1
|
Zadehnazari A, Auras F, Altaf AA, Zarei A, Khosropour A, Amirjalayer S, Abbaspourrad A. Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation. Nat Commun 2024; 15:10846. [PMID: 39737983 DOI: 10.1038/s41467-024-55156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses. TTF-COF has an adsorption capacity toward aqueous Au(III) of 2440 mg g-1, and TPE-COF's Au(III) adsorption capacity is 1639 mg g-1. The gold source is metal flakes isolated from waste computer processing units. Of the gold present, > 99% is selectively captured by TTF-COF whereas only 5% of the Ni and 2% of the Cu in the solution is adsorbed. The Au-loaded covalent organic frameworks catalyze the carboxylation of terminal alkynes and are stable and reusable for six reuse cycles. Our covalent organic frameworks convert e-waste into a valuable catalyst for a useful green organic transformation.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA
| | - Saeed Amirjalayer
- University of Münster, Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, Münster, Germany
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
| |
Collapse
|
2
|
Arena D, Nguyen C, Ali LMA, Verde-Sesto E, Iturrospe A, Arbe A, İşci U, Şahin Z, Dumoulin F, Gary-Bobo M, Pomposo JA. Amphiphilic Single-Chain Polymer Nanoparticles as Imaging and Far-Red Photokilling Agents for Photodynamic Therapy in Zebrafish Embryo Xenografts. Adv Healthc Mater 2024; 13:e2401683. [PMID: 38973211 DOI: 10.1002/adhm.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Indexed: 07/09/2024]
Abstract
This work introduces rationally designed, improved amphiphilic single-chain polymer nanoparticles (SCNPs) for imaging and photodynamic therapy (PDT) in zebrafish embryo xenografts. SCNPs are ultrasmall polymeric nanoparticles with sizes similar to proteins, making them ideal for biomedical applications. Amphiphilic SCNPs result from the self-assembly in water of isolated synthetic polymeric chains through intrachain hydrophobic interactions, mimicking natural biomacromolecules and, specially, proteins (in size and when loaded with drugs, metal ions or fluorophores also in function). These ultrasmall, soft nanoparticles have various applications, including catalysis, sensing, and nanomedicine. Initial in vitro experiments with nonfunctionalized, amphiphilic SCNPs loaded with a photosensitizing Zn phthalocyanine with four nonperipheral isobutylthio substituents, ZnPc, showed promise for PDT. Herein, the preparation of improved, amphiphilic SCNPs containing ZnPc as highly efficient photosensitizer encapsulated within the nanoparticle and surrounded by anthracene units is disclosed. The amount of anthracene groups and ZnPc molecules within each single-chain nanoparticle controls the imaging and PDT properties of these nanocarriers. Critically, this work opens the way to improved PDT applications based on amphiphilic SCNPs as a first step toward ideal, long-term artificial photo-oxidases (APO).
Collapse
Affiliation(s)
- Davide Arena
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21561, Egypt
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| | - Amaia Iturrospe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Umit İşci
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Zeynel Şahin
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Fabienne Dumoulin
- Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia, 20800, Spain
| |
Collapse
|
3
|
Paats JWD, Hamelmann NM, Paulusse JMJ. Dual-reactive single-chain polymer nanoparticles for orthogonal functionalization through active ester and click chemistry. J Control Release 2024; 373:117-127. [PMID: 38968970 DOI: 10.1016/j.jconrel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.
Collapse
Affiliation(s)
- Jan-Willem D Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands.
| |
Collapse
|
4
|
Yang N, Wang Y, Yan Q. Dynamic Gas-Bridged Bond: An Opportunity of Fabricating Dynamic Assembled Materials with Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43093-43101. [PMID: 39116111 DOI: 10.1021/acsami.4c11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gas molecules, as a family of unique polyatomic building blocks, have long been considered hard to involve in molecular assembly or construct assembled materials due to their structural simplicity yet paucity of defined interacting sites. To solve this non-trivial challenge, a core idea is to break the limit of current ways of bonding gas molecules, endowing them with new modes of interactions that match the basic requirements of molecular assembly. In recent years, a new concept, named the dynamic gas-bridged bond (DGB), has emerged, which allows for gas molecules to constitute a dynamic bridging structure between other building blocks with the aid of frustrated Lewis pairs. This makes it possible to harness gas in a supramolecular or dynamic manner. Herein, this perspective discusses distinct dynamic natures of DGBs and manifests their particular functions in various fields, including the control of molecular/polymeric self-assembly nanostructures, creation of multidimensional assembled materials, and recyclable catalysts. The future research direction and challenges of dynamic gas-bridged chemistry toward gas-programmed self-assembly and gas-constructed adaptive materials are highlighted.
Collapse
Affiliation(s)
- Nan Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Chen W, Li S, Yi L, Chen Z, Li Z, Wu Y, Yan W, Deng F, Deng H. Precise Distance Control and Functionality Adjustment of Frustrated Lewis Pairs in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:12215-12224. [PMID: 38629769 DOI: 10.1021/jacs.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We report the construction of frustrated Lewis pairs (FLPs) in a metal-organic framework (MOF), where both Lewis acid (LA) and Lewis base (LB) are fixed to the backbone. The anchoring of a tritopic organoboron linker as LA and a monotopic linker as LB to separate metal oxide clusters in a tetrahedron geometry allows for the precise control of distance between them. As the type of monotopic LB linker varies, pyridine, phenol, aniline, and benzyl alcohol, a series of 11 FLPs were constructed to give fixed distances of 7.1, 5.5, 5.4, and 4.8 Å, respectively, revealed by 11B-1H solid-state nuclear magnetic resonance spectroscopy. Keeping LA and LB apart by a fixed distance makes it possible to investigate the electrostatic effect by changing the functional groups in the monotopic LB linker, while the LA counterpart remains unaffected. This approach offers new chemical environments of the active site for FLP-induced catalysis.
Collapse
Affiliation(s)
- Wenhao Chen
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Lezhi Yi
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Ziyi Chen
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
| | - Zihao Li
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yifan Wu
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Yan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Blázquez-Martín A, Bonardd S, Verde-Sesto E, Arbe A, Pomposo JA. Trimethylsilanol Cleaves Stable Azaylides As Revealed by Unfolding of Robust "Staudinger" Single-Chain Nanoparticles. ACS POLYMERS AU 2024; 4:140-148. [PMID: 38618005 PMCID: PMC11010256 DOI: 10.1021/acspolymersau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024]
Abstract
Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Sebastián Bonardd
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
7
|
Chen B, Jäkle F. Boron-Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angew Chem Int Ed Engl 2024; 63:e202313379. [PMID: 37815889 DOI: 10.1002/anie.202313379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Blazquez-Martín A, Verde-Sesto E, Arbe A, Pomposo JA. Metamorphosis of a Commodity Plastic like PVC to Efficient Catalytic Single-Chain Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202313502. [PMID: 37792399 DOI: 10.1002/anie.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
We perform the conversion of a commodity plastic of common use in pipes, window frames, medical devices, flexible hoses, etc. like polyvinyl chloride (PVC) to single-chain nanoparticles (SCNPs). SCNPs are versatile, protein-mimetic soft nano-objects of growing interest for catalysis, sensing, and nanomedicine, among other uses. We demonstrate that the metamorphosis process -as induced through metal-free click chemistry- leads to well-defined, uniform SCNPs that are stable during storage in the solid state for months. All the conversion process (from PVC isolation to PVC-SCNPs synthesis) can be run in a green, dipolar aprotic solvent and involving, when required, a simple mixture of ethanol and water (1/1 vol.) as non-solvent. The resulting PVC-SCNPs are investigated as recyclable, metalloenzyme-mimetic catalysts for several representative Cu(II)-catalyzed organic reactions. The method could be valid for the metamorphosis and valorization of other commodity plastics in which it is feasible to install azide functional groups in their linear polymer chains.
Collapse
Affiliation(s)
- Agustín Blazquez-Martín
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología. University of the Basque Country (UPV/EHU), PO Box 1072, E-20800, Donostia, Spain
| |
Collapse
|
9
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Wang Y, Yan Q. CO 2 -Fueled Transient Breathing Nanogels that Couple Nonequilibrium Catalytic Polymerization. Angew Chem Int Ed Engl 2023; 62:e202217001. [PMID: 36738302 DOI: 10.1002/anie.202217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Here we present a "breathing" nanogel that is fueled by CO2 gas to perform temporally programmable catalytic polymerization. The nanogel is composed of common frustrated Lewis pair polymers (FLPs). Dynamic CO2 -FLP gas-bridging bonds endow the nanogel with a transient volume contraction, and the resulting proximal effect of bound FLPs unlocks its catalytic capacity toward CO2 . Reverse gas depletion via a CO2 -participated polymerization can induce a reverse nanogel expansion, which shuts down the catalytic activity. Control of external factors (fuel level, temperature or additives) can regulate the breathing period, amplitude and lifecycle, so as to affect the catalytic polymerization. Moreover, editing the nanogel breathing procedure can sequentially evoke the copolymerization of CO2 with different epoxide monomers preloaded therein, which allows to obtain block-tunable copolycarbonates that are unachievable by other methods. This synthetic dissipative system would be function as a prototype of gas-driven nanosynthesizer.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
11
|
Zhang Z, Yang YF, She YB. Computational Exploration of Dinuclear MgCo Complex-Catalyzed Ring-Opening Copolymerization of Cyclohexene Oxide and CO 2. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanhao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
12
|
Piane JJ, Huss S, Alameda LT, Koehler SJ, Chamberlain LE, Schubach MJ, Hoover AC, Elacqua E. Single‐chain
polymers as homogeneous oxidative photoredox catalysts. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jacob J. Piane
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Steven Huss
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lucas T. Alameda
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Stephen J. Koehler
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Lauren E. Chamberlain
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Matthew J. Schubach
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Ashley C. Hoover
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| | - Elizabeth Elacqua
- Department of Chemistry The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
13
|
Guo X, Shi W, Yin H, Pan J, Wang Z, Feng A, Thang SH. Facile Synthesis of CO 2 -Responsive Nano-Objects: Batch versus Semi-Batch RAFT Copolymerization. Macromol Rapid Commun 2021; 42:e2000765. [PMID: 33904216 DOI: 10.1002/marc.202000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Indexed: 11/11/2022]
Abstract
Precise polymer architecture and self-assembled morphological control are attractive due to their promising applications, such as drug delivery, biosensors, tissue engineering and "smart" optical systems. Herein, starting from the same hydrophilic units poly(ethylene glycol) (PEG), using CO2 -sensitive monomer N, N-diethylaminoethyl methacrylate (DEAEMA) and hydrophobic monomer benzyl methacrylate (BzMA), a series of well-defined statistical, block, and gradient copolymers is designed and synthesized with similar degree of polymerization but different monomer sequences by batch and semi-batch RAFT polymerization process and their CO2 -responsive behaviors of these nano-objects is systematically studied. The gradient copolymers are generated by using semi-batch methods with programmed monomer feed rate controlled by syringe pumps, achieving precise control over desired gradient copolymer composition distribution. In aqueous solution, the copolymers could self-assemble into various aggregates before CO2 stimulus. Upon bubbling CO2 , the gradient copolymers preferred to form nanosheet-like structures, while the block and statistical copolymers with similar molar mass could only form larger vesicles with thinner membrane thickness or disassemble. The semi-batch strategy to precisely control over the desired composition distribution of the gradient segment presents an emerging trend for the fabrication and application of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Xiaofeng Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencheng Shi
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hang Yin
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiasheng Pan
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anchao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| |
Collapse
|
14
|
Liu R, Wang Y, Yan Q. CO
2
‐Strengthened Double‐Cross‐Linked Polymer Gels from Frustrated Lewis Pair Networks. Macromol Rapid Commun 2021; 42:e2000699. [DOI: 10.1002/marc.202000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
15
|
Nghiem TL, Coban D, Tjaberings S, Gröschel AH. Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis. Polymers (Basel) 2020; 12:E2190. [PMID: 32987965 PMCID: PMC7600123 DOI: 10.3390/polym12102190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize-from a personal perspective-prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy.
Collapse
Affiliation(s)
| | | | | | - André H. Gröschel
- Physical Chemistry and Centre for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany; (T.-L.N.); (D.C.); (S.T.)
| |
Collapse
|