1
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
2
|
Dev D, Wagner N, Pramanik B, Sharma B, Maity I, Cohen-Luria R, Peacock-Lopez E, Ashkenasy G. A Peptide-Based Oscillator. J Am Chem Soc 2023; 145:26279-26286. [PMID: 37984498 DOI: 10.1021/jacs.3c09377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Living organisms are replete with rhythmic and oscillatory behavior at all levels, to the extent that oscillations have been termed as a defining attribute of life. Recent studies of synthetic oscillators that mimic such functions have shown decayed cycles in batch-mode reactions or sustained oscillatory kinetics under flow conditions. Considering the hypothesized functionality of peptides in early chemical evolution and their central role in current bio-nanotechnology, we now reveal a peptide-based oscillator. Oscillatory behavior was achieved by coupling coiled-coil-based replication processes as positive feedback to controlled initiation and inhibition pathways in a continuously stirred tank reactor (CSTR). Our results stress that assembly into the supramolecular structure and specific interactions with the replication substrates are crucial for oscillations. The replication-inhibition processes were first studied in batch mode, which produced a single damped cycle. Thereafter, combined experimental and theoretical characterization of the replication process in a CSTR under different flow and environmental (pH, redox) conditions demonstrated reasonably sustained oscillations. We propose that studies in this direction might pave the way to the design of robust oscillation networks that mimic the autonomous behavior of proteins in cells (e.g., in the cyanobacterial circadian clock) and hence hint at feasible pathways that accelerated the transition from simple peptides to extant enzymes.
Collapse
Affiliation(s)
- Dharm Dev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bhawna Sharma
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Indrajit Maity
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore, Karnataka 560070, India
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Enrique Peacock-Lopez
- Department of Chemistry, Williams College, Williamstown, Massachusetts 02167, United States
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
3
|
Bal S, Ghosh C, Parvin P, Das D. Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. NANO LETTERS 2023; 23:9988-9994. [PMID: 37831889 DOI: 10.1021/acs.nanolett.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We report a short peptide that accessed dynamic catalytic polymers to demonstrate four-stage (sol-gel-weak gel-strong gel) temporal self-regulation of its mechanical properties. The peptide exploited its intrinsic catalytic capabilities of manipulating C-C bonds (retro-aldolase-like) that resulted in a nonlinear variation in the catalytic rate. The seven-residue sequence exploited two lysines for binding and cleaving the thermodynamically activated substrate that subsequently led to the self-regulation of the mechanical strengths of the polymerized states as a function of time and reaction progress. Interestingly, the polymerization events were modulated by the different catalytic potentials of the two terminal lysines to cleave the substrate, covalently trap the electrophilic products, and subsequently control the mechanical properties of the system.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Payel Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
5
|
Zhou H, Cheng R, Quarrell M, Shchukin D. Autonomic self-regulating systems based on polyelectrolyte microcapsules and microgel particles. J Colloid Interface Sci 2023; 638:403-411. [PMID: 36758253 DOI: 10.1016/j.jcis.2023.01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Biological systems possess unique non-equilibrium functions, maintaining tight manipulation of their surroundings through inter-communication of multiple components and self-regulatory capability organized over different length scales. However, most artificial materials are incapable of communicating and self-regulating behavior due to their limited number of component and direct responsive modes. Herein, a new integrated self-regulation system is developed utilizing stimuli-responsive polyelectrolyte capsules as building blocks. The combination of stimuli-responsive capsules and enzyme immobilized microgels is designed to mimic life systems and its programmable interactive communications and self-regulation behavior is demonstrated through communication-feedback mechanism. Polyelectrolyte capsules can sense changes of their surrounding, then start the internal communication by releasing energy-rich cargo mimicking the behavior of the cells. The microgel particles subsequently complete closed-loop communication through providing negative feedback on capsules by enzymatic reaction and actuating pH-regulation of the whole system. Different communication modes and pH-regulation behaviors could be achieved by adjusting spatial and kinetic conditions. Proposed intelligent system is highly customizable due to the wide selection of encapsulated cargos, stimuli-responsive blocks and reaction networks, and would have broad influences in areas ranging from medical implants that assist in stabilizing body functions to microreactor system that regulate catalytic reactions.
Collapse
Affiliation(s)
- Hongda Zhou
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| | - Rui Cheng
- HH Wills Physics Laboratory, Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Matthew Quarrell
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dmitry Shchukin
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| |
Collapse
|
6
|
Chatterjee A, Ghosh S, Ghosh C, Das D. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022; 61:e202201547. [PMID: 35578748 DOI: 10.1002/anie.202201547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Shaped through millions of years of evolution, the spatial localization of multiple enzymes in living cells employs extensive cascade reactions to enable highly coordinated multimodal functions. Herein, by utilizing a complex divergent cascade, we exploit the catalytic potential as well as templating abilities of streamlined cross-β amyloid nanotubes to yield two orthogonal roles simultaneously. The short peptide based paracrystalline nanotube surfaces demonstrated the generation of fluorescence signals within entangled networks loaded with alcohol dehydrogenase (ADH). The nanotubular morphologies were further used to generate cascade-driven microscopic motility through surface entrapment of sarcosine oxidase (SOX) and catalase (Cat). Moreover, a divergent cascade network was initiated by upstream catalysis of the substrate molecules through the surface mutation of catalytic moieties. Notably, the resultant downstream products led to the generation of motile fluorescent microswimmers by utilizing the two sets of orthogonal properties and, thus, mimicked the complex cascade-mediated functionalities of extant biology.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
7
|
Fluorescent Microswimmers Based on Cross‐β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Schnitter F, Rieß B, Jandl C, Boekhoven J. Memory, switches, and an OR-port through bistability in chemically fueled crystals. Nat Commun 2022; 13:2816. [PMID: 35595758 PMCID: PMC9122941 DOI: 10.1038/s41467-022-30424-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system’s abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together. In biology, information is stored and processed using highly evolved molecules in bistable states. Here, the authors demonstrate bistability in a synthetic system without the need for evolved biomolecules or autocatalytic networks.
Collapse
Affiliation(s)
- Fabian Schnitter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Benedikt Rieß
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748, Garching, Germany.
| |
Collapse
|
9
|
Hu T, Agazani O, Nir S, Cohen M, Pan S, Reches M. Antiviral Activity of Peptide-Based Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48469-48477. [PMID: 34623127 DOI: 10.1021/acsami.1c16003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The COVID-19 pandemic highlighted the importance of developing surfaces and coatings with antiviral activity. Here, we present, for the first time, peptide-based assemblies that can kill viruses. The minimal inhibitory concentration (MIC) of the assemblies is in the range tens of micrograms per milliliter. This value is 2 orders of magnitude smaller than the MIC of metal nanoparticles. When applied on a surface, by drop casting, the peptide spherical assemblies adhere to the surface and form an antiviral coating against both RNA- and DNA-based viruses including coronavirus. Our results show that the coating reduced the number of T4 bacteriophages (DNA-based virus) by 3 log, compared with an untreated surface and 6 log, when compared with a stock solution. Importantly, we showed that this coating completely inactivated canine coronavirus (RNA-based virus). This peptide-based coating can be useful wherever sterile surfaces are needed to reduce the risk of viral transmission.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, P. R. China
| | - Omer Agazani
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Nir
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mor Cohen
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, P. R. China
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Indrajit Maity
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Freiburg Institute for Advanced Studies University of Freiburg Freiburg Germany
| | - Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Francisco Lossada
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
11
|
Maity I, Sharma C, Lossada F, Walther A. Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angew Chem Int Ed Engl 2021; 60:22537-22546. [PMID: 34347941 PMCID: PMC8518392 DOI: 10.1002/anie.202109735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Compartmentalized reaction networks regulating signal processing, communication and pattern formation are central to living systems. Towards achieving life-like materials, we compartmentalized urea-urease and more complex urea-urease/ester-esterase pH-feedback reaction networks into hydrogel spheres and investigate how fuel-driven pH fronts can be sent out from these spheres and regulated by internal reaction networks. Membrane characteristics are installed by covering urease spheres with responsive hydrogel shells. We then encapsulate the two networks (urea-urease and ester-esterase) separately into different hydrogel spheres to devise communication, pattern formation and attraction. Moreover, these pH fronts and patterns can be used for self-growing hydrogels, and for developing complex geometries from non-injectable hydrogels without 3D printing tools. This study opens possibilities for compartmentalized feedback reactions and their use in next generation materials fabrication.
Collapse
Affiliation(s)
- Indrajit Maity
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Freiburg Institute for Advanced StudiesUniversity of FreiburgFreiburgGermany
| | - Charu Sharma
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Francisco Lossada
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| | - Andreas Walther
- A3BMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
12
|
Teders M, Murray NR, Huck WTS. Reversible Photoswitchable Inhibitors Enable Wavelength‐Selective Regulation of Out‐of‐Equilibrium Bi‐enzymatic Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael Teders
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Nicholas R. Murray
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
13
|
Teders M, Pogodaev AA, Bojanov G, Huck WTS. Reversible Photoswitchable Inhibitors Generate Ultrasensitivity in Out-of-Equilibrium Enzymatic Reactions. J Am Chem Soc 2021; 143:5709-5716. [PMID: 33844531 PMCID: PMC8154525 DOI: 10.1021/jacs.0c12956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ultrasensitivity
is a ubiquitous emergent property of biochemical
reaction networks. The design and construction of synthetic reaction
networks exhibiting ultrasensitivity has been challenging, but would
greatly expand the potential properties of life-like materials. Herein,
we exploit a general and modular strategy to reversibly regulate the
activity of enzymes using light and show how ultrasensitivity arises
in simple out-of-equilibrium enzymatic systems upon incorporation
of reversible photoswitchable inhibitors (PIs). Utilizing a chromophore/warhead
strategy, PIs of the protease α-chymotrypsin were synthesized,
which led to the discovery of inhibitors with large differences in
inhibition constants (Ki) for the different
photoisomers. A microfluidic flow setup was used to study enzymatic
reactions under out-of-equilibrium conditions by continuous addition
and removal of reagents. Upon irradiation of the continuously stirred
tank reactor with different light pulse sequences, i.e., varying the
pulse duration or frequency of UV and blue light irradiation, reversible
switching between photoisomers resulted in ultrasensitive responses
in enzymatic activity as well as frequency filtering of input signals.
This general and modular strategy enables reversible and tunable control
over the kinetic rates of individual enzyme-catalyzed reactions and
makes a programmable linkage of enzymes to a wide range of network
topologies feasible.
Collapse
Affiliation(s)
- Michael Teders
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr A Pogodaev
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Glenn Bojanov
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Maity I, Dev D, Basu K, Wagner N, Ashkenasy G. Signaling in Systems Chemistry: Programing Gold Nanoparticles Formation and Assembly Using a Dynamic Bistable Network. Angew Chem Int Ed Engl 2021; 60:4512-4517. [PMID: 33006406 PMCID: PMC7984337 DOI: 10.1002/anie.202012837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Living cells exploit bistable and oscillatory behaviors as memory mechanisms, facilitating the integration of transient stimuli into sustained molecular responses that control downstream functions. Synthetic bistable networks have also been studied as memory entities, but have rarely been utilized to control orthogonal functions in coupled dynamic systems. We herein present a new cascade pathway, for which we have exploited a well-characterized switchable peptide-based replicating network, operating far from equilibrium, that yields two alternative steady-state outputs, which in turn serve as the input signals for consecutive processes that regulate various features of Au nanoparticle shape and assembly. This study further sheds light on how bridging together the fields of systems chemistry and nanotechnology may open up new opportunities for the dynamically controlled design of functional materials.
Collapse
Affiliation(s)
- Indrajit Maity
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
- Institute for Macromolecular ChemistryFreiburg Institute for Advanced StudiesAlbert Ludwigs University of Freiburg79104FreiburgGermany
| | - Dharm Dev
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Kingshuk Basu
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Nathaniel Wagner
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Gonen Ashkenasy
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| |
Collapse
|
15
|
System Chemistry in Catalysis: Facing the Next Challenges in Production of Energy Vectors and Environmental Remediation. Catalysts 2021. [DOI: 10.3390/catal11010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most of the catalytic processes that assist the production of either renewable energy vectors or degradation of environmental pollutants rely on the interplay among different factors that can be purposely regulated, in order to improve the overall efficiency of reactions. This perspective analyzes some recent examples of ‘systemic catalysts’, which are based on the modification of the reaction microenvironment and exploitation of concurrent/parasitic reactions or different types of chemical looping, in order to bypass some drawbacks that cannot be easily circumvented by standard approaches. Innovative extensions of those concepts and strategies might inspire new breakthroughs in a variety of key catalytic cycles characterized by high complexity.
Collapse
|