Liu D, Zhao M, Sung HHY, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15%. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Yu
- CUHKS: The Chinese University of Hong Kong - Shenzhen Science and Engineering CHINA
| | - Hao Xing
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Dan Liu
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Mengying Zhao
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Herman H.-Y. Sung
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Ian D. Williams
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Jacky W. Y. Lam
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | | | - Zheng Zhao
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
15
|
Zhuo MP, Yuan Y, Su Y, Chen S, Chen YT, Feng ZQ, Qu YK, Li MD, Li Y, Hu BW, Wang XD, Liao LS. Segregated Array Tailoring Charge-Transfer Degree of Organic Cocrystal for the Efficient Near-Infrared Emission beyond 760 nm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107169. [PMID: 35029001 DOI: 10.1002/adma.202107169] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex is designed and fabricated via the supramolecular self-assembly process, which demonstrates the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40° between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires display an ultralow optical-loss coefficient of 0.060 dB µm-1 . This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy.
Collapse
Affiliation(s)
- Ming-Peng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yi Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yang Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ye-Tao Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou, 515063, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou, 515063, China
| | - Yang Li
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, Institute of Functional Materials, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Bing-Wen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, Institute of Functional Materials, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
16
|
Zhu A, Yu J, Zhou T, Zhang K, Qiu S, Ban X, Wang Y, Shen Z, Da S, Gao X. Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-conjugated linking as a molecular design strategy to construct multifunctional structures to achieve the TADF feature and sensor properties in a single system.
Collapse
Affiliation(s)
- Aiyun Zhu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Jianmin Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Suyu Qiu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Lianyungang, Jiangsu, 222005, China
| | - Yuanchu Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zhouzhou Shen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shiji Da
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, Jiangsu, 222005, China
| |
Collapse
|
17
|
Liu F, Cheng Z, Wan L, Feng Z, Liu H, Jin H, Gao L, Lu P, Yang W. Highly Efficient Multi-Resonance Thermally Activated Delayed Fluorescence Material with a Narrow Full Width at Half-Maximum of 0.14 eV. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106462. [PMID: 34862733 DOI: 10.1002/smll.202106462] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) material, which possesses the ability to achieve narrowband emission in organic light-emitting diodes (OLEDs), is of significant importance for wide color gamut and high-resolution display applications. To date, MR-TADF material with narrow full width at half-maximum (FWHM) below 0.14 eV still remains a great challenge. Herein, through peripheral protection of MR framework by phenyl derivatives, four efficient narrowband MR-TADF emitters are successfully designed and synthesized. The introduction of peripheral phenyl-based moieties via a single bond significantly suppresses the high-frequency stretching vibrations and reduces the reorganization energies, accordingly deriving the resulting molecules with small FWMH values around 20 nm/0.11 eV and fast radiative decay rates exceeding 108 s-1 . The corresponding green OLED based on TPh-BN realizes excellent performance with the maximum external quantum efficiency (EQE) up to 28.9% without utilizing any sensitizing host and a relatively narrow FWHM of 0.14 eV (28 nm), which is smaller than the reported green MR-TADF molecules in current literatures. Especially, the devices show significantly reduced efficiency roll-off and relatively long operational lifetimes among the sensitizer-free MR-TADF devices. These results clearly indicate the promise of this design strategy for highly efficient OLEDs with ultra-high color purity.
Collapse
Affiliation(s)
- Futong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liang Wan
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hui Liu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haixu Jin
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lei Gao
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Zhou L, Chen JX, Ji S, Chen WC, Huo Y. Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Zhu ZL, Wang SF, Fu LW, Tan JH, Cao C, Yuan Y, Yiu SM, Zhang YX, Chi Y, Lee CS. Efficient Pyrazolo[5,4-f]quinoxaline Functionalized Os(II) Based Emitter with an Electroluminescence Peak Maximum at 811 nm. Chemistry 2021; 28:e202103202. [PMID: 34811829 DOI: 10.1002/chem.202103202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/12/2022]
Abstract
Upon fusing the pyrazinyl pyrazole entity in giving pyrazolo[3,4-f]quinoxaline chelate, the corresponding Os(II) based NIR emitter exhibited "invisible" and efficient electroluminescence with a peak maximum at 811 nm. A maximum external quantum efficiency of 0.97 % and a suppressed efficiency roll-off till a current density of 300 mA cm-2 was also exhibited.
Collapse
Affiliation(s)
- Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Sheng-Fu Wang
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Wen Fu
- Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yi Yuan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shek-Man Yiu
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ye-Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd., Unit B, Building 12, No. 200, Xingpu Road, Suzhou Industrial Park, Suzhou, 215000, P. R. China
| | - Yun Chi
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China.,Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
20
|
Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Realizing Record-High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angew Chem Int Ed Engl 2021; 60:23635-23640. [PMID: 34459540 DOI: 10.1002/anie.202111172] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Tailor-made red thermally activated delayed fluorescence (TADF) molecules comprised of an electron-withdrawing pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile core and various electron-donating triarylamines are developed. They can form intramolecular hydrogen-bonding, which is conducive to improving emission efficiency and promoting horizontal orientation and show near infrared (NIR) emissions (692-710 nm) in neat films and red delayed fluorescence (606-630 nm) with high photoluminescence quantum yields (73-90%) in doped films. They prefer horizontal orientation with large horizontal dipole ratios in films, rendering high optical out-coupling factors (0.39-0.41). Their non-doped OLEDs exhibit NIR lights (716-748 nm) with maximum external quantum efficiencies (ηext,max ) of 1.0-1.9%. And their doped OLEDs radiate red lights (606-648 nm) and achieve record-beating ηext,max of up to 31.5%. These new red TADF materials should have great potentials in display and lighting devices.
Collapse
Affiliation(s)
- Zheyi Cai
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xing Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
21
|
Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Realizing Record‐High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheyi Cai
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xing Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
22
|
Balijapalli U, Lee Y, Karunathilaka BSB, Tumen‐Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[
a
,
c
]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi‐Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Buddhika S. B. Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Ganbaatar Tumen‐Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
23
|
Balijapalli U, Lee YT, Karunathilaka BSB, Tumen-Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[a,c]phenazine Backbone for Highly Efficient Orange-Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021; 60:19364-19373. [PMID: 34155775 DOI: 10.1002/anie.202106570] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 11/09/2022]
Abstract
Three thermally activated delayed fluorescence (TADF) molecules, namely PQ1, PQ2, and PQ3, are composed of electron-accepting (A) tetrabenzo[a,c]phenazine (TBPZ) and electron-donating (D) phenoxazine (PXZ) units are designed and characterized. The combined effects of planar acceptor manipulation and high steric hindrance between D and A units endow high molecular rigidity that suppresses nonradiative decay of the excitons with improved photoluminescence quantum yields (PLQYs). Particularly, the well-aligned excited states involving a singlet and a triplet charge-transfer excited states and a localized excited triplet state in PQ3 enhances the reverse intersystem crossing rate constant (kRISC ) with a short delay lifetime (τd ). The orange-red OLED based on PQ3 displays a maximum external EL quantum efficiency (EQE) of 27.4 % with a well-suppressed EL efficiency roll-off owing to a completely horizontal orientation of the transition dipole moment in the film state.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Buddhika S B Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ganbaatar Tumen-Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
24
|
Wang YY, Tong KN, Zhang K, Lu CH, Chen X, Liang JX, Wang CK, Wu CC, Fung MK, Fan J. Positive impact of chromophore flexibility on the efficiency of red thermally activated delayed fluorescence materials. MATERIALS HORIZONS 2021; 8:1297-1303. [PMID: 34821922 DOI: 10.1039/d1mh00028d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rigid electron donors (D) and acceptors (A) have been widely used in recent years for the construction of D-A type thermally activated delayed fluorescence (TADF) materials. However, the chromophore robustness does not always make a positive contribution to the high efficiency of TADF materials. Here, the comparison study of two D-A type red TADF compounds (PT-TPA and PT-Az) demonstrated, for the first time, the positive impact of chromophore flexibility on the efficiency of TADF materials. In PT-Az, the rotation of terminal phenyl groups is restrained by an ethylene linker, leading to its inferior photoluminescence quantum yield (PLQY). In contrast, PT-TPA with free rotation of the phenyl groups showed a low reorganization energy and a large transition dipole moment for the S1→ S0 transition, which resulted in a high fluorescence radiative decay rate. As a result, the optimized devices based on PT-TPA gave a maximum external quantum efficiency (EQE) of 29.7% (632 nm) when doped in a single host and an EQE of 28.8% (648 nm) in an exciplex host. This study provided an insight into the impact of chromophore flexibility on the photophysical properties and device efficiency of TADF materials, and these results may provide valuable guidance for the molecular design of efficient emitters.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pauk K, Luňák S, Růžička A, Marková A, Mausová A, Kratochvíl M, Melánová K, Weiter M, Imramovský A, Vala M. Green-, Red-, and Infrared-Emitting Polymorphs of Sterically Hindered Push-Pull Substituted Stilbenes. Chemistry 2021; 27:4341-4348. [PMID: 33119919 DOI: 10.1002/chem.202004419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022]
Abstract
The synthesis, XRD single-crystal structure, powder XRD, and solid-state fluorescence of two new DPA-DPS-EWG derivatives (DPA=diphenylamino, DPS=2,5-diphenyl-stilbene, EWG=electron-withdrawing group, that is, carbaldehyde or dicyanovinylene, DCV) are described. Absorption and fluorescence maxima in solvents of various polarity show bathochromic shifts with respect to the parent DPA-stilbene-EWGs. The electronic coupling in dimers and potential twist elasticity of monomers were studied by density functional theory. Both polymorphs of the CHO derivative emit green fluorescence (527 and 550 nm) of moderate intensity (10 % and 5 %) in polycrystalline powder form. Moderate (5 %) red (672 nm) monomer-like emission was also observed for the first polymorph of the DCV derivative, whereas more intense (32 %) infrared (733 nm) emission of the second polymorph was ascribed to the excimer fluorescence.
Collapse
Affiliation(s)
- Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Stanislav Luňák
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Aneta Marková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Anna Mausová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Matouš Kratochvíl
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Klára Melánová
- Joint Laboratory of Solid-State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 84, 53210, Pardubice, Czech Republic
| | - Martin Weiter
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53009, Pardubice, Czech Republic
| | - Martin Vala
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200, Brno, Czech Republic
| |
Collapse
|
26
|
Yu YJ, Wang XQ, Liu JF, Jiang ZQ, Liao LS. Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel. iScience 2021; 24:102123. [PMID: 33659882 PMCID: PMC7895761 DOI: 10.1016/j.isci.2021.102123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (NIR) emission is useful for numerous practical applications, such as communication, biomedical sensors, night vision, etc., which encourages researchers to develop materials and devices for the realization of efficient NIR organic light-emitting devices. Recently, the emerging organic thermally activated delayed fluorescence (TADF) emitters have attracted wide attention because of the full utilization of electron-generated excitons, which is crucial for achieving high device efficiency. Up to now, the TADF emitters have shown their potential in the deep red/NIR region. Considering the color purity and efficiency, however, the development of NIR TADF emitters still lags behind RGB TADF emitters, indicating that there is still much room to improve their performance. In this regard, this perspective mainly summarizes the past progress of molecular design on constructing TADF NIR emitters. We hope this perspective could provide a new vista in developing NIR materials and enlighten breakthroughs in both fundamental research and applications.
Collapse
Affiliation(s)
- You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Jing-Feng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
27
|
Li H, Yang T, Wang J, Xie N, Wang Q, Xu Y, Zhao Y, Liang B. Highly Efficient Orange-Red Thermally Activated Delayed Fluorescence Compounds Comprising Dual Dicyano-Substituted Pyrazine/Quinoxaline Acceptors. Chempluschem 2021; 86:95-102. [PMID: 33394570 DOI: 10.1002/cplu.202000703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The π-conjugation of molecules has a large influence on their excited state properties, especially for red thermally activated delayed fluorescence (TADF) materials. Two orange-red TADF compounds comprising dual dicyano-substituted pyrazine/quinoxaline acceptors have been designed and synthesized. TPA-2DCNQ (3,3'-((phenylazanediyl)bis(4,1-phenylene))bis(2-phenylquinoxaline-6,7-dicarbonitrile) with extended π-conjugated quinoxaline as the acceptor exhibits higher photoluminescence quantum yields (ca. 0.67-0.71) in doped films. A smaller energy splitting (ΔEst ) between the first singlet excited state and triplet excited state is also achieved, indicating that extending the π-conjugation of the acceptor rationally is an effective approach to designing highly efficient long-wavelength TADF materials. Devices with TPA-2DCNQ as the emitter display maximum external quantum efficiencies (EQEs) of 12.6-14.0 %, which are more than twice those of devices containing TPA-2DCNPZ (6,6'-((phenylazanediyl)bis(4,1-phenylene))bis(5-phenylpyrazine-2,3-dicarbonitrile).
Collapse
Affiliation(s)
- Hejun Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China.,Jihua Laboratory, 13 Nanpingxi Road, Foshan, 528200, Guangdong Province, P. R. China
| | - Tong Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Jiaxuan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Ning Xie
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuguang Zhao
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Baoyan Liang
- Jihua Laboratory, 13 Nanpingxi Road, Foshan, 528200, Guangdong Province, P. R. China
| |
Collapse
|