1
|
Gu M, Wang J, Song Z, Li C, Wang W, Wang A, Huang Y. Multifunctional Asymmetric Separator Constructed by Polyacrylonitrile-Derived Nanofibers for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37889609 DOI: 10.1021/acsami.3c12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Lithium-sulfur (Li-S) batteries hold great promise as next-generation high-energy storage devices owing to the high theoretical specific capacity of sulfur, but polysulfide shuttling and lithium dendrite growth remain key challenges limiting cycling life. In this work, we propose a polyacrylonitrile-derived asymmetric (PDA) separator to enhance Li-S battery performance by accelerating sulfur redox kinetics and guiding lithium plating and stripping. A PDA separator was constructed from two layers: the cathode-facing side consists of polyacrylonitrile nanofibers carbonized at 800 °C and doped with titanium nitride, which can achieve rapid polysulfide conversion via electrocatalysis to suppress their shuttling; the anode-facing side consists of polyacrylonitrile oxidized at 280 °C, on which the abundant electronegative groups guide uniform lithium ion plating and stripping. Li-S batteries assembled with the PDA separator exhibited enhanced rate performance, cycling stability, and sulfur utilization, retaining 426 mA h g-1 capacity at 1 C over 1000 cycles and 632 mA h g-1 at 4 C over 200 cycles. Attractively, the PDA separator showed high thermal stability, which could mitigate the risk of internal short circuits and thermal runaway. This work demonstrates an original path to addressing the most critical issues with Li-S batteries.
Collapse
Affiliation(s)
- Ming Gu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayu Wang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihao Song
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengming Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weikun Wang
- Research Institute of Chemical Defense, Beijing 100083, China
| | - Anbang Wang
- Research Institute of Chemical Defense, Beijing 100083, China
| | - Yaqin Huang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Ding H, Feng Y, Zhou J, Yu X, Fan L, Lu B. Superstable potassium metal batteries with a controllable internal electric field. FUNDAMENTAL RESEARCH 2023; 3:813-821. [PMID: 38933301 PMCID: PMC11197696 DOI: 10.1016/j.fmre.2022.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Stable potassium metal batteries (PMBs) are promising candidates for electrical energy storage due to their ability to reversibly store electrical energy at a low cost. However, dendritic growth and large volume changes hinder their practical application. Here, referring to the morphology and structure of a virus, a bionic virus-like-carbon microsphere (BVC) was designed as the anode host for a PMB. A BVC with a three-dimensional structure can not only control the electric field, which can suppress dendrite formation, but can also provide a larger space to accommodate the volume change during the cycle progress. The designed potassium (K) metal anode exhibits excellent cycle life and stability (during 1800 h of repeated plating/stripping of K at a current density of 0.1 mA cm-2, K-BVC can realize a very stable K metal anode with low voltage hysteresis). Stable cyclability and improved rate capability can be realized in a full cell using Prussian blue over 400 cycles. This research provides a new idea for the development of stable K metal anodes and may pave the way for the practical application of next-generation metal batteries.
Collapse
Affiliation(s)
- Hongbo Ding
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Yanhong Feng
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Jiang Zhou
- School of Materials Science and Engineering and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
| | - Xinzhi Yu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Ling Fan
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Bingan Lu
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Cheng B, Wang B, Lei H, Zhang F, Liu X, Wang H, Zhai G. Nickel sulfide/nickel phosphide heterostructures anchored on porous carbon nanosheets with rapid electron/ion transport dynamics for sodium-ion half/full batteries. J Colloid Interface Sci 2023; 643:574-584. [PMID: 36997395 DOI: 10.1016/j.jcis.2023.03.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Nickel-based materials have been extensively deemed as promising anodes for sodium-ion batteries (SIBs) owing to their superior capacity. Unfortunately, the rational design of electrodes as well as long-term cycling performance remains a thorny challenge due to the huge irreversible volume change during the charge/discharge process. Herein, the heterostructured ultrafine nickel sulfide/nickel phosphide (NiS/Ni2P) nanoparticles closely attached to the interconnected porous carbon sheets (NiS/Ni2P@C) are designed by facile hydrothermal and annealing methods. The NiS/Ni2P heterostructure promotes ion/electron transport, thus accelerating the electrochemical reaction kinetics benefited from the built-in electric field effect. Moreover, the interconnected porous carbon sheets offer rapid electron migration and excellent electronic conductivity, while releasing the volume variance during Na+ intercalation and deintercalation, guaranteeing superior structural stability. As expected, the NiS/Ni2P@C electrode exhibits a high reversible specific capacity of 344 mAh g-1 at 0.1 A g-1 and great rate stability. Significantly, the implementation of NiS/Ni2P@C//Na3(VPO4)2F3 SIB full cell configuration exhibits relatively satisfactory cycle performance, which suggests its widely practical application. This research will develop an effective method for constructing heterostructured hybrids for electrochemical energy storage.
Collapse
Affiliation(s)
- Bingxue Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Beibei Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photo-Technology, Northwest University, Xi'an 710127, PR China.
| | - Hongyu Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
4
|
Wang C, Yang D, Zhang W, Qin Y, Huang S, Liu W, Qiu X, Yi C. Explosion Strategy Engineering Oxygen-Functionalized Groups and Enlarged Interlayer Spacing of the Carbon Anode for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4371-4384. [PMID: 36633362 DOI: 10.1021/acsami.2c21638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amorphous carbon monoliths with tunable microstructures are candidate anodes for future lithium-based energy storage. Enhancing lithium storage capability and solid-state diffusion kinetics are the precondition for practical applications. Transforming intrinsic oxygen-rich defects into active sites and engineering enlarged interlayer spacing are of great importance. Herein, a novel explosion strategy is designed based on oxalate pyrolysis producing CO and CO2 to successfully prepare lignin-derived carbon monolith (LSCM) with active carbonyl (C═O) groups and enlarged interlayer spacing. Explosion promotes the demethylation of methoxyl groups and cleavage of carboxyl groups to form C═O groups. CO2 etches carbon atoms in a short time to improve the heteroatom level, expanding the interlayer spacing. ZnC2O4 is decomposed at 400 °C, simultaneously producing CO and CO2, which constructs less C═O groups and large interlayer spacing. MgC2O4 is decomposed at 450 and 480 °C, staged-weakly producing CO and CO2, which constructs more C═O groups and larger interlayer spacing. CaC2O4 is decomposed at 480 and 700 °C, staged-uniformly producing CO and CO2, which constructs abundant C═O groups and largest interlayer spacing. The LSCM prepared by staged-uniform explosion exhibits high lithium storage capacity, superior rate capability, and cycling performance. The assembled lithium ion capacitor device achieves excellent energy/power densities of 78 Wh kg-1/100 W kg-1 and superior durability (capacitance retention of 8 4.6% after 20,000 cycles). This work gives a novel insight to engineer advanced oxygen-functionalized carbons for enhanced lithium storage.
Collapse
Affiliation(s)
- Caiwei Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Si Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| |
Collapse
|
5
|
Han X, Xiao Z, Chen K, Lai Q, Yang Y. Graphene coupled flower-like oxidized-polyacrylonitrile as high-performance anodes for sustainable lithium-ion batteries. Chem Commun (Camb) 2023; 59:1082-1085. [PMID: 36621890 DOI: 10.1039/d2cc06175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ polymerization of acrylonitrile and graphene oxide in combination with thermal treatment was readily performed to produce robust hierarchical hybrids containing flower-like oxidized-polyacrylonitrile, which synergistically couple conductive graphene and a multi-electron redox-active matrix, affording large reversible capacity, high rate capability, and long cycle life toward cost-efficient and sustainable batteries.
Collapse
Affiliation(s)
- Xiaoyan Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Zongying Xiao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Kai Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Qi Lai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
6
|
Kang H, Li H, Hua K, Ma Q, Chen S, Li H, Wang R, Zhang C. Conjugated poly(2-aminothiazole) hollow nanospheres as a high-performance anode for alkali-metal ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Liang D, Wei J, Ji Y, Chen B, Li X, Li X. Improved rate performance of nanoscale cross-linked polyacrylonitrile-surface-modified LiNi 0.8Co 0.1Mn 0.1O 2 lithium-ion cathode material with ion and electron transmission channels. NANOSCALE 2022; 14:17331-17344. [PMID: 36377733 DOI: 10.1039/d2nr04773j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
LiNi0.8Co0.1Mn0.1O2 (NCM811) has attracted extensive attention due to its high energy density. Particularly, the Li-Ni mixing phenomenon and interfacial side reactions contribute to the rate and cycling performance of NCM811. Cross-linked polyacrylonitrile (cPAN) has certain electrical conductivity and is considered a competitive coating material. In this study, NCM811@cPAN was successfully prepared by wet chemical and heat treatments. The formation process of cPAN systematically analyzed by physical structure tests and microscopic morphological analysis demonstrates that cPAN existed on the surface of NCM811. The electrochemical results demonstrate that NCM811@cPAN has high initial coulombic efficiency (98.14% at 0.1C), good cycle stability and rate performance (222.30 mA h g-1 at 0.5C). The uniform and continuous nano cPAN coating helped avoid direct contact between NCM811 and the electrolyte, enhancing its interfacial stability. Moreover, cPAN exhibited certain electronic conductivity and generated a spinel structure, enhancing the diffusion rate of e- and Li+. Therefore, the electrochemical performance of NCM811 can be improved. This method and the coating material provide an effective strategy for the surface modification of other cathode materials used in Li-ion batteries.
Collapse
Affiliation(s)
- Di Liang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.
| | - Jian Wei
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.
| | - Yuxuan Ji
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.
| | - Bing Chen
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.
| | - Xueting Li
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.
| | - Xifei Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China.
| |
Collapse
|
8
|
Xu Y, Liu Q, Zhu J, Zhang H, Liu J, Chen R, Yu J, Sun G, Wang J. Self-assembled porous polydopamine microspheres modified polyacrylonitrile fiber for synergistically enhanced U(VI) extraction and seawater desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
High-energy graphite microcrystalline carbon for high-performance lithium-ion capacitor: Diffusion kinetics and lithium-storage mechanism. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Lead-Carbon Batteries toward Future Energy Storage: From Mechanism and Materials to Applications. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00134-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AbstractThe lead acid battery has been a dominant device in large-scale energy storage systems since its invention in 1859. It has been the most successful commercialized aqueous electrochemical energy storage system ever since. In addition, this type of battery has witnessed the emergence and development of modern electricity-powered society. Nevertheless, lead acid batteries have technologically evolved since their invention. Over the past two decades, engineers and scientists have been exploring the applications of lead acid batteries in emerging devices such as hybrid electric vehicles and renewable energy storage; these applications necessitate operation under partial state of charge. Considerable endeavors have been devoted to the development of advanced carbon-enhanced lead acid battery (i.e., lead-carbon battery) technologies. Achievements have been made in developing advanced lead-carbon negative electrodes. Additionally, there has been significant progress in developing commercially available lead-carbon battery products. Therefore, exploring a durable, long-life, corrosion-resistive lead dioxide positive electrode is of significance. In this review, the possible design strategies for advanced maintenance-free lead-carbon batteries and new rechargeable battery configurations based on lead acid battery technology are critically reviewed. Moreover, a synopsis of the lead-carbon battery is provided from the mechanism, additive manufacturing, electrode fabrication, and full cell evaluation to practical applications.
Graphical abstract
Collapse
|
11
|
Jian W, Zhang W, Wu B, Wei X, Liang W, Zhang X, Wen F, Zhao L, Yin J, Lu K, Qiu X. Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5425-5438. [PMID: 35050588 DOI: 10.1021/acsami.1c22576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The low energy density and low cost performance of electrochemical capacitors (ECs) are the principal factors that limit the wide applications of ECs. In this work, we used enzymatic hydrolysis lignin as the carbon source and an ammonia activation methodology to prepare nitrogen-doped lignin-derived porous carbon (NLPC) electrode materials with high specific surface areas. We elucidated the free radical mechanism of ammonia activation and the relationship between nitrogen doping configurations, doping levels, and preparation temperatures. Furthermore, we assembled NLPC∥NLPC symmetric ECs and NLPC∥Zn asymmetric ECs using aqueous sulfate electrolytes. Compared with the ECs using KOH aqueous electrolyte, the energy densities of NLPC∥NLPC and NLPC∥Zn ECs were significantly improved. The divergence of charge storage characteristics in KOH, Na2SO4, and ZnSO4 electrolytes were compared by analyzing their area surface capacitance. This work provides a strategy for the sustainable preparation of lignin-derived porous carbons toward ECs with high energy densities.
Collapse
Affiliation(s)
- Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Bingchi Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Xueer Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Wanling Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Xiaoshan Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Fuwang Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
| |
Collapse
|
12
|
Zhu H, Liao S, Bian R, Su B, Ding X, Li M, Ge S, Zhang H, Liu Q. An Iron Supramolecular Compound Containing Terpyridine Polycarboxylic Acid for High Performance Lithium-Ion Batteries. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Zhang W, Yin J, Chen C, Qiu X. Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116709] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zeng D, Xiong H, Qi K, Guo X, Qiu Y. Constructing N-doping biomass-derived carbon with hierarchically porous architecture to boost fast reaction kinetics for higfh-performance lithium storage. J Colloid Interface Sci 2021; 605:741-751. [PMID: 34365310 DOI: 10.1016/j.jcis.2021.07.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Active biomass-derived carbons are brought into focus on boosting high-performance lithium storage. However, their low electric conductivity and poor ion diffusion kinetics during the lithium storage reactions remain confusing topics. This study demonstrates a novel and effective strategy of dual system activation process to construct the nitrogen-doped biomass-derived carbon with hierarchically porous architecture (HNBC), which is composed of the three-dimensional porous networks connected by carbon nanorods and the flake-like edges constructed by carbon nanosheets. A large amount of nitrogen doping can improve the conductivity and facilitate the charge transfer during charging/discharging, while the hierarchically porous structure can decrease the diffusion path for lithium-ion transport, enabling fast diffusion and charge-transfer dynamics. The HNBC electrode displays a high lithium-ion storage capacity of above 1392 mAh g-1 at 0.1 A g-1 and superior stability. Moreover, the assembled asymmetric lithium-ion capacitor exhibits excellent cycling stability and delivers a high power density of 225 W kg-1 with an energy density of 186.31 W h kg-1. This dual system activation strategy may inspire the reasonable design of new-generation progressive carbon-based electrodes for high-performance lithium storage devices.
Collapse
Affiliation(s)
- Dong Zeng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Heng Xiong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Qi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yubing Qiu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
15
|
Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 with half-cyclized polyacrylonitrile. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Zhu Z, Jin L, Yu F, Wang F, Weng Z, Liu J, Han Z, Wang X. ZnO/CPAN Modified Contact Lens with Antibacterial and Harmful Light Reduction Capabilities. Adv Healthc Mater 2021; 10:e2100259. [PMID: 33871179 DOI: 10.1002/adhm.202100259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Compared with traditional glasses, the comfortable and convenient contact lens (CL) has seen an upsurge among the public. However, due to the lack of antibacterial properties of ordinary CLs, the risk of eye infection is greatly increased accordingly. On the other hand, ordinary CLs also cannot effectively reduce the short-wavelength blue light emitted from electronic products, such as mobile phones and computers. Aiming at the above two problems, zinc oxide (ZnO)/cyclized polyacrylonitrile (CPAN) composites are developed for CL modification. After loading with ZnO/CPAN (ZC), the CL shows a broad-spectrum antibacterial property. Further experiments also prove that it can block UVB, UVA, as well as blue light selectively, under the premise of ensuring hydrophilicity and certain transparency. Theoretically, this ZC-decorated CL can fundamentally reduce the damage to the eyes from harmful light emitted by light-emitting diodes and the secretion of pro-inflammatory factors, which is thus a promising eye protection strategy for modern society.
Collapse
Affiliation(s)
- Zhenling Zhu
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Liguo Jin
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Fen Yu
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Feifei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Zhenzhen Weng
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Jia Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Zhen Han
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| | - Xiaolei Wang
- College of Chemistry Nanchang University Nanchang Jiangxi 330088 China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 China
| |
Collapse
|