1
|
Cao Z, Yan R, Chen J, She M, Jia S, Sun W, Liu P, Zhang S, Li JL. Water-Soluble Fluorescent Sensors for Quantification of Trace Cisplatin in Body Fluids from Clinical Cancer Patients. J Am Chem Soc 2024; 146:33651-33662. [PMID: 39607057 DOI: 10.1021/jacs.4c10460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Accurate quantification of cisplatin (cDDP) in body fluids (blood, urine, and ascites) is crucial in monitoring therapeutic processes, assessing drug metabolism, and optimizing treatment schedules for cancer patients. Nonetheless, due to the inherent fluorescence and complexity of the body fluid matrix, along with the low cDDP concentrations in these fluids during treatment, using fluorescent sensors for fluid detection remains a subject of ongoing research. Herein, a series of water-soluble cDDP-activatable fluorescent sensors was rationally constructed by introducing thioether groups to the xanthene skeleton based on the chalcogenophilicity of platinum. These sensors exhibit excellent sensitivity and certain anti-interference capabilities for sensing cDDP in living cells, rat tissues, and zebrafish. Especially, with a simplified sample pretreatment procedure, for the first time, Rh3 and Rh4 have enabled quantitative detection of cDDP levels in diversiform body fluids from clinical ovarian and bladder cancer patients. These results are highly consistent with those obtained by ICP-MS detection. This work paves the way for utilizing fluorescent sensors in clinical body fluid analysis, thus potentially revolutionizing the monitoring methods of cDDP in clinic settings.
Collapse
Affiliation(s)
- Zifeng Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
| | - Rong Yan
- The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710061, China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi Province 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Carbon Neutrality College (YuLin), Northwest University, Yulin, Shaanxi Province 719099, China
| | - Shanshan Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Carbon Neutrality College (YuLin), Northwest University, Yulin, Shaanxi Province 719099, China
| |
Collapse
|
2
|
Jiang Z, Wang J, Tian M, Zhou L, Kong X, Yan M. Real time precisely tracing the fluctuations of mitochondrial SO 2 in cells during ferroptosis and tissues using a mitochondrial-immobilized ratiometric fluorescent probe. Talanta 2024; 279:126654. [PMID: 39106645 DOI: 10.1016/j.talanta.2024.126654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Mitochondrial sulfur dioxide (SO2) plays important roles in physiological and pathological activities. Unfortunately, it is lack of a reliable tool to precisely visualize the mitochondrial SO2 and elaborate its complicated functions in various cytoactivities. Here we report a mitochondrial-immobilized fluorescent probe PM-Cl consisting of coumarin and benzyl chloride modified benzothiazole, which enables selective visualization of mitochondrial SO2via chemical immobilization. The spectral results demonstrated that probe PM-Cl could respond to SO2 with high selectivity and sensitivity. Co-localization and the fluorescence of cytolysis extraction verified the excellent mitochondrial targeting and anchoring abilities. Due to the chemical immobilization, probe PM-Cl could firmly retain into mitochondria after stimulation of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and H2O2. Significantly, a series of fluorescence images are indicative of capability for detecting the fluctuations of SO2 in mitochondria during ferroptosis. Furthermore, PM-Cl also could visualize SO2 in myocardium and muscle tissues after the stimulation of CCCP. Taken together, probe PM-Cl is a very potential molecular tool for precisely detecting mitochondrial SO2 to explore its complex functions in physiological and pathological activities.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Jingchao Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|
3
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol ME, Sheets L. Direct targeting of mitochondria by cisplatin leads to cytotoxicity in zebrafish lateral-line hair cells. iScience 2024; 27:110975. [PMID: 39398243 PMCID: PMC11466657 DOI: 10.1016/j.isci.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. Hair cell mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
Affiliation(s)
- David S. Lee
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Schrader
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiaoxia Zou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School – Integrated Science and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Mark E. Warchol
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lavinia Sheets
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Sumithaa C, Sugantharam K, Karanath-Anilkumar A, Munuswamy-Ramanujam G, Ganeshpandian M. RAPTA-coordinated polydiacetylene self-assembly: A chameleon-like prodrug with a dual-lock strategy for real-time release monitoring of metallodrug. Chem Commun (Camb) 2024; 60:9566-9569. [PMID: 39139058 DOI: 10.1039/d4cc03368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, we report the first-ever design strategy of modifying RAPTA-C into a self-reporting prodrug candidate based on Ru-coordinated polydiacetylene self-assembly. This nanosystem exhibits a dual lock strategy that responds to visible light and pH-stimuli sequentially one by one with a concomitant color change for controlled RAPTA-C release and real-time release monitoring in human gastric cancer cells.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Karnan Sugantharam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Aswathy Karanath-Anilkumar
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ganesh Munuswamy-Ramanujam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
5
|
Yau JNN, Yempala T, Muthuramalingam RPK, Giustarini G, Teng G, Ang WH, Gibson D, Adriani G, Pastorin G. Fluorescence-Guided Spatial Drug Screening in 3D Colorectal Cancer Spheroids. Adv Healthc Mater 2024; 13:e2400203. [PMID: 38774999 DOI: 10.1002/adhm.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Indexed: 06/04/2024]
Abstract
The limited recapitulation of critical cancer features in 2D cultures causes poor translatability of preclinical results from in vitro assays to in vivo tumor models. This contributes to slow drug development with a low success rate. 3D cultures better recapitulate the tumor microenvironment, enabling more accurate predictions when screening drug candidates and improving the development of chemotherapeutics. Platinum (Pt) (IV) compounds are promising prodrugs designed to reduce the severe systemic toxicity of widely used Food and Drug Administration (FDA)-approved Pt(II) drugs such as cisplatin. Here, this work presents spatiotemporal evaluations in 3D colorectal cancer (CRC) spheroids of mitochondria-targeting Pt(IV) complexes. CRC spheroids provide a greater pathophysiological recapitulation of in vivo tumors than 2D cultures by a marked upregulation of the ABCG2 chemoresistance marker expression. Furthermore, new 3D-staining protocols are introduced to evaluate the real-time decrease in mitochondria membrane potential (ΔΨ) in CRC spheroids, and a Pt-sensing dye to quantify the Pt mitochondrial accumulation. Finally, this work demonstrates a correlation between in vitro results and the efficacy of the compounds in vivo. Overall, the CRC spheroids represent a fast and cost-effective model to assess the behavior of Pt compounds in vitro and predict their translational potential in CRC treatment.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| | - Thirumal Yempala
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Ram Pravin Kumar Muthuramalingam
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Giulio Giustarini
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Germaine Teng
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Wee Han Ang
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Giulia Adriani
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
- Department of Biomedical Engineering, Faculty of Engineerin, National University of Singapore, Singapore, 117578, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
6
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol M, Sheets L. Cisplatin drives mitochondrial dysregulation in sensory hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577846. [PMID: 38352581 PMCID: PMC10862698 DOI: 10.1101/2024.01.29.577846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. The mechanisms that initiate injury are not fully understood, but mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
|
7
|
Li J, Zhang Q, Yang H, Lu W, Fu Y, Xiong Y, Wang X, Lu T, Xin Y, Xie Z, Chen W, Wang G, Guo Y, Qi R. Sequential dual-locking strategy using photoactivated Pt(IV)-based metallo-nano prodrug for enhanced chemotherapy and photodynamic efficacy by triggering ferroptosis and macrophage polarization. Acta Pharm Sin B 2024; 14:3251-3265. [PMID: 39027238 PMCID: PMC11252391 DOI: 10.1016/j.apsb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 07/20/2024] Open
Abstract
Selective activation of Pt(IV) prodrugs within tumors has emerged as a promising strategy in tumor treatment. Although progress has been made with photo- and ultrasound-activated Pt(IV) prodrugs, concerns remain over the non-specific activation of photosensitizers (PS) and the potential for phototoxicity and chemical toxicity. In this study, a sequential dual-locked Pt(IV) nano-prodrug that can be activated by both the acidic tumor microenvironment and light was developed. The Pt(IV) prodrug was prepared by conjugating PS-locked Pt(IV) to a polymeric core, which was then chelated with metallo iron to lock its photoactivity and form a metallo-nano prodrug. Under acidic tumor microenvironment conditions, the metallo-nano prodrug undergoes dissociation of iron, triggering a reduction process in oxaliplatin under light irradiation, resulting in the activation of both chemotherapy and photodynamic therapy (PDT). Additionally, the prodrug could induce metallo-triggered ferroptosis and polarization of tumor-associated macrophages (TAM), thereby enhancing tumor inhibition. The dual-lock strategy employed in a nanoparticle delivery system represents an expansion in the application of platinum-based anticancer drugs, making it a promising new direction in cancer treatment.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenli Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yulong Fu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingcai Xiong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanlin Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zejuan Xie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichao Chen
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Yin J, Zheng X, Zhao Y, Shen X, Cheng T, Shao X, Jing X, Huang S, Lin W. Investigating the Therapeutic Effects of Ferroptosis on Myocardial Ischemia-Reperfusion Injury Using a Dual-Locking Mitochondrial Targeting Strategy. Angew Chem Int Ed Engl 2024; 63:e202402537. [PMID: 38509827 DOI: 10.1002/anie.202402537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.
Collapse
Affiliation(s)
- Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xueying Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Yuxi Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaotong Shen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Tian Cheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinyu Shao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Xinying Jing
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuhong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| |
Collapse
|
9
|
Feng T, Tang Z, Karges J, Shu J, Xiong K, Jin C, Chen Y, Gasser G, Ji L, Chao H. An iridium(iii)-based photosensitizer disrupting the mitochondrial respiratory chain induces ferritinophagy-mediated immunogenic cell death. Chem Sci 2024; 15:6752-6762. [PMID: 38725496 PMCID: PMC11077511 DOI: 10.1039/d4sc01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer cells have a strategically optimized metabolism and tumor microenvironment for rapid proliferation and growth. Increasing research efforts have been focused on developing therapeutic agents that specifically target the metabolism of cancer cells. In this work, we prepared 1-methyl-4-phenylpyridinium-functionalized Ir(iii) complexes that selectively localize in the mitochondria and generate singlet oxygen and superoxide anion radicals upon two-photon irradiation. The generation of this oxidative stress leads to the disruption of the mitochondrial respiratory chain and therefore the disturbance of mitochondrial oxidative phosphorylation and glycolysis metabolisms, triggering cell death by combining immunogenic cell death and ferritinophagy. To the best of our knowledge, this latter is reported for the first time in the context of photodynamic therapy (PDT). To provide cancer selectivity, the best compound of this work was encapsulated within exosomes to form tumor-targeted nanoparticles. Treatment of the primary tumor of mice with two-photon irradiation (720 nm) 24 h after injection of the nanoparticles in the tail vein stops the primary tumor progression and almost completely inhibits the growth of distant tumors that were not irradiated. Our compound is a promising photosensitizer that efficiently disrupts the mitochondrial respiratory chain and induces ferritinophagy-mediated long-term immunotherapy.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
10
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Liang CJ, Wu RC, Huang XQ, Qin QP, Liang H, Tan MX. Synthesis and anticancer mechanisms of four novel platinum(II) 4'-substituted-2,2':6',2''-terpyridine complexes. Dalton Trans 2024; 53:2143-2152. [PMID: 38189098 DOI: 10.1039/d3dt03197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitophagy, a selective autophagic process, has emerged as a pathway involved in degrading dysfunctional mitochondria. Herein, new platinum(II)-based chemotherapeutics with mitophagy-targeting properties are proposed. Four novel binuclear anticancer Pt(II) complexes with 4'-substituted-2,2':6',2''-terpyridine derivatives (tpy1-tpy4), i.e., [Pt2(tpy1)(DMSO)2Cl4]·CH3OH (tpy1Pt), [Pt(tpy2)Cl][Pt(DMSO)Cl3]·CH3COCH3 (tpy2Pt), [Pt(tpy3)Cl][Pt(DMSO)Cl3] (tpy3Pt), and [Pt(tpy4)Cl]Cl·CH3OH (tpy4Pt), were designed and prepared. Moreover, their potential antitumor mechanism was studied. Tpy1Pt-tpy4Pt exhibited more selective cytotoxicity against cisplatin-resistant SK-OV-3/DDP (SKO3cisR) cancer cells compared with those against ovarian SK-OV-3 (SKO3) cancer cells and normal HL-7702 liver (H702) cells. This selective cytotoxicity of Tpy1Pt-tpy4Pt was better than that of its ligands (i.e., tpy1-tpy4), the clinical drug cisplatin, and cis-Pt(DMSO)2Cl2. The results of various experiments indicated that tpy1Pt and tpy2Pt kill SKO3cisR cancer cells via a mitophagy pathway, which involves the disruption of the mitophagy-related protein expression, dissipation of the mitochondrial membrane potential, elevation of the [Ca2+] and reactive oxygen species levels, promotion of mitochondrial DNA damage, and reduction in the adenosine triphosphate and mitochondrial respiratory chain levels. Furthermore, in vivo experiments indicated that the dinuclear anticancer Pt(II) coordination compound (tpy1Pt) has remarkable therapeutic efficiency (ca. 52.4%) and almost no toxicity. Therefore, the new 4'-substituted-2,2':6',2''-terpyridine Pt(II) coordination compound (tpy1Pt) is a potential candidate for next-generation mitophagy-targeting dinuclear Pt(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
12
|
Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali AMBH. Selective fluorescence turn-on detection of combination cisplatin-etoposide chemotherapy based on N-CDs/GSH-CuNCs nanoprobe. RSC Adv 2024; 14:2380-2390. [PMID: 38213979 PMCID: PMC10783161 DOI: 10.1039/d3ra07844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Cisplatin (CIS) and etoposide (ETP) combination therapy is highly effective for treating various cancers. However, the potential for pharmacokinetic interactions between these drugs necessitates selective sensing methods to quantitate both CIS and ETP levels in patient's plasma. This work develops a dual fluorescence probe strategy using glutathione-capped copper nanoclusters (GSH-CuNCs) and nitrogen-doped carbon dots (N-CDs) for the simultaneous analysis of CIS and ETP. The fluorescence signal of GSH-CuNCs at 615 nm increased linearly with CIS concentration while the N-CD emission at 480 nm remained unaffected. Conversely, the N-CD fluorescence was selectively enhanced by ETP with no interference with the CuNC fluorescence. Extensive materials characterization including UV-vis, fluorescence spectroscopy, XRD, and TEM confirmed the synthesis of the nanoprobes. The sensor showed high sensitivity with limits of detection of 6.95 ng mL-1 for CIS and 7.63 ng mL-1 for ETP along with excellent selectivity against potential interferences in rabbit plasma. Method feasibility was demonstrated with application to real rabbit plasma samples. The method was further applied to estimate the pharmacokinetic parameters of CIS before and after ETP coadministration. The dual nanoprobe sensing strategy enables rapid and selective quantitation of CIS and ETP levels to facilitate therapeutic drug monitoring and optimization of combination chemotherapy regimens.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| |
Collapse
|
13
|
Li S, Zhang W, Lan X, Tan L, Chen X, Lv KP, Huang Z, Gou L, Wan J, Meng X. High Biocompatible Poly(lactic-co-glycolic acid)-Based Nanosensitizer With Magnetic Resonance Imaging Capacity for Tumor Targeted Microwave Hyperthermia and Chemotherapy. J Biomed Nanotechnol 2022; 18:369-380. [PMID: 35484737 DOI: 10.1166/jbn.2022.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microwave (MW) hyperthermia has been widely studied in tumor therapy, while the lack of specificity, and the potential toxicity induced by instability or difficulty in degradation of existed MW thermal sensitizers still limits the application. Herein, a new biocompatible Poly(lactic-co-glycolic acid) (PLGA)-based nanosensitizer of Dtxl-Gd@PLGA-PEG-TPP (DGPPT) with capacities of magnetic resonance (MR) imaging and mitochondrial targeting for MW hyperthermia combined with chemotherapy was constructed via a double emulsion solvent evaporation method. The modified TPP significantly enhanced the specificity of sensitizer for targeting mitochondria, a heat-sensitive energy supply plant in cells. Thus the MW thermal damage induced by the loaded Gd in PLGA nanospheres was also strengthened. Together, the system could also achieve MR imaging due to the existence of Gd. In addition, the encapsulated Dtxl performed the chemotherapy of inhibiting mitochondrial function for assisting with MW hyperthermia. In vivo experiments demonstrated that PLGA had high biocompatibility that no obvious damage occurred even the dose was up to 200 mg/kg. Meanwhile, DGPPT+MW representing the combination of mitochondrial targeting and MW hyperthermia-chemotherapy has also been proved to shrink tumor size effectively. This study provides a new direction for building biosafe and multifunctional MW sensitizer with active targeting ability to impede tumor growth.
Collapse
Affiliation(s)
- Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Wei Zhang
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Xudong Lan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xudong Chen
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Kong-Peng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Li Gou
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jing Wan
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Li M, Qian ZJ, Peng CF, Wei XL, Wang ZP. Ultrafast Ratiometric Detection of Aflatoxin B1 Based on Fluorescent β-CD@Cu Nanoparticles and Pt 2+ Ions. ACS APPLIED BIO MATERIALS 2022; 5:285-294. [PMID: 35014825 DOI: 10.1021/acsabm.1c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid detection of aflatoxin B1 (AFB1) is a very important task in food safety monitoring. However, it is still challenging to achieve highly sensitive detection without antibody or aptamer biomolecules. In this work, a rapid detection of aflatoxin B1 was achieved using a ratiometric fluorescence probe without antibody or aptamer for the first time. In the ratiometric fluorescence system, the fluorescence emission of AFB1 at 433 nm was significantly enhanced due to the β-cyclodextrin-AFB1 host-guest interaction and the complexation of AFB1 and Pt2+. Meanwhile, the inclusion of aflatoxin B1 also quenched the fluorescence emission of β-CD@Cu nanoparticles (NPs) at 650 nm based on inner filter effect mechanism. On the basis of the above effects, the ratiometric detection of aflatoxin B1 was achieved in the range of 0.03-10 ng/mL with a low detection limit of 0.012 ng/mL (3σ/s). In addition, the β-CD@Cu NPs based nanoprobe could achieve stable response within 1 min to AFB1. The above ratiometric detection also demonstrated excellent application potential in the rapid on-site detection of AFB1 in food due to the advantages of convenience, rapidness, and high accuracy.
Collapse
Affiliation(s)
- Min Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhi-Juan Qian
- Nanjing Customs District Light Industry Products and Children's Products Inspection Center, Yangzhou 225009, P. R. China
| | - Chi-Fang Peng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin-Lin Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Zhou-Ping Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
15
|
Schueffl H, Theiner S, Hermann G, Mayr J, Fronik P, Groza D, van Schonhooven S, Galvez L, Sommerfeld NS, Schintlmeister A, Reipert S, Wagner M, Mader RM, Koellensperger G, Keppler BK, Berger W, Kowol CR, Legin A, Heffeter P. Albumin-targeting of an oxaliplatin-releasing platinum(iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem Sci 2021; 12:12587-12599. [PMID: 34703544 PMCID: PMC8494022 DOI: 10.1039/d1sc03311e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin is a very potent platinum(ii) drug which is frequently used in poly-chemotherapy schemes against advanced colorectal cancer. However, its benefit is limited by severe adverse effects as well as resistance development. Based on their higher tolerability, platinum(iv) prodrugs came into focus of interest. However, comparable to their platinum(ii) counterparts they lack tumor specificity and are frequently prematurely activated in the blood circulation. With the aim to exploit the enhanced albumin consumption and accumulation in the malignant tissue, we have recently developed a new albumin-targeted prodrug, which supposed to release oxaliplatin in a highly tumor-specific manner. In more detail, we designed a platinum(iv) complex containing two maleimide moieties in the axial position (KP2156), which allows selective binding to the cysteine 34. In the present study, diverse cell biological and analytical tools such as laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS), isotope labeling, and nano-scale secondary ion mass spectrometry (NanoSIMS) were employed to better understand the in vivo distribution and activation process of KP2156 (in comparison to free oxaliplatin and a non-albumin-binding succinimide analogue). KP2156 forms very stable albumin adducts in the bloodstream resulting in a superior pharmacological profile, such as distinctly prolonged terminal excretion half-life and enhanced effective platinum dose (measured by ICP-MS). The albumin-bound drug is accumulating in the malignant tissue, where it enters the cancer cells via clathrin- and caveolin-dependent endocytosis, and is activated by reduction to release oxaliplatin. This results in profound, long-lasting anticancer activity of KP2156 against CT26 colon cancer tumors in vivo based on cell cycle arrest and apoptotic cell death. Summarizing, albumin-binding of platinum(iv) complexes potently enhances the efficacy of oxaliplatin therapy and should be further developed towards clinical phase I trials.
Collapse
Affiliation(s)
- Hemma Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Josef Mayr
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sushilla van Schonhooven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, University Biology Building (UBB) Djerassiplatz 1 A-1030 Vienna Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Robert M Mader
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Medical University of Vienna Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| |
Collapse
|
16
|
Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021; 16:2993-3000. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Nanoformulations of mononuclear Pt complexes cis-PtCl2 (PPh3 )2 (1), [Pt(PPh3 )2 (L-Cys)] ⋅ H2 O (3, L-Cys=L-cysteinate), trans-PtCl2 (PPh2 PhNMe2 )2 (4; PPh2 PhNMe2 =4-(dimethylamine)triphenylphosphine), trans-PtI2 (PPh2 PhNMe2 )2 (5) and dinuclear Pt cluster Pt2 (μ-S)2 (PPh3 )4 (2) have comparable cytotoxicity to cisplatin against murine melanoma cell line B16F10. Masking of these discrete molecular entities within the hydrophobic core of Pluronic® F-127 significantly boosted their solubility and stability, ensuring efficient cellular uptake, giving in vitro IC50 values in the range of 0.87-11.23 μM. These results highlight the potential therapeutic value of Pt complexes featuring stable Pt-P bonds in nanocomposite formulations with biocompatible amphiphilic polymers.
Collapse
Affiliation(s)
- Pan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - David J Young
- College of Engineering Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|