1
|
Hao L, Ling YY, Wang J, Shen QH, Li ZY, Tan CP. Theranostic Rhenium(I)-Based ER-Phagy Retardant Promotes Immunogenic Cell Death. J Med Chem 2025; 68:338-347. [PMID: 39720929 DOI: 10.1021/acs.jmedchem.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
ER-phagy is a double-edged sword in the occurrence, development, and treatment of cancer; especially, its functions in immunotherapy are still unknown. In this work, we designed a theranostic Re complex (Re1) containing a BODIPY-derived ligand and a β-carboline ligand to target the endoplasmic reticulum (ER) and block ER-phagy at the late stages. Interestingly, as validated both in vitro and in vivo, ER-phagy blockage greatly enhances the capability of Re1 to induce immunogenic cell death (ICD). In summary, we dexterously fused two molecular modules for ER targeting and ER-phagy blockage into a coordination complex to afford a highly effective ICD inducer, which provides clues for designing new cancer immunotherapeutics.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jie Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Zheng Y, Wang W, Chen J, Peng K, Chen X, Shen Q, Liang B, Mao Z, Tan C. Ruthenium(II) Lipid-Mimics Drive Lipid Phase Separation to Arouse Autophagy-Ferroptosis Cascade for Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411629. [PMID: 39575543 PMCID: PMC11744722 DOI: 10.1002/advs.202411629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Indexed: 01/21/2025]
Abstract
Lipid-mediated phase separation is crucial for the formation of lipophilic spontaneous domain to regulate lipid metabolism and homeostasis, furtherly contributing to multiple cell death pathways. Herein, a series of Ru(II) lipid-mimics based on short chains or midchain lipids are developed. Among them, Ru-LipM with two dodecyl chains significantly induces natural lipid phase separation via hydrocarbon chain-melting phase transitions. Accompanied by the aggregation of Ru-LipM-labeled lipophilic membrane-less compartments, most polyunsaturated lipids are increased and the autophagic flux is retarded with the adaptor protein sequestosome 1 (p62). Upon low-dose irradiation, Ru-LipM further drives ferritinophagy, providing an additional source of labile iron and rendering cells more sensitive to ferroptosis. Meanwhile, the peroxidation of polyunsaturated lipids occurs due to the deactivation of glutathione peroxidase 4 (GPX4) and the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), leading to the immunogenic ferroptosis. Ultimately, both innate and adaptive immunity are invigorated, indicating the tremendous antitumor capability of Ru-LipM in vivo. This study presents an unprecedented discovery of small molecules capable of inducing and monitoring lipid phase separation, thereby eliciting robust immune responses in living cells. It provides a biosimulation strategy for constructing efficient metal-based immune activators.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, School of Bioscience and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Wen‐Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Jing‐Xin Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Kun Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Xiao‐Xiao Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Qing‐Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Bing‐Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
3
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
4
|
Ren Q, Sheng Y, Tao C, Niu S, Yu N, Chen Z, Lian W. Zinc peroxide-based nanotheranostic platform with endogenous hydrogen peroxide/oxygen generation for enhanced photodynamic-chemo therapy of tumors. J Colloid Interface Sci 2024; 668:88-97. [PMID: 38669999 DOI: 10.1016/j.jcis.2024.04.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.
Collapse
Affiliation(s)
- Qian Ren
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Center for Clinical and Translational Medicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Weishuai Lian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Guan Q, Xing S, Wang L, Zhu J, Guo C, Xu C, Zhao Q, Wu Y, Chen Y, Sun H. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application. J Med Chem 2024; 67:7788-7824. [PMID: 38699796 DOI: 10.1021/acs.jmedchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Triazole demonstrates distinctive physicochemical properties, characterized by weak basicity, various dipole moments, and significant dual hydrogen bond acceptor and donor capabilities. These features are poised to play a pivotal role in drug-target interactions. The inherent polarity of triazole contributes to its lower logP, suggesting the potential improvement in water solubility. The metabolic stability of triazole adds additional value to drug discovery. Moreover, the metal-binding capacity of the nitrogen atom lone pair electrons of triazole has broad applications in the development of metal chelators and antifungal agents. This Perspective aims to underscore the unique physicochemical attributes of triazole and its application. A comparative analysis involving triazole isomers and other heterocycles provides guiding insights for the subsequent design of triazoles, with the hope of offering valuable considerations for designing other heterocycles in medicinal chemistry.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
6
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
7
|
Chen XX, Rao XY, Guan QX, Wang P, Tan CP. Quantitative Determination of Endoplasmic Reticulum Viscosity during Immunogenic Cell Death by a Theranostic Rhenium Complex. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:64-69. [PMID: 39473464 PMCID: PMC11504626 DOI: 10.1021/cbmi.3c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 02/07/2025]
Abstract
The endoplasmic reticulum (ER) is an important targeting organelle for metal-based immunogenic cell death (ICD) inducers. Metal complexes can induce ER stress by causing protein misfolding, which can be reflected by alternations in microenvironmental parameters, including viscosity. We present here a theranostic Re(I) complex (Re1) that shows viscosity-dependent emission intensity and lifetime. Re1 can trigger immunogenic cell death (ICD) in MDA-MB-231 cells by localizing in the ER and causing ER stress. We demonstrate that Re1 can simultaneously induce and monitor the gradual increase in the ER viscosity quantitatively.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xing-Yi Rao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qi-Xin Guan
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Peng Wang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
M M, Chhatar S, Gadre S, Paul S, Vaidya SP, Khatri S, Duari P, Kode J, Ingle A, Kolthur-Seetharam U, Patra M. Improving In Vivo Tumor Accumulation and Efficacy of Platinum Antitumor Agents by Electronic Tuning of the Kinetic Lability. Chemistry 2024; 30:e202302720. [PMID: 37888749 DOI: 10.1002/chem.202302720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
The impact of kinetic lability or reactivity on in vitro cytotoxicity, stability in plasma, in vivo tumor and tissue accumulation, and antitumor efficacy of functional platinum(II) (Pt) anticancer agents containing a O˄O β-diketonate leaving ligand remain largely unexplored. To investigate this, we synthesized Pt complexes [(NH3 )2 Pt(L1-H)]NO3 and [(DACH)Pt(L1-H)]NO3 (L1=4,4,4-trifluoro-1-ferrocenylbutane-1,3-dione, DACH=1R,2R-cyclohexane-1,2-diamine) containing an electron deficient [L1-H]- O˄O leaving ligand and [(NH3 )2 Pt(L2-H)]NO3 and [(DACH)Pt(L2-H)]NO3 (L2=1-ferrocenylbutane-1,3-dione) containing an electron-rich [L2-H]- O˄O leaving ligand. While all four complexes have comparable lipophilicity, the presence of the electron-withdrawing CF3 group was found to dramatically enhance the reactivity of these complexes toward nucleophilic biomolecules. In vitro cellular assays revealed that the more reactive complexes have higher cellular uptake and higher anticancer potency as compared to their less reactive analogs. But the scenario is opposite in vivo, where the less reactive complex showed improved tissue and tumor accumulation and better anticancer efficacy in mice bearing ovarian xenograft when compared to its more reactive analog. Finally, in addition to demonstrating the profound but contrasting impact of kinetic lability on in vitro and in vivo antitumor potencies, we also described the impact of kinetic lability on the mechanism of action of this class of promising antitumor agents.
Collapse
Affiliation(s)
- Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Sushanta Chhatar
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Shreyas P Vaidya
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Subhash Khatri
- Molecular Physiology Laboratory, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Prakash Duari
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group (Kode lab), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC, Tata Memorial Centre Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| | - Arvind Ingle
- Homi Bhabha National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
- Laboratory Animal Facility, ACTREC, Tata Memorial Centre Kharghar, Navi Mumbai, 410210, India
| | - Ullas Kolthur-Seetharam
- Molecular Physiology Laboratory, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
- Tata Institute of Fundamental Research-Hyderabad (TIFRH), Hyderabad, 500019, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| |
Collapse
|
9
|
Das S, Joshi P, Patra M. Necrosis-Inducing High-Valent Oxo-Rhenium(V) Complexes with Potent Antitumor Activity: Synthesis, Aquation Chemistry, Cisplatin Cross-Resistance Profile, and Mechanism of Action. Inorg Chem 2023; 62:19720-19733. [PMID: 37974075 DOI: 10.1021/acs.inorgchem.3c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chemotherapy with the cytotoxic platinum (Pt) drugs cisplatin, carboplatin, and oxaliplatin is the mainstay of anticancer therapy in the clinic. The antitumor activity of Pt drugs originates from their ability to induce apoptosis via covalent adduct formation with nuclear DNA. While the phenomenal clinical success is highly encouraging, resistance and adverse toxic side effects limit the wider applicability of Pt drugs. To circumvent these limitations, we embarked on an effort to explore the antitumor potential of a new class of oxo-rhenium(V) complexes of the type [(N∧N)(EG)Re(O)Cl] (where EG = ethylene glycolate and N∧N = bipyridine, Bpy (1); phenanthroline, Phen (2); 3,4,7,8-tetramethyl-phenanthroline, Me4Phen (3)). Investigation of speciation chemistry in aqueous media revealed the formation of [(N∧N)Re(O)(OH)3] as the biologically active species. Complex 3 was found to be the most potent among the three, with IC50 values ranging from 0.1 to 0.4 μM against a panel of cancer cells, which is 5-70-fold lower when compared with cisplatin. The higher potency of 3 is attributed to its higher lipophilicity, which enhanced cellular uptake. Importantly, complex 3 efficiently overcomes cisplatin resistance in ovarian, lung, and prostate cancer cells. In addition to reporting the aquation chemistry and identifying the active species in aqueous media, we performed in-depth in vitro mechanistic studies, which revealed that complex 3 preferentially accumulates in mitochondria, depletes mitochondrial membrane potential, and upregulates intracellular reactive oxygen species (ROS), leading to ER stress-mediated necrosis-mediated cancer cell death.
Collapse
Affiliation(s)
- Shubhangi Das
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Pulkit Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| |
Collapse
|
10
|
Chen L, Tang H, Chen W, Wang J, Zhang S, Gao J, Chen Y, Zhu X, Huang Z, Chen J. Mitochondria-targeted cyclometalated iridium (III) complexes: Dual induction of A549 cells apoptosis and autophagy. J Inorg Biochem 2023; 249:112397. [PMID: 37844533 DOI: 10.1016/j.jinorgbio.2023.112397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 μM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.
Collapse
Affiliation(s)
- Lanmei Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Hong Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Weigang Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Jie Wang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Shenting Zhang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Jie Gao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Yu Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| | - Jincan Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China.
| |
Collapse
|
11
|
Tang J, Liu J, Zheng Q, Yao R, Wang M. Neuroprotective Bioorthogonal Catalysis in Mitochondria Using Protein-Integrated Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202312784. [PMID: 37817650 DOI: 10.1002/anie.202312784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria-targeted bioorthogonal catalysis holds promise for controlling cell function precisely, yet achieving selective and efficient chemical reactions within organelles is challenging. In this study, we introduce a new strategy using protein-integrated hydrogen-bonded organic frameworks (HOFs) to enable synergistic bioorthogonal chemical catalysis and enzymatic catalysis within mitochondria. Utilizing catalytically active tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) to self-assemble with [1,1'-biphenyl]-4,4'-biscarboximidamide, we synthesized nanoscale RuB-HOFs that exhibit high photocatalytic reduction activity. Notably, RuB-HOFs efficiently enter cells and preferentially localize to mitochondria, where they facilitate bioorthogonal photoreduction reactions. Moreover, we show that RuB-HOFs encapsulating catalase can produce hydrogen sulfide (H2 S) in mitochondria through photocatalytic reduction of pro-H2 S and degrade hydrogen peroxide through enzymatic catalysis simultaneously, offering a significant neuroprotective effect against oxidative stress. Our findings not only introduce a versatile chemical toolset for mitochondria-targeted bioorthogonal catalysis for prodrug activation but also pave the way for potential therapeutic applications in treating diseases related to cellular oxidative stress.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
12
|
Panda TR, M M, Vaidya SP, Chhatar S, Sinha S, Mehrotra M, Chakraborty S, Gadre S, Duari P, Ray P, Patra M. The Power of Kinetic Inertness in Improving Platinum Anticancer Therapy by Circumventing Resistance and Ameliorating Nephrotoxicity. Angew Chem Int Ed Engl 2023; 62:e202303958. [PMID: 37314332 DOI: 10.1002/anie.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.
Collapse
Affiliation(s)
- Tushar Ranjan Panda
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Shreyas P Vaidya
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Sushanta Chhatar
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, 7 km Stone, NH-2, Mathura-Delhi Road, Mathura, Uttar Pradesh, 281406, India
| | - Megha Mehrotra
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Sourav Chakraborty
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Shubhankar Gadre
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Prakash Duari
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| |
Collapse
|
13
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Liao LS, Chen Y, Hou C, Liu YH, Su GF, Liang H, Chen ZF. Potent Zinc(II)-Based Immunogenic Cell Death Inducer Triggered by ROS-Mediated ERS and Mitochondrial Ca 2+ Overload. J Med Chem 2023; 66:10497-10509. [PMID: 37498080 DOI: 10.1021/acs.jmedchem.3c00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Zn1 and Zn2 are Zn-based complexes that activate the immunogenic cell death (ICD) effect by Ca2+-mediated endoplasmic reticulum stress (ERS) and mitochondrial dysfunction. Compared with Zn1, Zn2 effectively caused reactive oxidative species (ROS) overproduction in the early phase, leading to ERS response. Severe ERS caused the release of Ca2+ from ER to cytoplasm and further to mitochondria. Excessive Ca2+ in mitochondria triggered mitochondrial dysfunction. The damage-associated molecular patterns (DAMPs) of CRT, HMGB1, and ATP occurred in T-24 cells exposed to Zn1 and Zn2. The vaccination assay demonstrated that Zn1 and Zn2 efficiently suppressed the growth of distant tumors. The elevated CD8+ cytotoxic T cells and decreased Foxp3+ cells in vaccinated mice supported our conclusion. Moreover, Zn1 and Zn2 improved the survival rate of mice compared with oxaliplatin. Collectively, our findings provided a new design strategy for a zinc-based ICD inducer via ROS-induced ERS and mitochondrial Ca2+ overload.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang-Han Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
15
|
Zheng Y, Chen XX, Zhang DY, Wang WJ, Peng K, Li ZY, Mao ZW, Tan CP. Activation of the cGAS-STING pathway by a mitochondrial DNA-targeted emissive rhodium(iii) metallointercalator. Chem Sci 2023; 14:6890-6903. [PMID: 37389261 PMCID: PMC10306090 DOI: 10.1039/d3sc01737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (STING) pathway is a key mediator of innate immunity involved in cancer development and treatment. The roles of mitochondrial DNA (mtDNA) in cancer immunotherapy have gradually emerged. Herein, we report a highly emissive rhodium(iii) complex (Rh-Mito) as the mtDNA intercalator. Rh-Mito can specifically bind to mtDNA to cause the cytoplasmic release of mtDNA fragments to activate the cGAS-STING pathway. Moreover, Rh-Mito activates the mitochondrial retrograde signaling by disturbing the key metabolites involved in epigenetic modifications, which alters the nuclear genome methylation landscape to influence the expression of genes related to immune signaling pathways. Finally, we demonstrate that ferritin-encapsulated Rh-Mito elicits potent anticancer activities and evokes intense immune responses in vivo by intravenous injection. Overall, we report for the first time that small molecules targeting mtDNA can activate the cGAS-STING pathway, which gives insights into the development of biomacromolecule-targeted immunotherapeutic agents.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiao-Xiao Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Kun Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
16
|
Tomat E. Targeting iron to contrast cancer progression. Curr Opin Chem Biol 2023; 74:102315. [PMID: 37187095 PMCID: PMC10225354 DOI: 10.1016/j.cbpa.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing research in cancer biology is delineating a complex iron-trafficking program involving both malignant cells and their support network of cancer stem cells, immune cells, and other stromal components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery are being pursued in clinical trials and in multiple programs at various levels of development. Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers and companion diagnostics, are poised to offer new therapeutic options. By targeting a fundamental player in cancer progression, iron-binding drug candidates (either alone or in combination therapy) have the potential to impact a broad range of cancer types and to address the major clinical problems of recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| |
Collapse
|
17
|
Suzuki R, Iki N. Kinetic aspects of iron(III)-chelation therapy with deferasirox (DFX) revealed by the solvolytic dissociation rate of the Fe(III)-DFX complex estimated with capillary electrophoretic reactor. J Inorg Biochem 2023; 241:112131. [PMID: 36706491 DOI: 10.1016/j.jinorgbio.2023.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Capillary electrophoresis was used to estimate the solvolytic dissociation rate (kd) of metal complexes of deferasirox (DFX, H3L), a drug used to treat iron overload. Inert CoIIIL23- did not dissociate. The estimated kd value for FeIIIL23- was (2.7 ± 0.3) × 10-4 s-1 (298 K, pH 7.4). The kd values of other complexes (AlIIIL23-, NiIIL24-, and MnIIL-) were in the range 10-3-10-4 s-1. In contrast, ZnIIL- and CuIIL- were too labile to allow kd estimation. The fact that the half-life of FeIIIL23- (43.3 min) is shorter than the blood half-life of DFX (8-16 h) implies that the blood concentration of DFX should be high enough to prevent dissociation of FeIIIL23-. The possibility of a safer iron-chelation therapy that avoids excretion of other essential metal ions such as ZnII is discussed, highlighting the importance of selectivity in terms of kinetic stability.
Collapse
Affiliation(s)
- Ryota Suzuki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, 980-8579, Sendai, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba-ku, 980-8579, Sendai, Japan.
| |
Collapse
|
18
|
Zouaghi MO, Amri N, Hassen S, Arfaoui Y, Özdemir N, Özdemir I, Hamdi N. Biological determination, Molecular Docking and Hirshfeld surface analysis of rhoduim(I)-N-heterocyclic carbene complex: Synthesis, crystal structure, DFT calculations, Optical and Non Linear Optical properties. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
19
|
Olelewe C, Awuah SG. Mitochondria as a target of third row transition metal-based anticancer complexes. Curr Opin Chem Biol 2023; 72:102235. [PMID: 36516614 PMCID: PMC9870944 DOI: 10.1016/j.cbpa.2022.102235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
In pursuit of better treatment options for malignant tumors, metal-based complexes continue to show promise as attractive chemotherapeutics due to tunability, novel mechanisms, and potency exemplified by platinum agents. The metabolic character of tumors renders the mitochondria and other metabolism pathways fruitful targets for medicinal inorganic chemistry. Cumulative understanding of the role of mitochondria in tumorigenesis has ignited research in mitochondrial targeting metal-based complexes to overcome resistance and inhibit tumor growth with high potency and selectivity. Here, we discuss recent progress made in third row transition metal-based mitochondrial targeting agents with the goal of stimulating an active field of research toward new clinical anticancer agents and the elucidation of novel mechanisms of action.
Collapse
Affiliation(s)
- Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, United States; University of Kentucky Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, United States.
| |
Collapse
|
20
|
Pan ZY, Liang BF, Zhi YS, Yao DH, Li CY, Wu HQ, He L. Near-infrared AIE-active phosphorescent iridium(III) complex for mitochondria-targeted photodynamic therapy. Dalton Trans 2023; 52:1291-1300. [PMID: 36625001 DOI: 10.1039/d2dt03861g] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria-targeted photodynamic therapy (PDT) has recently been recognized as a promising strategy for effective cancer treatment. In this work, a mitochondria-targeted near-infrared (NIR) aggregation-induced emission (AIE)-active phosphorescent Ir(III) complex (Ir1) is reported with highly favourable mitochondria-targeted bioimaging and cancer PDT properties. Complex Ir1 has strong absorption in the visible light region (∼500 nm) and can effectively produce singlet oxygen (1O2) under green light (525 nm) irradiation. It preferentially accumulates in the mitochondria of human breast cancer MDA-MB-231 cells as revealed by colocalization analysis. Complex Ir1 displays high phototoxicity toward human breast cancer MDA-MB-231 cells and mouse breast cancer 4T1 cells. Complex Ir1 induces reactive oxygen species (ROS) production, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in MDA-MB-231 cells upon photoirradiation, leading to apoptotic cell death. The favorable PDT performance of Ir1in vivo has been further demonstrated in tumour-bearing mice. Together, the results suggest that Ir1 is a promising photosensitizer for mitochondria-targeted imaging and cancer phototherapy.
Collapse
Affiliation(s)
- Zheng-Yin Pan
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Bin-Fa Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yun-Shi Zhi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Da-Hong Yao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Chen-Yang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Hai-Qiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Synthesis, structural characterization and study of antioxidant and anti-PrP Sc properties of flavonoids and their rhenium(I)-tricarbonyl complexes. J Biol Inorg Chem 2023; 28:235-247. [PMID: 36695886 PMCID: PMC9981504 DOI: 10.1007/s00775-022-01986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
This study aims at the synthesis and initial biological evaluation of novel rhenium-tricarbonyl complexes of 3,3',4',5,7-pentahydroxyflavone (quercetin), 3,7,4΄-trihydroxyflavone (resokaempferol), 5,7-dihydroxyflavone (chrysin) and 4΄,5,7-trihydroxyflavonone (naringenin) as neuroprotective and anti-PrP agents. Resokaempferol was synthesized from 2,2΄,4-trihydroxychalcone by H2O2/NaOH. The rhenium-tricarbonyl complexes of the type fac-[Re(CO)3(Fl)(sol)] were synthesized by reacting the precursor fac-[Re(CO)3(sol)3]+ with an equimolar amount of the flavonoids (Fl) quercetin, resokaempferol, chrysin and naringenin and the solvent (sol) was methanol or water. The respective Re-flavonoid complexes were purified by semi-preparative HPLC and characterized by spectroscopic methods. Furthermore, the structure of Re-chrysin was elucidated by X-ray crystallography. Initial screening of the neuroprotective properties of these compounds included the in vitro assessment of the antioxidant properties by the DPPH assay as well as the anti-lipid peroxidation of linoleic acid in the presence of AAPH and their ability to inhibit soybean lipoxygenase. From the above studies, it was concluded that the complexes' properties are mainly correlated with the structural characteristics and the presence of the flavonoids. The flavonoids and their respective Re-complexes were also tested in vitro for their ability to inhibit the formation and aggregation of the amyloid-like abnormal prion protein, PrPSc, by employing the real-time quaking-induced conversion assay with recombinant PrP seeded with cerebrospinal fluid from patients with Creutzfeldt-Jakob disease. All the compounds blocked de novo abnormal PrP formation and aggregation.
Collapse
|
22
|
M M, Gadre S, Chhatar S, Chakraborty G, Ahmed N, Patra C, Patra M. Potent Ruthenium-Ferrocene Bimetallic Antitumor Antiangiogenic Agent That Circumvents Platinum Resistance: From Synthesis and Mechanistic Studies to In Vivo Evaluation in Zebrafish. J Med Chem 2022; 65:16353-16371. [PMID: 36459415 PMCID: PMC7616001 DOI: 10.1021/acs.jmedchem.2c01174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Emergence of resistance in cancer cells and dose-limiting side effects severely limit the widespread use of platinum (Pt) anticancer drugs. Multi-action hybrid anticancer agents that are constructed by merging two or more pharmacophores offer the prospect of circumventing issues of Pt drugs. Herein, we report the design, synthesis, and in-depth biological evaluation of a ruthenium-ferrocene (Ru-Fc) bimetallic agent [(η6-p-cymene)Ru(1,1,1-trifluoro-4-oxo-4-ferrocenyl-but-2-en-2-olate)Cl] and its five analogues. Along with aquation/anation chemistry, we evaluated the in vitro antitumor potency, Pt cross-resistance profile, and in vivo antiangiogenic properties. A structure activity analysis was performed to understand the impact of Fc, CF3, and p-cymene groups on the anticancer potency of the Ru-Fc hybrid. Finally, in addition to assessing cellular uptake and intracellular distribution, we demonstrated that the Ru-Fc hybrid binds to nucleophilic biomolecules and produces reactive oxygen species, which causes mitochondrial dysfunction and induces ER stress, leading to poly(ADP-ribose) polymerase-mediated necroptotic cell death.
Collapse
Affiliation(s)
- Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Sushanta Chhatar
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Naushad Ahmed
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502085, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
23
|
Li C, Yin X, Liu Z, Wang J. Emerging Potential Mechanism and Therapeutic Target of Ferroptosis in PDAC: A Promising Future. Int J Mol Sci 2022; 23:15031. [PMID: 36499358 PMCID: PMC9740869 DOI: 10.3390/ijms232315031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic cancer (PC) is a devastating malignant tumor of gastrointestinal (GI) tumors characterized by late diagnosis, low treatment success and poor prognosis. The most common pathological type of PC is pancreatic ductal adenocarcinoma (PDAC), which accounts for approximately 95% of PC. PDAC is primarily driven by the Kirsten rat sarcoma virus (KRAS) oncogene. Ferroptosis was originally described as ras-dependent cell death but is now defined as a regulated cell death caused by iron accumulation and lipid peroxidation. Recent studies have revealed that ferroptosis plays an important role in the development and therapeutic response of tumors, especially PDAC. As the non-apoptotic cell death, ferroptosis may minimize the emergence of drug resistance for clinical trials of PDAC. This article reviews what has been learned in recent years about the mechanisms of ferroptosis in PDAC, introduces the association between ferroptosis and the KRAS target, and summarizes several potential strategies that are capable of triggering ferroptosis to suppress PDAC progression.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
24
|
Pan ZY, Ling YY, Zhang H, Hao L, Tan CP, Mao ZW. Pt(IV)-Deferasirox Prodrug Combats DNA Damage Repair by Regulating RNA N 6-Methyladenosine Methylation. J Med Chem 2022; 65:14692-14700. [DOI: 10.1021/acs.jmedchem.2c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
25
|
Photoinduced Processes in Rhenium(I) Terpyridine Complexes Bearing Remote Amine Groups: New Insights from Transient Absorption Spectroscopy. Molecules 2022; 27:molecules27217147. [DOI: 10.3390/molecules27217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Photophysical properties of two Re(I) complexes [ReCl(CO)3(R-C6H4-terpy-κ2N)] with remote amine groups, N-methyl-piperazinyl (1) and (2-cyanoethyl)methylamine (2), were investigated. The complexes show strong absorption in the visible region corresponding to metal-to-ligand charge transfer (1MLCT) and intraligand-charge-transfer (1ILCT) transitions. The energy levels of 3MLCT and 3ILCT excited-states, and thus photoluminescence properties of 1 and 2, were found to be strongly affected by the solvent polarity. Compared to the parent chromophore [ReCl(CO)3(C6H5-terpy-κ2N)] (3), both designed complexes show significantly prolonged (by 1–2 orders of magnitude) phosphorescence lifetimes in acetonitrile and dimethylformamide, contrary to their lifetimes in less polar chloroform and tetrahydrofuran, which are comparable to those for 3. The femtosecond transient absorption (fsTA) measurements confirmed the interconversion between the 3MLCT and 3ILCT excited-states in polar solvents. In contrast, the emissive state of 1 and 2 in less polar environments is of predominant 3MLCT nature.
Collapse
|
26
|
Maroń AM, Palion-Gazda J, Szłapa-Kula A, Schab-Balcerzak E, Siwy M, Sulowska K, Maćkowski S, Machura B. Controlling of Photophysical Behavior of Rhenium(I) Complexes with 2,6-Di(thiazol-2-yl)pyridine-Based Ligands by Pendant π-Conjugated Aryl Groups. Int J Mol Sci 2022; 23:11019. [PMID: 36232327 PMCID: PMC9569785 DOI: 10.3390/ijms231911019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The structure-property correlations and control of electronic excited states in transition metal complexes (TMCs) are of high significance for TMC-based functional material development. Within these studies, a series of Re(I) carbonyl complexes with aryl-substituted 2,6-di(thiazol-2-yl)pyridines (Arn-dtpy) was synthesized, and their ground- and excited-state properties were investigated. A number of condensed aromatic rings, which function as the linking mode of the aryl substituent, play a fundamental role in controlling photophysics of the resulting [ReCl(CO)3(Arn-dtpy-κ2N)]. Photoexcitation of [ReCl(CO)3(Arn-dtpy-κ2N)] with 1-naphthyl-, 2-naphthyl-, 9-phenanthrenyl leads to the population of 3MLCT. The lowest triplet state of Re(I) chromophores bearing 9-anthryl, 2-anthryl, 1-pyrenyl groups is ligand localized. The rhenium(I) complex with appended 1-pyrenyl group features long-lived room temperature emission attributed to the equilibrium between 3MLCT and 3IL/3ILCT. The excited-state dynamics in complexes [ReCl(CO)3(9-anthryl-dtpy-κ2N)] and [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is strongly dependent on the electronic coupling between anthracene and {ReCl(CO)3(dtpy-κ2N)}. Less steric hindrance between the chromophores in [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is responsible for the faster formation of 3IL/3ILCT and larger contribution of 3ILCTanthracene→dtpy in relation to the isomeric complex [ReCl(CO)3(9-anthryl-dtpy-κ2N)]. In agreement with stronger electronic communication between the aryl and Re(I) coordination centre, [ReCl(CO)3(2-anthryl-dtpy-κ2N)] displays room-temperature emission contributed to by 3MLCT and 3ILanthracene/3ILCTanthracene→dtpy phosphorescence. The latter presents rarely observed phenomena in luminescent metal complexes.
Collapse
Affiliation(s)
- Anna M. Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
27
|
Gadre S, Manikandan M, Duari P, Chhatar S, Sharma A, Khatri S, Kode J, Barkume M, Kasinathan NK, Nagare M, Patkar M, Ingle A, Kumar M, Kolthur‐Seetharam U, Patra M. A Rationally Designed Bimetallic Platinum (II)‐Ferrocene Antitumor Agent Induces Non‐Apoptotic Cell Death and Exerts
in Vivo
Efficacy. Chemistry 2022; 28:e202201259. [PMID: 35638709 DOI: 10.1002/chem.202201259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - M. Manikandan
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Prakash Duari
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Sushant Chhatar
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Astha Sharma
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Subhash Khatri
- Molecular Physiology Laboratory Department of Biological Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Nirmal Kumar Kasinathan
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Manasi Nagare
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Meena Patkar
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Arvind Ingle
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
- Laboratory Animal Facility ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Mukesh Kumar
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
- Protein Crystallography Section Radiation Biology & Health Sciences Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Ullas Kolthur‐Seetharam
- Molecular Physiology Laboratory Department of Biological Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| |
Collapse
|
28
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Ma X, Lu J, Yang P, Huang B, Li R, Ye R. Synthesis, Characterization and Antitumor Mechanism Investigation of Heterometallic Ru(Ⅱ)-Re(Ⅰ) Complexes. Front Chem 2022; 10:890925. [PMID: 35711955 PMCID: PMC9196629 DOI: 10.3389/fchem.2022.890925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The development of heteronuclear metal complexes as potent anticancer agents has received increasing attention in recent years. In this study, two new heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes, [Ru(bpy)2LRe(CO)3(DIP)](PF6)3 and [Ru(phen)2LRe(CO)3(DIP)](PF6)3 [RuRe-1 and RuRe-2, L = 2-(4-pyridinyl)imidazolio[4,5-f][1,10]phenanthroline, bpy = 2,2′-bipyridine, DIP = 4,7-diphenyl-1,10-phenanthroline, phen = 1,10-phenanthroline], were synthesized and characterized. Cytotoxicity assay shows that RuRe-1 and RuRe-2 exhibit higher anticancer activity than cisplatin, and exist certain selectivity toward human cancer cells over normal cells. The anticancer mechanistic studies reveal that RuRe-1 and RuRe-2 can induce apoptosis through the regulation of cell cycle, depolarization of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS), and caspase cascade. Moreover, RuRe-1 and RuRe-2 can effectively inhibit cell migration and colony formation. Taken together, heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes possess the prospect of developing new anticancer agents with high efficacy.
Collapse
Affiliation(s)
- Xiurong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Junjian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Peixin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| |
Collapse
|
30
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
31
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
32
|
Affiliation(s)
- Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Guangzhou 510641 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
33
|
Wiratpruk N, Bindra G, Hamilton A, Hulett M, Barnard P. Anticancer Properties of Rhenium(I) Tricarbonyl Complexes of N-Heterocyclic Carbene Ligands. Dalton Trans 2022; 51:7630-7643. [DOI: 10.1039/d2dt00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of eight rhenium(I) tricarbonyl complexes bearing pyridyl-imidazolylidene or bis-imidazolylidene ligand in combination with a series of N-acetyl amino acids ligands (glycine, isoleucine, proline) and acetate have been synthesised...
Collapse
|
34
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
35
|
Harzallah M, Medimagh M, Issaoui N, Roisnel T, Brahim A. Synthesis, X-ray crystal structure, Hirshfeld surface analysis, DFT, AIM, ELF, RDG and molecular docking studies of bis[4-(dimethylamino)pyridinium]di-µ-chlorido-bis[dichloridomercurate(II)]. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2006649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mouna Harzallah
- Laboratory of Physico-chemistry of Materials LR01ES19, Faculty of Sciences, University of Monastir, Monastir, Tunisia
- Department of chemistry, Faculty of Sciences, University of Gabes, Zrig Eddakhlania, Tunisia
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Thierry Roisnel
- Centre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS-Universitéde Rennes 1, Campus de Beaulieu, Rennes Cedex, France
| | - Ayed Brahim
- Laboratory of Physico-chemistry of Materials LR01ES19, Faculty of Sciences, University of Monastir, Monastir, Tunisia
- Research Unit of Analysis and Process Applied to the Environment (UR17ES32)-ISSAT Mahdia, University of Monastir, Monastir, Tunisia
| |
Collapse
|
36
|
Dong S, Li X, Jiang W, Chen Z, Zhou W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int 2021; 21:480. [PMID: 34503532 PMCID: PMC8427874 DOI: 10.1186/s12935-021-02166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Shi Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Gansu Province, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, 730000, China.
| |
Collapse
|
37
|
A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy. Nat Commun 2021; 12:5001. [PMID: 34408151 PMCID: PMC8373944 DOI: 10.1038/s41467-021-25303-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
As a basic structure of most polypyridinal metal complexes, [Ru(bpy)3]2+, has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy)3]2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy)3]2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy)3]2+ can produce singlet oxygen (1O2) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy)3]2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer. Sonodynamic therapy has therapeutic promise due to its safety and good tissue penetration, but is currently bottlenecked due to a lack of efficient and safe sonosensitizers. Here the authors show that [Ru(bpy)3]2+ can produce singlet oxygen and sonooxidize NADH in deep tissue, and destroy mouse tumors effectively.
Collapse
|
38
|
Kuang X, Hu Y, Chi D, Zhang H, He Z, Jiang Y, Wang Y. Self-stabilized Pt(IV) amphiphiles by precise regulation of branch length for enhanced chemotherapy. Int J Pharm 2021; 606:120923. [PMID: 34303822 DOI: 10.1016/j.ijpharm.2021.120923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
A surge of platinum(IV) compounds are utilized or investigated in cancer treatment but their therapeutic outcomes have been greatly compromised by remaining adverse effects and limited antitumor performance, attributable to nonspecific distribution and insufficient activation in tumor site. Herein, we designed a series of disulfide bond introduced Pt(IV)-lipid prodrugs with different branch length, all of which are able to self-stabilize into nanomedicine and be activated by high intracellular glutathione (GSH) level. The impact of precise modification of these prodrugs on their assembly stability, pharmacokinetics and cytotoxicity was probed to establish a connection between chemical structure and antiproliferation efficiency. With optimal assembly manner and delivery efficacy, the longest axial branched Pt(IV) prodrug CSS18 exhibited the most impressive therapeutic outcome, providing a potential path to more efficient nanocarriers for chemotherapeutic agents by chemical modulation and, giving insights into the rational design of reduction responsive platinum delivery system.
Collapse
Affiliation(s)
- Xiao Kuang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuting Hu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongxu Chi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haolin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiguo Jiang
- Department of Pharmacy, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China.
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
39
|
Ye RR, Chen BC, Lu JJ, Ma XR, Li RT. Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J Inorg Biochem 2021; 223:111537. [PMID: 34273716 DOI: 10.1016/j.jinorgbio.2021.111537] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
Cell death is essential for cancer, which can be induced through multiple mechanisms. Ferroptosis, a newly emerging form of non-apoptotic cell death, involves the generation of iron-dependent reactive oxygen species (ROS). In this study, we designed and synthesized two artesunate (ART) conjugated phosphorescent rhenium(I) complexes (Re(I)-ART conjugates), [Re(N^N)(CO)3(PyCH2OART)](PF6) (Re-ART-1 and Re-ART-2) (Py = pyridine, N^N = 1,10-phenanthroline (phen, in Re-ART-1) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Re-ART-2)) that can specifically locate in the mitochondria of human cervical carcinoma (HeLa). Mechanism studies show that Re-ART-1 and Re-ART-2 exhibit high cytotoxicity against cancer cells lines and can induce both apoptosis and ferroptosis in HeLa cells through mitochondrial damage, caspase cascade, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation and lipid peroxidation accumulation. As a result, this work presents the rational design of Re(I)-ART conjugates as a promising strategy to induce both apoptosis and ferroptosis and improve therapeutic efficiency of cancer treatment.
Collapse
Affiliation(s)
- Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bi-Chun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
40
|
Qiao Y, Chen Y, Zhang S, Huang Q, Zhang Y, Li G. Six novel complexes based on 5-Acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Zhang J, Jiang M, Li S, Zhang Z, Sun H, Yang F, Liang H. Developing a Novel Anticancer Gold(III) Agent to Integrate Chemotherapy and Immunotherapy. J Med Chem 2021; 64:6777-6791. [PMID: 34000198 DOI: 10.1021/acs.jmedchem.1c00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To effectively treat gastric cancer, we innovatively attempted to develop a metal agent to integrate immunotherapy and chemotherapy by dual targeting the cellular components in the tumor microenvironment (TME) based on the specific residue of human serum albumin (HSA) nanoparticles (NPs). We synthesized a series of Au(III) α-N-heterocyclic thiosemicarbazone compounds and obtained a Au agent (5b) with remarkable cytotoxicity to gastric cancer cells; moreover, we successfully constructed a novel HSA-5b complex NP delivery system. Importantly, the in vivo results showed that 5b/HSA-5b NPs effectively inhibited gastric tumor growth and HSA-5b NPs enhanced the therapeutic efficiency, bioavailability, and targeting ability compared with those of 5b alone. Furthermore, the in vitro/in vivo results revealed that 5b/HSA-5b NPs could integrate chemotherapy and immunotherapy by synergistically attacking two different cellular components in TME at the same time, namely, polarizing the tumor-associated macrophages and inducing apoptosis of gastric cancer cells.
Collapse
Affiliation(s)
- Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ming Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
42
|
Belkhir-Talbi D, Ghemmit-Doulache N, Terrachet-Bouaziz S, Makhloufi-Chebli M, Rabahi A, Ismaili L, Silva AM. Transition-metal complexes of N,N′-di(4-bromophenyl)-4-hydroxycoumarin-3-carboximidamide: synthesis, characterization, biological activities, ADMET and drug-likeness analysis. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Zhang DY, Huang F, Ma Y, Liang G, Peng Z, Guan S, Zhai J. Tumor Microenvironment-Responsive Theranostic Nanoplatform for Guided Molecular Dynamic/Photodynamic Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17392-17403. [PMID: 33829761 DOI: 10.1021/acsami.1c03277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of reactive oxygen species (ROS)-involved molecular dynamic therapy (MDT) and photodynamic therapy (PDT) holds great promise for enhanced anticancer effects. Herein, we report a biodegradable tumor microenvironment-responsive nanoplatform composed of sinoporphyrin sodium (SPS) photosensitizer-loaded zinc peroxide nanoparticles (SPS@ZnO2 NPs), which can enhance the action of ROS through the production of hydrogen peroxide (H2O2) and singlet oxygen (1O2) for MDT and PDT, respectively, and the depletion of glutathione (GSH). Under these conditions, SPS@ZnO2 NPs show excellent MDT/PDT synergistic therapeutic effects. We demonstrate that the SPS@ZnO2 NPs quickly degrade to H2O2 and endogenous Zn2+ in an acidic tumor environment and produce toxic 1O2 with 630 nm laser irradiation both in vitro and in vivo. Anticancer mechanistic studies show that excessive production of ROS damages lysosomes and mitochondria and induces cellular apoptosis. We show that SPS@ZnO2 NPs increase the uptake and penetration depth of photosensitizers in cells. In addition, the fluorescence of SPS is a powerful diagnostic tool for the treatment of tumors. The depletion of intracellular GSH through H2O2 production and the release of cathepsin B enhance the effectiveness of PDT. This theranostic nanoplatform provides a new avenue for tumor microenvironment-responsive and ROS-involved therapeutic strategies with synergistic enhancement of antitumor activity.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fanglin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| | - Guangzhong Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| | - Zhuo Peng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| | - Shixia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuan East Road, Guangzhou 510006, China
| |
Collapse
|
44
|
Sun Q, Wang Y, Fu Q, Ouyang A, Liu S, Wang Z, Su Z, Song J, Zhang Q, Zhang P, Lu D. Sulfur‐Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt/β‐Catenin Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Yi Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
- Key Laboratory for Advanced Materials of MOE School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qiuxia Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention International Cancer Center Department of Pharmacology Shenzhen University Health Science Center Shenzhen 518060 China
| |
Collapse
|
45
|
Anti-metastasis and anti-proliferation effect of mitochondria-accumulating ruthenium(II) complexes via redox homeostasis disturbance and energy depletion. J Inorg Biochem 2021; 217:111380. [PMID: 33578250 DOI: 10.1016/j.jinorgbio.2021.111380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/10/2023]
Abstract
The antiproliferative activity of three cyclometalated Ru(II) complexes with the formula [Ru(bpy)2L]PF6, where bpy = 2,2'-bipyridine, Ru1: L1 = phenanthro[4,5-fgh]quinoxaline; Ru2: L2 = benzo[f]naphtho[2,1-h]quinoxaline; and Ru3: L3 = phenanthro[9,10-b]pyrazine, have been synthesized and characterized. The lipophilicity of the three Ru(II) complexes was modulated by the alteration of the planarity in the ligands of the complexes. With appropriate lipophilicity, Ru1-Ru3 exhibited mitochondrial accumulating property and cytotoxic activity against a spectrum of cancer cell lines. The underlying mechanism study indicated that these Ru(II) complexes can selectively accumulate in mitochondria and disrupt physiological processes, including the redox balance and energy generation in cancer cells. Elevation of iron content in triple-negative breast cancer (MDA-MB-231 cells) was observed after treatment with Ru(II) complexes, which may contribute to the production of reactive oxygen species (ROS) via Fenton reaction chemistry. Besides, the Ru(II) complexes decreased the intracellular glutathione (GSH) in cancer cells, leading to the failure in the cells to combat oxidative damage. Both of the mentioned processes contribute to the high oxidative stress and eventually lead to cancer cell death. On the other hand, Ru1-Ru3 significantly induced the depletion of adenosine triphosphate (ATP), causing disturbance of energy generation. Moreover, the results of wound-healing assay and transwell invasion assay, as well as the tube formation assay indicated the anti-migration and anti-angiogenesis properties of Ru1-Ru3. Our study demonstrated that these Ru(II) complexes are promising chemotherapeutic agents with oxidative stress induction and energy generation disturbance.
Collapse
|
46
|
Tan CP, Zhong YM, Ji LN, Mao ZW. Phosphorescent metal complexes as theranostic anticancer agents: combining imaging and therapy in a single molecule. Chem Sci 2021; 12:2357-2367. [PMID: 34164000 PMCID: PMC8179279 DOI: 10.1039/d0sc06885c] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphorescent metal complexes are a new kind of multifunctional antitumor compounds that can integrate imaging and antitumor functions in a single molecule. In this minireview, we summarize the recent research progress in this field, concentrating on the theranostic applications of phosphorescent iridium(iii), ruthenium(ii) and rhenium(i) complexes. The molecular design that affords these complexes with tumour- or subcellular organelle-targeting properties is elucidated. The potential of these complexes to induce and monitor the dynamic behavior of subcellular organelles and the changes in microenvironment during the process of therapy is demonstrated. Moreover, the potential and advantages of applying new technologies, such as super-resolution imaging and phosphorescence lifetime imaging, are also described. Finally, the challenges faced in the development of novel theranostic metallo-anticancer complexes for possible clinical translation are proposed.
Collapse
Affiliation(s)
- Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan-Mei Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
47
|
Sun Q, Wang Y, Fu Q, Ouyang A, Liu S, Wang Z, Su Z, Song J, Zhang Q, Zhang P, Lu D. Sulfur-Coordinated Organoiridium(III) Complexes Exert Breast Anticancer Activity via Inhibition of Wnt/β-Catenin Signaling. Angew Chem Int Ed Engl 2021; 60:4841-4848. [PMID: 33244858 DOI: 10.1002/anie.202015009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/12/2022]
Abstract
The sulfur-coordinated organoiridium(III) complexes pbtIrSS and ppyIrSS, which contain C,N and S,S (dithione) chelating ligands, were found to inhibit breast cancer tumorigenesis and metastasis by targeting Wnt/β-catenin signaling for the first time. Treatment with pbtIrSS and ppyIrSS induces the degradation of LRP6, thereby decreasing the protein levels of DVL2, β-catenin and activated β-catenin, resulting in downregulation of Wnt target genes CD44 and survivin. Additionally, pbtIrSS and ppyIrSS can suppress cell migration and invasion of breast cancer cells. Furthermore, both complexes show the ability to inhibit sphere formation and mediate the stemness properties of breast cancer cells. Importantly, pbtIrSS exerts potent anti-tumor and anti-metastasis effects in mouse xenograft models through the blockage of Wnt/β-catenin signaling. Taken together, our results indicate that pbtIrSS has great potential to be developed as a breast cancer therapeutic agent with a novel mechanism.
Collapse
Affiliation(s)
- Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiuxia Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
48
|
Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|