1
|
Zhang R, Cai Y, Xu X. Synthesis and characterization of heterotrimetallic Mg-Ni-Mg complexes with amidinato ligands. Dalton Trans 2025. [PMID: 39840921 DOI: 10.1039/d4dt03495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Treatment of amidinato-based magnesium ethyl compounds LMgEt [L = iPr2PNC(tBu)NAr; Ar = 2,6-iPr2C6H3 (La) or 2,6-(Ph2CH)2-4-iPr-(C6H2) (Lb)] with Ni(COD)2 (COD: 1,5-cyclooctadiene) afforded heterotrimetallic Mg-Ni-Mg complexes [(LMg)2Ni(C2H4)2] through β-H elimination. These complexes exhibit approximately linear Mg-Ni-Mg linkage with the central nickel arranged in a planar configuration; the Ni(C2H4)2 unit can be considered as nickela-bis-cyclopropane. Reaction of [(LMg)2Ni(C2H4)2] with tetrahydrofuran (THF) gave a coordination product [(LMg·THF)2Ni(C2H4)2], in which the central structure remained intact and THF coordinated to two magnesium atoms respectively. In contrast, exposure of the nickela-bis-cyclopropane complex to 1 bar of CO led to the formation of a nickela-mono-cyclopropane complex [(LMg)2Ni(C2H4)(CO)2], in which two CO ligands were coordinated to the nickel center.
Collapse
Affiliation(s)
- Rongping Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
2
|
Perez-Jimenez M, Geoghegan BL, Collauto A, Röβler MM, Crimmin MR. A Paramagnetic Nickel-Zinc Hydride Complex. Angew Chem Int Ed Engl 2024; 63:e202411828. [PMID: 39078719 DOI: 10.1002/anie.202411828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 10/15/2024]
Abstract
Reaction of a molecular zinc-hydride [{(ArNCMe)2CH}ZnH] (Ar=2,6-di-isopropylphenyl) with 0.5 equiv. of [Ni(CO)Cp]2 led to the isolation of a nickel-zinc hydride complex containing a bridging 3-centre,2-electron Ni-H-Zn interaction. This species has been characterized in the solid-state by single crystal X-ray diffraction. DFT calculations are consistent with its formulation as a σ-complex derived from coordination of the zinc-hydride to a paramagnetic nickel(I) fragment. Continuous-wave and pulse EPR experiments suggest that this species is labile in solution. Further experiments show that in the presence of catalytic quantities of nickel(I) precursors, zinc-hydride bonds can undergo either H/D-exchange with D2 or dehydrocoupling to form Zn-Zn bonds. In combination, the data support the activation and functionalisation of zinc-hydride bonds at nickel(I) centres.
Collapse
Affiliation(s)
- Marina Perez-Jimenez
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Blaise L Geoghegan
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Alberto Collauto
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Maxie M Röβler
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Mark R Crimmin
- Department of Chemistry and Centre for Pulse EPR spectroscopy (PEPR), Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| |
Collapse
|
3
|
Kumar Bisai M, Łosiewicz J, Sotorrios L, Nichol GS, Dominey AP, Cowley MJ, Thomas SP, Macgregor SA, Ingleson MJ. Transition Metal-Free Catalytic C-H Zincation and Alumination. Angew Chem Int Ed Engl 2024; 63:e202404848. [PMID: 38577790 DOI: 10.1002/anie.202404848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
C-H metalation is the most efficient method to prepare aryl-zinc and -aluminium complexes that are ubiquitous nucleophiles. Virtually all C-H metalation routes to form Al/Zn organometallics require stoichiometric, strong Brønsted bases with no base-catalyzed reactions reported. Herein we present a catalytic in amine/ammonium salt (Et3N/[(Et3N)H]+) C-H metalation process to form aryl-zinc and aryl-aluminium complexes. Key to this approach is coupling an endergonic C-H metalation step with a sufficiently exergonic dehydrocoupling step between the ammonium salt by-product of C-H metalation ([(Et3N)H]+) and a Zn-H or Al-Me containing complex. This step, forming H2/MeH, makes the overall cycle exergonic while generating more of the reactive metal electrophile. Mechanistic studies supported by DFT calculations revealed metal-specific dehydrocoupling pathways, with the divergent reactivity due to the different metal valency (which impacts the accessibility of amine-free cationic metal complexes) and steric environment. Notably, dehydrocoupling in the zinc system proceeds through a ligand-mediated pathway involving protonation of the β-diketiminate Cγ position. Given this process is applicable to two disparate metals (Zn and Al), other main group metals and ligand sets are expected to be amenable to this transition metal-free, catalytic C-H metalation.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Justyna Łosiewicz
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Lia Sotorrios
- School of Health Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew P Dominey
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
| | - Michael J Cowley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stuart A Macgregor
- EaStCHEM School of Chemistry, University of St Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
4
|
Lachguar A, Pichugov AV, Neumann T, Dubrawski Z, Camp C. Cooperative activation of carbon-hydrogen bonds by heterobimetallic systems. Dalton Trans 2024; 53:1393-1409. [PMID: 38126396 PMCID: PMC10804807 DOI: 10.1039/d3dt03571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The direct activation of C-H bonds has been a rich and active field of organometallic chemistry for many years. Recently, incredible progress has been made and important mechanistic insights have accelerated research. In particular, the use of heterobimetallic complexes to heterolytically activate C-H bonds across the two metal centers has seen a recent surge in interest. This perspective article aims to orient the reader in this fast moving field, highlight recent progress, give design considerations for further research and provide an optimistic outlook on the future of catalytic C-H functionalization with heterobimetallic complexes.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Andrey V Pichugov
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Till Neumann
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Zachary Dubrawski
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes & Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
5
|
R Judge N, Logallo A, Hevia E. Main group metal-mediated strategies for C-H and C-F bond activation and functionalisation of fluoroarenes. Chem Sci 2023; 14:11617-11628. [PMID: 37920337 PMCID: PMC10619642 DOI: 10.1039/d3sc03548d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
With fluoroaromatic compounds increasingly employed as scaffolds in agrochemicals and active pharmaceutical ingredients, the development of methods which facilitate regioselective functionalisation of their C-H and C-F bonds is a frontier of modern synthesis. Along with classical lithiation and nucleophilic aromatic substitution protocols, the vast majority of research efforts have focused on transition metal-mediated transformations enabled by the redox versatilities of these systems. Breaking new ground in this area, recent advances in main group metal chemistry have delineated unique ways in which s-block, Al, Ga and Zn metal complexes can activate this important type of fluorinated molecule. Underpinned by chemical cooperativity, these advances include either the use of heterobimetallic complexes where the combined effect of two metals within a single ligand set enables regioselective low polarity C-H metalation; or the use of novel low valent main group metal complexes supported by special stabilising ligands to induce C-F bond activations. Merging these two different approaches, this Perspective provides an overview of the emerging concept of main-group metal mediated C-H/C-F functionalisation of fluoroarenes. Showcasing the untapped potential that these systems can offer in these processes; focus is placed on how special chemical cooperation is established and how the trapping of key reaction intermediates can inform mechanistic understanding.
Collapse
Affiliation(s)
- Neil R Judge
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Alessandra Logallo
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| |
Collapse
|
6
|
Zeng LY, Qu PZ, Tao M, Pu G, Jia J, Wang P, Shang M, Li X, He CY. Synthesis of Alkylated Polyfluorobenzenes through Decarboxylative Giese Addition of Aliphatic N-Hydroxyphthalimide Esters with Polyfluorostyrene. J Org Chem 2023; 88:14105-14114. [PMID: 37708081 DOI: 10.1021/acs.joc.3c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Polyfluoroaromatic compounds play crucial roles in medicinal and material science. However, the synthesis of alkylated polyfluoroarenes has been relatively underdeveloped. In this study, we devised a novel decarboxylative coupling reaction between aliphatic N-hydroxyphthalimide esters and polyfluorostyrene, leveraging the photochemical activity of electron donor-acceptor (EDA) complexes. This method offers simple reaction conditions, a broad substrate scope, and excellent functional group tolerance. Furthermore, we have demonstrated the practicality of this protocol through late-stage polyfluoroaryl modification of biologically active molecules using readily available carboxylic acids as starting materials, thus providing an important supplement to the current toolbox for accessing alkylated polyfluoroaryl motifs.
Collapse
Affiliation(s)
- Lin-Yuan Zeng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Pei-Zhen Qu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Maoling Tao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guoliang Pu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Maocai Shang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xuefei Li
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai 201807, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P.R. China
| |
Collapse
|
7
|
Zhang L, Kaukver S, McMullen J, White AJP, Crimmin MR. Catalytic C–H Alumination of Thiophenes: DFT Predictions and Experimental Verification. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Linxing Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, London W12 0BZ, U.K
- Shenzhen Bay Laboratory, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Siim Kaukver
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, London W12 0BZ, U.K
| | - Jacob McMullen
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, London W12 0BZ, U.K
| | - Andrew J. P. White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, London W12 0BZ, U.K
| | - Mark R. Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherds Bush, London W12 0BZ, U.K
| |
Collapse
|
8
|
Parr JM, Phanopoulos A, Vickneswaran A, Crimmin MR. Understanding the role of ring strain in β-alkyl migration at Mg and Zn centres. Chem Sci 2023; 14:1590-1597. [PMID: 36794202 PMCID: PMC9906642 DOI: 10.1039/d2sc06288g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
The activation of C-C σ-bonds within strained three- and four-membered hydrocarbons at electrophilic Mg and Zn centres is reported. This was achieved in a two-step process involving (i) hydrometallation of a methylidene cycloalkane followed by (ii) intramolecular C-C bond activation. While hydrometallation of methylidene cyclopropane, cyclobutane, cyclopentane and cyclohexane occurs for both Mg and Zn reagents, the C-C bond activation step is sensitive to ring size. For Mg, both cyclopropane and cyclobutane rings participate in C-C bond activation. For Zn, only the smallest cyclopropane ring reacts. These findings were used to expand the scope of catalytic hydrosilylation of C-C σ-bonds to include cyclobutane rings. The mechanism of C-C σ-bond activation was investigated through kinetic analysis (Eyring), spectroscopic observation of intermediates, and a comprehensive series of DFT calculations, including activation strain analysis. Based on our current understanding, C-C bond activation is proposed to occur by a β-alkyl migration step. β-Alkyl migration is more facile for more strained rings and occurs with lower barriers for Mg compared to Zn. Relief of ring strain is a key factor in determining the thermodynamics of C-C bond activation, but not in stabilising the transition state for β-alkyl migration. Rather, we ascribe the differences in reactivity to the stabilising interaction between the metal centre and the hydrocarbon ring-system, with the smaller rings and more electropositive metal (Mg) leading to a smaller destabilisation interaction energy as the transition state is approached. Our findings represent the first example of C-C bond activation at Zn and provide detailed new insight into the factors at play in β-alkyl migration at main group centres.
Collapse
Affiliation(s)
- Joseph M. Parr
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London82 Wood Lane, White City, Shepherds BushLondonW12 0BZUK
| | - Andreas Phanopoulos
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Aaranjah Vickneswaran
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Mark R. Crimmin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London82 Wood Lane, White City, Shepherds BushLondonW12 0BZUK
| |
Collapse
|
9
|
Garçon M, Phanopoulos A, White AJP, Crimmin MR. Reversible Dihydrogen Activation and Catalytic H/D Exchange with Group 10 Heterometallic Complexes. Angew Chem Int Ed Engl 2023; 62:e202213001. [PMID: 36350647 PMCID: PMC10107683 DOI: 10.1002/anie.202213001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Reaction of a hexagonal planar palladium complex featuring a [PdMg3 H3 ] core with H2 is reversible and leads to the formation of a new [PdMg2 H4 ] tetrahydride species alongside an equivalent of a magnesium hydride co-product [MgH]. While the reversibility of this process prevented isolation of [PdMg2 H4 ], analogous [PtMg2 H4 ] and [PtZn2 H4 ] complexes could be isolated and characterised through independent syntheses. Computational analysis (DFT, AIM, NCIPlot) of the bonding in a series of heterometallic tetrahydride compounds (Ni-Pt; Mg and Zn) suggests that these complexes are best described as square planar with marginal metal-metal interactions; the strength of which increases slightly as group 10 is descended and increases from Mg to Zn. DFT calculations support a mechanism for H2 activation involving a ligand-assisted oxidative addition to Pd. These findings were exploited to develop a catalytic protocol for H/D exchange into magnesium hydride and zinc hydride bonds.
Collapse
Affiliation(s)
- Martí Garçon
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Andreas Phanopoulos
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Mark R Crimmin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
10
|
Garçon M, Phanopoulos A, Sackman GA, Richardson C, White AJP, Cooper RI, Edwards AJ, Crimmin MR. The Continuum Between Hexagonal Planar and Trigonal Planar Geometries. Angew Chem Int Ed Engl 2022; 61:e202211948. [PMID: 36094744 PMCID: PMC9828084 DOI: 10.1002/anie.202211948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 01/12/2023]
Abstract
New heterometallic hydride complexes that involve the addition of {Mg-H} and {Zn-H} bonds to group 10 transition metals (Pd, Pt) are reported. The side-on coordination of a single {Mg-H} to Pd forms a well-defined σ-complex. In contrast, addition of three {Mg-H} or {Zn-H} bonds to Pd or Pt results in the formation of planar complexes with subtly different geometries. We compare their structures through experiment (X-ray diffraction, neutron diffraction, multinuclear NMR), computational methods (DFT, QTAIM, NCIPlot), and theoretical analysis (MO diagram, Walsh diagram). These species can be described as snapshots along a continuum of bonding between ideal trigonal planar and hexagonal planar geometries.
Collapse
Affiliation(s)
- Martí Garçon
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - Andreas Phanopoulos
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - George A. Sackman
- Chemical CrystallographyChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK,Australian Centre for Neutron Scattering, ANSTONew Illawarra RoadLucas HeightsNSW, 2234Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSW 2522Australia
| | - Andrew J. P. White
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| | - Richard I. Cooper
- Chemical CrystallographyChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Alison J. Edwards
- Australian Centre for Neutron Scattering, ANSTONew Illawarra RoadLucas HeightsNSW, 2234Australia
| | - Mark R. Crimmin
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood Lane, Shepherds BushLondonW12 0BZUK
| |
Collapse
|
11
|
Morris LJ, Rajeshkumar T, Maron L, Okuda J. Reversible Oxidative Addition of Zinc Hydride at a Gallium(I)-Centre: Labile Mono- and Bis(hydridogallyl)zinc Complexes. Chemistry 2022; 28:e202201480. [PMID: 35819049 PMCID: PMC9804236 DOI: 10.1002/chem.202201480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 01/05/2023]
Abstract
In the presence of TMEDA (N,N,N',N'-tetramethylethylenediamine), partially deaggregated zinc dihydride as hydrocarbon suspensions react with the gallium(I) compound [(BDI)Ga] (I, BDI={HC(C(CH3 )N(2,6-iPr2 -C6 H3 ))2 }- ) by formal oxidative addition of a Zn-H bond to the gallium(I) centre. Dissociation of the labile TMEDA ligand in the resulting complex [(BDI)Ga(H)-(H)Zn(tmeda)] (1) facilitates insertion of a second equiv. of I into the remaining Zn-H to form a thermally sensitive trinuclear species [{(BDI)Ga(H)}2 Zn] (2). Compound 1 exchanges with polymeric zinc dideuteride [ZnD2 ]n in the presence of TMEDA, and with compounds I and 2 via sequential and reversible ligand dissociation and gallium(I) insertion. Spectroscopic and computational studies demonstrate the reversibility of oxidative addition of each Zn-H bond to the gallium(I) centres.
Collapse
Affiliation(s)
- Louis J. Morris
- Institute for Inorganic ChemistryRWTH Aachen University52062AachenGermany
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUnited Kingdom
| | | | - Laurent Maron
- CNRSINSAUPSUMR 5215LPCNOUniversité de Toulouse31077ToulouseFrance
| | - Jun Okuda
- Institute for Inorganic ChemistryRWTH Aachen University52062AachenGermany
| |
Collapse
|
12
|
Parr JM, White AJP, Crimmin MR. Magnesium-stabilised transition metal formyl complexes: structures, bonding, and ethenediolate formation. Chem Sci 2022; 13:6592-6598. [PMID: 35756511 PMCID: PMC9172563 DOI: 10.1039/d2sc02063g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/15/2022] [Indexed: 12/02/2022] Open
Abstract
Herein we report the first comprehensive series of crystallographically characterised transition metal formyl complexes. In these complexes, the formyl ligand is trapped as part of a chelating structure between a transition metal (Cr, Mn, Fe, Co, Rh, W, and Ir) and a magnesium (Mg) cation. Calculations suggest that this bonding mode results in significant oxycarbene-character of the formyl ligand. Further reaction of a heterometallic Cr–Mg formyl complex results in a rare example of C–C coupling and formation of an ethenediolate complex. DFT calculations support a key role for the formyl-intermediate in ethenediolate formation. These results show that well-defined transition metal formyl complexes are potential intermediates in the homologation of carbon monoxide. Herein we report a comprehensive series of crystallographically characterised transition metal formyl complexes.![]()
Collapse
Affiliation(s)
- Joseph M Parr
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Andrew J P White
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| | - Mark R Crimmin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, White City, Shepherds Bush London W12 0BZ UK
| |
Collapse
|
13
|
Mastropierro P, Kennedy AR, Hevia E. Metallation of sensitive fluoroarenes using a potassium TMP-zincate supported by a silyl(bis)amido ligand. Chem Commun (Camb) 2022; 58:5292-5295. [PMID: 35403647 PMCID: PMC9040423 DOI: 10.1039/d2cc00979j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining a bulky bis(amide) and a reactive one-coordinate TMP (2,2,6,6-tetramethylpiperidide) ligand, a new mixed K/Zn heteroleptic base has been developed for regioselective zincation of fluoroarenes. This special ligand set allows for trapping and structural authentication of the first intermediates of direct Zn–H exchange of fluoroarenes obtained via deprotonative metallation, providing mechanistic insights of the processes involved. Providing unique structural insights, regioselective zincation of a range of fluoroarenes has been accomplished using a novel heterobimetallic K/Zn amide base.![]()
Collapse
Affiliation(s)
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Switzerland.
| |
Collapse
|
14
|
Cai Y, Jiang S, Dong L, Xu X. Synthesis and reactivity of heterometallic complexes containing Mg- or Zn-metalloligands. Dalton Trans 2022; 51:3817-3827. [PMID: 35107467 DOI: 10.1039/d1dt04117g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heteronuclear metal complexes comprising main group metals and transition metals have attracted widespread attention from researchers due to their applications in stoichiometric and catalytic activation of small molecules with possible cooperative effects. Herein, the advances of heterometallic complexes containing Mg- or Zn-metalloligands over the past ten years are reviewed. They consist of two parts: (i) synthetic approaches to heterometallic complexes. Only a brief discussion is made on the different Mg/Zn precursors since they have been summarized before. (ii) Stoichiometric and catalytic reactivities of heterometallic complexes containing Mg/Zn metalloligands. The exploration of the cooperative catalytic reaction of heterometallic complexes is still in its infancy, promising but challenging; thus, further investigations are required in the future.
Collapse
Affiliation(s)
- Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Liqiu Dong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
15
|
Perutz RN, Sabo‐Etienne S, Weller AS. Metathesis by Partner Interchange in σ-Bond Ligands: Expanding Applications of the σ-CAM Mechanism. Angew Chem Int Ed Engl 2022; 61:e202111462. [PMID: 34694734 PMCID: PMC9299125 DOI: 10.1002/anie.202111462] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/13/2022]
Abstract
In 2007 two of us defined the σ-Complex Assisted Metathesis mechanism (Perutz and Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578-2592), that is, the σ-CAM concept. This new approach to reaction mechanisms brought together metathesis reactions involving the formation of a variety of metal-element bonds through partner-interchange of σ-bond complexes. The key concept that defines a σ-CAM process is a single transition state for metathesis that is connected by two intermediates that are σ-bond complexes while the oxidation state of the metal remains constant in precursor, intermediates and product. This mechanism is appropriate in situations where σ-bond complexes have been isolated or computed as well-defined minima. Unlike several other mechanisms, it does not define the nature of the transition state. In this review, we highlight advances in the characterization and dynamic rearrangements of σ-bond complexes, most notably alkane and zincane complexes, but also different geometries of silane and borane complexes. We set out a selection of catalytic and stoichiometric examples of the σ-CAM mechanism that are supported by strong experimental and/or computational evidence. We then draw on these examples to demonstrate that the scope of the σ-CAM mechanism has expanded to classes of reaction not envisaged in 2007 (additional σ-bond ligands, agostic complexes, sp2 -carbon, surfaces). Finally, we provide a critical comparison to alternative mechanisms for metathesis of metal-element bonds.
Collapse
Affiliation(s)
| | - Sylviane Sabo‐Etienne
- CNRSLCC (Laboratoire de Chimie de Coordination)205 route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | | |
Collapse
|
16
|
Perutz RN, Sabo‐Etienne S, Weller AS. Metathesis by Partner Interchange in σ‐Bond Ligands: Expanding Applications of the σ‐CAM Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Sylviane Sabo‐Etienne
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne, BP 44099 F-31077 Toulouse Cedex 4 France
| | | |
Collapse
|
17
|
Shi Y, Bai W, Mu W, Li J, Yu J, Lian B. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Maddock LCH, Kennedy AR, Hevia E. Structural and Synthetic Insights into Sodium‐Mediated‐Ferration of Fluoroarenes. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lewis C. H. Maddock
- Department für Chemie Biochemie und Pharmazie Universität Bern CH-3012 Bern Switzerland
| | - Alan R. Kennedy
- Department of Pure and Applied Chemistry University of Strathclyde UK-Glasgow G1 1XL United Kingdom
| | - Eva Hevia
- Department für Chemie Biochemie und Pharmazie Universität Bern CH-3012 Bern Switzerland
| |
Collapse
|
19
|
Wiesinger M, Knüpfer C, Elsen H, Mai J, Langer J, Harder S. Heterometallic Mg−Ba Hydride Clusters in Hydrogenation Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wiesinger
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Christian Knüpfer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jonathan Mai
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|