1
|
Liu H, Wang YP, Wang H, Ren K, Liu L, Dang L, Wang CQ, Feng C. Photocatalytic Multisite Functionalization of Unactivated Terminal Alkenes by Merging Polar Cycloaddition and Radical Ring-Opening Process. Angew Chem Int Ed Engl 2024; 63:e202407928. [PMID: 39022842 DOI: 10.1002/anie.202407928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Although highly appealing for rapid access of molecular complexity, multi-functionalization of alkenes that allows incorporation of more than two functional groups remains a prominent challenge. Herein, we report a novel strategy that merges dipolar cycloaddition with photoredox promoted radical ring-opening remote C(sp3)-H functionalization, thus enabling a smooth 1,2,5-trifunctionalization of unactivated alkenes. A highly regioselective [3+2] cycloaddition anchors a reaction trigger onto alkene substrates. The subsequent halogen atom transfer (XAT) selectively initiates ring-opening process, which is followed by a series of 1,5-hydrogen atom transfer (1,5-HAT) and intermolecular fluorine atom transfer (FAT) events. With this method, site-selective introduction of three different functional groups is accomplished and a broad spectrum of valuable β-hydroxyl-ϵ-fluoro-nitrile products are synthesized from readily available terminal alkenes.
Collapse
Affiliation(s)
- Haidong Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Yi-Peng Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kewei Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Longfei Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Luzhen Dang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng-Qiang Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Xu N, Holmgren JL, Morken JP. Site-Selective Activation and Stereospecific Functionalization of Bis(boronic Esters) Derived from 2-Alkenes: Construction of Propionates and Other 1,2-Difunctional Motifs. Angew Chem Int Ed Engl 2024; 63:e202408436. [PMID: 38924653 DOI: 10.1002/anie.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Non-directed regioselective activation of bis(boronic esters), followed by functionalization, is reported. A bulky activator is shown to selectively activate the less hindered boronic ester enabling it to undergo stereospecific cross-coupling to a variety of electrophiles. This steric-based regioselectivity provides a simple and efficient method to prepare highly functionalized, enantiomerically enriched products starting from simple alkenes.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - John L Holmgren
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - James P Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
Huang H, Yu ZY, Han LY, Wu YQ, Jiang L, Li QZ, Huang W, Han B, Li JL. N-Heterocyclic carbene catalytic 1,2-boron migrative acylation accelerated by photocatalysis. SCIENCE ADVANCES 2024; 10:eadn8401. [PMID: 39047096 PMCID: PMC11268412 DOI: 10.1126/sciadv.adn8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Ning PF, Wei Y, Chen XY, Yang YF, Gao FC, Hong K. A General Method to Access Sterically Encumbered Geminal Bis(boronates) via Formal Umpolung Transformation of Terminal Diboron Compounds. Angew Chem Int Ed Engl 2024; 63:e202315232. [PMID: 38059757 DOI: 10.1002/anie.202315232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).
Collapse
Affiliation(s)
- Peng-Fei Ning
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
5
|
Liu XY, Fang JL, Rao W, Shen D, Yang ZY, Wang SY. Overcoming Radical Stability Order via DABCO-Triggered Desulfurization: Visible-Light-Promoted 1,2,4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate. J Org Chem 2024; 89:474-483. [PMID: 38096480 DOI: 10.1021/acs.joc.3c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A radical 1,2,4-trifunctional reaction of thiosulfonate to unactivated olefin is achieved by a migration strategy under mild conditions. In this reaction, the more unstable primary free radicals are in situ generated after the migration of heteroaryl groups in the presence of DABCO. This trifunctionalization of unactivated olefins involves two C-S bond formations and one C-C bond formation.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jia-Lin Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Daopeng Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Velasco-Rubio Á, Cong F, Tian Y, Martin R. Ni-Catalyzed 1,2-Alkyl Borylation and Silylation of Allenes En Route to [1,3]-Bis-Organometallic Reagents. Org Lett 2023; 25:9147-9152. [PMID: 38095944 DOI: 10.1021/acs.orglett.3c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A nickel-catalyzed multicomponent reaction that rapidly and reliably accesses [1,3]-bis-organometallic reagents from allenes is reported. The protocol exhibits a predictable regioselectivity pattern that enables the incorporation of B,B(Si) fragments across the allene backbone under mild conditions, thus offering a complementary platform for accessing polyorganometallic reagents possessing both sp2 and sp3 hybridization from readily available precursors.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yubiao Tian
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
7
|
Lu L, Sui J, Huang S, Xiong B, Zeng X, Qiu X, Zhang Y. Nickel-Catalyzed 8-Aminoquinoline Directed Reductive Dialkylcyclization/Homodialkylation of Unactivated Alkenes. Org Lett 2023; 25:7800-7804. [PMID: 37874767 DOI: 10.1021/acs.orglett.3c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Chemo and regioselective dialkylation of alkene is an efficient protocol for constructing useful chemicals, but challenges remain in the unrestricted application of alkylating reagents. Alkyl bromide belongs to the easy-to-access and operable alkyl electrophiles that can be used in reductive coupling with alkenes. Here, we reported convenient strategies for dialkylcyclization and homodialkylation of unactivated β,γ- and γ,δ-unsaturated alkenyl amides with 1,3-dibromoalkanes or primary alkyl bromides under nickel-catalyzed reductive conditions that exhibited high regioselectivity and functional-group tolerance.
Collapse
Affiliation(s)
- Lingyi Lu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jing Sui
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Shanshan Huang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Biao Xiong
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaobao Zeng
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaodong Qiu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yanan Zhang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
8
|
Gao FC, Li M, Gu HY, Chen XY, Xu S, Wei Y, Hong K. Construction of α-Halogenated Boronic Esters via Visible Light-Induced C-H Bromination. J Org Chem 2023; 88:14246-14254. [PMID: 37733949 DOI: 10.1021/acs.joc.3c01915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
α-Halogenated boronic esters are versatile building blocks that can be diversified into a wide variety of polyfunctionalized molecules. However, their synthetic potential has been hampered by limited preparation methods. Herein, we report a visible light-induced C-H bromination reaction of readily available benzyl boronic esters. This method features high yields, mild conditions, simple operation, and good functional group tolerance. The analogous chlorides and iodides can be accessed via Finkelstein reaction. Synthesis of halogenated geminal diborons has also been demonstrated.
Collapse
Affiliation(s)
- Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ming Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Heng-Yu Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuang Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
9
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
10
|
Zhang X, Gao C, Morken JP. Enantioselective Construction of Carbocyclic and Heterocyclic Tertiary Boronic Esters by Conjunctive Cross-Coupling Reaction. J Am Chem Soc 2023; 145:16344-16349. [PMID: 37487220 PMCID: PMC10925917 DOI: 10.1021/jacs.3c05815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Synthesis of stereodefined carbocyclic and heterocyclic tertiary boronic esters is accomplished by performing a conjunctive cross-coupling reaction on preformed cyclic boron ate complexes. Boronates bearing spirocyclic and aryl bicyclic skeletons can be synthesized enantioselectively using a chiral PHOX-ligated Pd catalyst with achiral starting material, while substrates bearing continuous stereogenic centers can be generated diastereoselectively. A variety of aryl and alkenyl electrophiles are incorporated.
Collapse
Affiliation(s)
- Xuntong Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chenpeng Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
11
|
Liu Y, Woerpel KA. Uncatalyzed Carbometallation Involving Group 13 Elements: Carboboration and Carboalumination of Alkenes and Alkynes. SYNTHESIS-STUTTGART 2023; 55:2261-2272. [PMID: 38249784 PMCID: PMC10795483 DOI: 10.1055/s-0042-1751362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carbometallation of alkenes and alkynes are powerful carbon-carbon bond-forming reactions. The use of compounds containing bonds between carbon and group 13 elements, particularly boron and aluminum, are particularly attractive because of the versatility of subsequent transformations. Uncatalyzed carboboration and carboalumination represent less common classes of reactions. This Short Review discusses uncatalyzed carboboration and carboalumination reactions of alkenes and alkynes, including the reaction design and mechanism.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K A Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
12
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PHY, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio- and Stereocontrolled Access to Bi- or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022; 61:e202116154. [PMID: 35142019 DOI: 10.1002/anie.202116154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/16/2022]
Abstract
A highly stereo- and regiocontrolled multicomponent approach to skipped 1,4-dienes decorated with one boryl and two silyl functionalities is described. This Pd-catalyzed atom-economical union of allenamides, alkynes, and Me2 PhSiBpin (or Et3 SiBpin) proceeds without the use of phosphine ligands, instead relying on chelation through the internal amide group of the allenamide sulfonyl. A variety of alkynes, including those derived from complex bioactive molecules, can be efficiently coupled with allenamides and Me2 PhSiBpin in good yields and with excellent selectivity. The synthetic potential was demonstrated through multiple valuable chemoselective transformations, establishing new disconnections for functionalized dienes. Density functional theory calculations revealed that the reaction first proceeded through borylation of the allenamide, followed by silylation of the alkyne and then reductive elimination, which convergently assemble the skipped 1,4-diene.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
13
|
Taniguchi T. Substituent Effects of Tetracoordinate Boron in Organic Synthesis. Chemistry 2022; 28:e202104333. [DOI: 10.1002/chem.202104333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
14
|
Pradhan TR, Paudel M, Feoktistova T, Cheong PH, Park JK. Silaborative Assembly of Allenamides and Alkynes: Highly Regio‐ and Stereocontrolled Access to Bi‐ or Trimetallic Skipped Dienes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tapas R. Pradhan
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| | | | | | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
15
|
Zhao WC, Li RP, Ma C, Liao QY, Wang M, He ZT. Stereoselective gem-C,B-Glycosylation via 1,2-Boronate Migration. J Am Chem Soc 2022; 144:2460-2467. [PMID: 35112837 DOI: 10.1021/jacs.1c11842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel protocol is established for the long-standing challenge of stereoselective geminal bisglycosylations of saccharides. The merger of PPh3 as a traceless glycosidic leaving group and 1,2-boronate migration enables the simultaneous introduction of C-C and C-B bonds at the anomeric stereogenic center of furanoses and pyranoses. The power of this method is showcased by a set of site-selective modifications of glycosylation products for the construction of bioactive conjugates and skeletons. A scarce metal-free 1,1-difunctionalization process of alkenes is also concomitantly demonstrated.
Collapse
Affiliation(s)
- Wei-Cheng Zhao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Rui-Peng Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao Ma
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi-Ying Liao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Zhang F, Zhou L, Yang K, Song Q. Recent Progress on 1,2-Metallate Shift Reactions Based on Tetracoordinate Boron Intermediates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Mizoguchi H, Kamada H, Morimoto K, Yoshida R, Sakakura A. Annulative Coupling of Vinylboronic Esters: Aryne-Triggered 1,2-Metallate Rearrangement. Chem Sci 2022; 13:9580-9585. [PMID: 36091886 PMCID: PMC9400639 DOI: 10.1039/d2sc02623f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
A stereoselective annulative coupling of a vinylboronic ester ate-complex with arynes producing cyclic borinic esters has been developed. An annulation reaction that proceeded through the formation of two C–C bonds and a C–B bond was realized by exploiting a 1,2-metallate rearrangement of boronate triggered by the addition of a vinyl group to the strained triple bond of an aryne. The generated aryl anion would then cyclize to a boron atom to complete the annulation cascade. The annulated borinic ester could be converted to boronic acids and their derivatives by oxidation, halogenation, and cross-coupling. Particularly, halogenation and Suzuki–Miyaura coupling proceeded in a site-selective fashion and produced highly substituted alkylboronic acid derivatives. A stereoselective annulative coupling of a vinylboronic ester ate-complex with arynes producing cyclic borinic esters has been developed.![]()
Collapse
Affiliation(s)
- Haruki Mizoguchi
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Hidetoshi Kamada
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Kazuki Morimoto
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Ryuji Yoshida
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| | - Akira Sakakura
- Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
18
|
You C, Studer A. Three-component 1,2-carboamination of vinyl boronic esters via amidyl radical induced 1,2-migration. Chem Sci 2021; 12:15765-15769. [PMID: 35003609 PMCID: PMC8654000 DOI: 10.1039/d1sc05811h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
Three-component 1,2-carboamination of vinyl boronic esters with alkyl/aryl lithium reagents and N-chloro-carbamates/carboxamides is presented. Vinylboron ate complexes generated in situ from the boronic ester and an organo lithium reagent are shown to react with readily available N-chloro-carbamates/carboxamides to give valuable 1,2-aminoboronic esters. These cascades proceed in the absence of any catalyst upon simple visible light irradiation. Amidyl radicals add to the vinylboron ate complexes followed by oxidation and 1,2-alkyl/aryl migration from boron to carbon to give the corresponding carboamination products. These practical cascades show high functional group tolerance and accordingly exhibit broad substrate scope. Gram-scale reaction and diverse follow-up transformations convincingly demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
19
|
Liu XY, Tian SY, Jiang YF, Rao W, Wang SY. Visible-Light-Triggered Sulfonylation/Aryl Migration/Desulfonylation and C-S/Se Bond Formation Reaction: 1,2,4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate/Selenosulfonates. Org Lett 2021; 23:8246-8251. [PMID: 34652929 DOI: 10.1021/acs.orglett.1c02981] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible-light-triggered radical cascade sulfonylation/aryl migration/desulfonylation and C-S/Se bond formation reaction of butenyl benzothiazole sulfone with thiosulfonates or selenosulfonates is developed. This study affords the 1,2,4-trifunctionalization of butenyl benzothiazole sulfone derivatives under mild conditions.
Collapse
Affiliation(s)
- Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio‐ and Stereoselective 1,2‐Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Mika Sakai
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
21
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021; 60:21697-21701. [PMID: 34310824 PMCID: PMC8518048 DOI: 10.1002/anie.202107647] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Catalyst‐free 1,2‐carboboration of ynamides is presented. Readily available aryldichloroboranes react with alkyl‐ or aryl‐substituted ynamides in high yields with complete regio‐ and stereoselectivity to valuable β‐boryl‐β‐alkyl/aryl α‐aryl substituted enamides which belong to the class of trisubstituted alkenylboronates. The 1,2‐carboboration reaction is experimentally easy to conduct, shows high functional group tolerance and broad substrate scope. Gram‐scale reactions and diverse synthetic transformations convincingly demonstrate the synthetic potential of this method. The reaction can also be used to access 1‐boraphenalenes, a class of boron‐doped polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
22
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
23
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
24
|
Gao Y, Yazdani S, Kendrick A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu‐Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yang Gao
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Sima Yazdani
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Aaron Kendrick
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Glen P. Junor
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Taeho Kang
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Guy Bertrand
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry University of California, San Diego UCSD-CNRS Joint Research Laboratory (IRL 3555) La Jolla CA 92093-0358 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla CA 92037-1000 USA
| |
Collapse
|
25
|
Gao Y, Yazdani S, Kendrick A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Cyclic (Alkyl)(amino)carbene Ligands Enable Cu-Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes*. Angew Chem Int Ed Engl 2021; 60:19871-19878. [PMID: 34159696 DOI: 10.1002/anie.202106107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Indexed: 12/19/2022]
Abstract
Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper-catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl- and aryl-substituted alkynes are coupled with a variety of boryl and silyl reagents with high α-selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Sima Yazdani
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA.,Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Aaron Kendrick
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Glen P Junor
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Taeho Kang
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Guy Bertrand
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Rodolphe Jazzar
- Department of Chemistry and Biochemistry, University of California, San Diego, UCSD-CNRS Joint Research Laboratory (IRL 3555), La Jolla, CA, 92093-0358, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037-1000, USA
| |
Collapse
|
26
|
Hu R, Tao Y, Zhang X, Su W. 1,2‐Aryl Migration Induced by Amide C−N Bond‐Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,α‐Diaryl β,γ‐Unsaturated γ‐Lactams. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rong Hu
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences China
| | - Yigao Tao
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
27
|
Hu R, Tao Y, Zhang X, Su W. 1,2-Aryl Migration Induced by Amide C-N Bond-Formation: Reaction of Alkyl Aryl Ketones with Primary Amines Towards α,α-Diaryl β,γ-Unsaturated γ-Lactams. Angew Chem Int Ed Engl 2021; 60:8425-8430. [PMID: 33432640 DOI: 10.1002/anie.202014900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Rearrangement reactions incorporated into cascade reactions play an important role in rapidly increasing molecular complexity from readily available starting materials. Reported here is a Cu-catalyzed cascade reaction of α-(hetero)aryl-substituted alkyl (hetero)aryl ketones with primary amines that incorporates an unusual 1,2-aryl migration induced by amide C-N bond formation to produce a class of structurally novel α,α-diaryl β,γ-unsaturated γ-lactams in generally good-to-excellent yields. This cascade reaction has a broad substrate scope with respect to primary amines, allows a wide spectrum of (hetero)aryl groups to smoothly undergo 1,2-migration, and tolerates electronically diverse α-substituents on the (hetero)aryl ring of the ketones. Mechanistically, this 1,2-aryl migration may stem from the intramolecular amide C-N bond formation which induces nucleophilic migration of the aryl group from the acyl carbon center to the electrophilic carbon center that is conjugated with the resulting iminium moiety.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
| | - Yigao Tao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
28
|
Mizoguchi H, Sakakura A. Strain-release Difunctionalization of C–C σ- and π-bonds of an Organoboron Ate-complex through 1,2-Metallate Rearrangement. CHEM LETT 2021. [DOI: 10.1246/cl.200926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haruki Mizoguchi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Sakakura
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
29
|
Wang Y, Bai J, Yang Y, Zhao W, Liang Y, Wang D, Zhao Y, Shi Z. Rhodium-catalysed selective C-C bond activation and borylation of cyclopropanes. Chem Sci 2021; 12:3599-3607. [PMID: 34163633 PMCID: PMC8179453 DOI: 10.1039/d0sc06186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Transition metal (TM)-catalysed directed hydroboration of aliphatic internal olefins which facilitates the construction of complex alkylboronates is an essential synthetic methodology. Here, an efficient method for the borylation of cyclopropanes involving TM-catalysed directed C-C activation has been developed. Upon exposure to neutral Rh(i)-catalyst systems, N-Piv-substituted cyclopropylamines (CPAs) undergo proximal-selective hydroboration with HBpin to provide valuable γ-amino boronates in one step which are otherwise difficult to synthesize by known methods. The enantioenriched substrates can deliver chiral products without erosion of the enantioselectivities. Versatile synthetic utility of the obtained γ-amino boronates is also demonstrated. Experimental and computational mechanistic studies showed the preferred pathway and the origin of this selectivity. This study will enable the further use of CPAs as valuable building blocks for the tunable generation of C-heteroatom or C-C bonds through selective C-C bond activation.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jingyi Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Di Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|